
Math 8211 Homework 2 PJW

Date due: Monday October 15, 2012. In class on Wednesday September 17

we will grade your answers, so it is important to be present on that day, with

your homework.

As practice, but not part of the homework, make sure you can do questions in Rotman
apart from the ones listed below, such as 2.19a.

Assignment questions:
Rotman pages 64-69: 2.13, 2.18, 2.20 (assume without proof Proposition 2.42).
Rotman pages 94-97: 2.28, 2.34, 2.36(i)
Questions 1, 2, 3 below.

0. Preliminary facts for questions 1 and 2, to be thought about, but not written down

or handed in.
(a) A small category with at most one morphism between any two objects is the same

thing as a preordered set, namely, a set with a transitive binary operation.
(b) For any small category C we may define a new category C1 with the same ob-

jects and where there is a unique homomorphism x → y in C1 if and only if
HomC(x, y) "= ∅. Then C1 is a preordered set, and there is a functor F1 : C → C1

with the property that whenever G : C → D is a functor where D is a preordered
set, then G can be factored G = H ◦ F1 for some unique functor H : C1 → D.

1. For any small category C, show that the following is an equivalence relation on the
objects: x ∼ y ⇔ there are morphisms x → y and y → x. Writing x for the equivalence
class of x, show that we may define a category C2 with these equivalence classes as
objects, and where there is a morphism unique morphism x → y in C2 if and only if
there is a morphism x → y in C. Show that C2 is a poset, and that there is a functor
F2 : C → C2 with the property that whenever G2 : C → P is a functor where P is a
poset then G2 can be factored G2 = H ◦ F2 for some unique functor H : C2 → P.

2. Let C be a category which is a preordered set. Show that C is equivalent to a poset.

3. (A more specific version of 2.27) Let A =

(

1 2
3 4

)

be the matrix of S : V → V and

let B =

(

1 0
1 2

)

be the matrix of T : W → W , where V is a vector space with basis

{v1, v2} and W is a vector space with basis {w1, w2}. Assuming without proof that
{vi ⊗ wj

∣

∣ i, j ∈ {1, 2}} is a basis for V ⊗ W , put this set in the correct order for the
matrix of §⊗ T to be







1 0 2 0
1 2 2 4
3 0 4 0
3 6 4 8
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Proof.

(i) p is surjective.

Let M = B ′′/ im p and let f : B ′′ → B ′′/ im p be the natural map, so
that f ∈ Hom(B ′′, M). Then p∗( f ) = f p = 0, so that f = 0, because
p∗ is injective. Therefore, B ′′/ im p = 0, and p is surjective.

(ii) im i ⊆ ker p.

Since i∗ p∗ = 0, we have 0 = (pi)∗. Hence, if M = B ′′ and g = 1B′′ ,
so that g ∈ Hom(B ′′, M), then 0 = (pi)∗g = gpi = pi , and so
im i ⊆ ker p.

(iii) ker p ⊆ im i .

Now choose M = B/ im i and let h : B → M be the natural map, so
that h ∈ Hom(B, M). Clearly, i∗h = hi = 0, so that exactness of the
Hom sequence gives an element h′ ∈ HomR(B ′′, M) with p∗(h′) =
h′ p = h. We have im i ⊆ ker p, by part (ii); hence, if im i &= ker p,
there is an element b ∈ B with b /∈ im i and b ∈ ker p. Thus, hb &= 0
and pb = 0, which gives the contradiction hb = h′ pb = 0. •

The single condition that i∗ : HomR(B, M) → HomR(B ′, M) be sur-
jective is much stronger than the hypotheses of Proposition 2.42 (see Exer-
cise 2.20 on page 68).

Exercises

Unless we say otherwise, all modules in these exercises are left R-modules.

2.1 Let R and S be rings, and let ϕ : R → S be a ring homomorphism.
If M is a left S-module, prove that M is also a left R-module if we
define

rm = ϕ(r)m,

for all r ∈ R and m ∈ M .
2.2 Give an example of a left R-module M = S⊕T having a submodule

N such that N &= (N ∩ S) ⊕ (N ∩ T ).
*2.3 Let f, g : M → N be R-maps between left R-modules. If M = 〈X〉

and f |X = g|X , prove that f = g.
*2.4 Let (Mi )i∈I be a (possibly infinite) family of left R-modules and,

for each i , let Ni be a submodule of Mi . Prove that
(⊕

i

Mi
)
/
(⊕

i

Ni
) ∼=

⊕

i

(
Mi/Ni

)
.
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*2.5 Let 0 → A → B → C → 0 be a short exact sequence of left
R-modules. If M is any left R-module, prove that there are exact
sequences

0 → A ⊕ M → B ⊕ M → C → 0

and
0 → A → B ⊕ M → C ⊕ M → 0.

*2.6 (i) Let → An+1
dn+1−→ An

dn−→ An−1 → be an exact sequence,
and let im dn+1 = Kn = ker dn for all n. Prove that

0 → Kn
in−→ An

d ′
n−→ Kn−1 → 0

is an exact sequence for all n, where in is the inclusion
and d ′

n is obtained from dn by changing its target. We say
that the original sequence has been factored into these short
exact sequences.

(ii) Let

→ A1
f1−→ A0

f0−→ K → 0

and
0 → K

g0−→ B0
g1−→ B1 →

be exact sequences. Prove that

→ A1
f1−→ A0

g0 f0−→ B0
g1−→ B1 →

is an exact sequence. We say that the original two se-
quences have been spliced to form the new exact sequence.

*2.7 Use left exactness of Hom to prove that if G is an abelian group,
then HomZ(In, G) ∼= G[n], where G[n] = {g ∈ G : ng = 0}.

*2.8 (i) Prove that a short exact sequence in RMod,

0 → A
i→ B

p→ C → 0,

splits if and only if there exists q : B → A with qi = 1A.
(Note that q is a retraction B → im i .)

(ii) A sequence A
i→ B

p→ C in Groups is exact if im i =
ker p; an exact sequence

1 → A
i→ B

p→ C → 1

in Groups is split if there is a homomorphism j : C → B
with pj = 1C . Prove that 1 → A3 → S3 → I2 → 1
is a split exact sequence. In contrast to part (i), show, in
a split exact sequence in Groups, that there may not be a
homomorphism q : B → A with qi = 1A.
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*2.9 (i) Let v1, . . . , vn be a basis of a vector space V over a field
k. Let v∗

i : V → k be the evaluation V ∗ → k defined by
v∗

i = (!, vi ) (see Example 1.16). Prove that v∗
1 , . . . , v∗

n is
a basis of V ∗ (it is called the dual basis of v1, . . . , vn).
Hint. Use Corollary 2.22(ii) and Example 2.27.

(ii) Let f : V → V be a linear transformation, and let A be
the matrix of f with respect to a basis v1, . . . , vn of V ; that
is, the i th column of A consists of the coordinates of f (vi )
with respect to the given basis v1, . . . , vn . Prove that the
matrix of the induced map f ∗ : V ∗ → V ∗ with respect to
the dual basis is the transpose AT of A.

*2.10 If X is a subset of a left R-module M , prove that 〈X〉, the submodule
of M generated by X , is equal to

⋂
S, where the intersection ranges

over all those submodules S of M that contain X .
*2.11 Prove that if f : M → N is an R-map and K is a submodule of

a left R-module M with K ⊆ ker f , then f induces an R-map
f̂ : M/K → N by f̂ : m + K &→ f (m).

*2.12 (i) Let R be a commutative ring and let J be an ideal in R.
Recall Example 2.8(iv): if M is an R-module, then J M is
a submodule of M . Prove that M/J M is an R/J -module
if we define scalar multiplication:

(r + J )(m + J M) = rm + J M.

Conclude that if J M = {0}, then M itself is an R/J -
module. In particular, if J is a maximal ideal in R and
J M = {0}, then M is a vector space over R/J .

(ii) Let I be a maximal ideal in a commutative ring R. If X is
a basis of a free R-module F , prove that F/I F is a vector
space over R/I and that {cosets x + I F : x ∈ X} is a basis.

*2.13 Let M be a left R-module.
(i) Prove that the map ϕM : HomR(R, M) → M , given by

ϕM : f &→ f (1), is an R-isomorphism.
Hint. Make the abelian group HomR(R, M) into a left R-
module by defining r f (for f : R → M and r ∈ R) by
r f : s &→ f (sr) for all s ∈ R.

(ii) If g : M → N , prove that the following diagram com-
mutes:

HomR(R, M)
ϕM !!

g∗
""

M
g

""
HomR(R, N )

ϕN
!! N .
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Conclude that ϕ = (ϕM )M∈obj(RMod) is a natural isomor-
phism from HomR(R, !) to the identity functor on RMod.
[Compare with Example 1.16(ii).]

2.14 Let A
f→ B

g→ C be a sequence of module maps. Prove that g f = 0
if and only if im f ⊆ ker g. Give an example of such a sequence
that is not exact.

*2.15 (i) Prove that f : M → N is surjective if and only if coker f =
{0}.

(ii) If f : M → N is a map, prove that there is an exact se-
quence

0 → ker f → M
f→ N → coker f → 0.

*2.16 (i) If 0 → M → 0 is an exact sequence, prove that M = {0}.
(ii) If A

f→ B
g→ C

h→ D is an exact sequence, prove that f
is surjective if and only if h is injective.

(iii) Let A
α−→ B

β−→ C
γ−→ D

δ−→ E be exact. If α and δ
are isomorphisms, prove that C = {0}.

*2.17 If A
f−→ B

g−→ C
h−→ D

k−→ E is exact, prove that there is an
exact sequence

0 → coker f
α−→ C

β−→ ker k → 0,

where α : b + im f %→ gb and β : c %→ hc.

*2.18 Let 0 → A
i→ B

p→ C → 0 be a short exact sequence.
(i) Assume that A = 〈X〉 and C = 〈Y 〉. For each y ∈ Y ,

choose y′ ∈ B with p(y′) = y. Prove that

B =
〈
i(X) ∪ {y′ : y ∈ Y }

〉
.

(ii) Prove that if both A and C are finitely generated, then B
is finitely generated. More precisely, prove that if A can
be generated by m elements and C can be generated by n
elements, then B can be generated by m + n elements.

*2.19 Let R be a ring, let A and B be left R-modules, and let r ∈ Z(R).
(i) If µr : B → B is multiplication by r , prove that the in-

duced map (µr )∗ : HomR(A, B) → HomR(A, B) is also
multiplication by r .

(ii) If mr : A → A is multiplication by r , prove that the in-
duced map (mr )

∗ : HomR(A, B) → HomR(A, B) is also
multiplication by r .
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*2.20 Suppose one assumes, in the hypothesis of Proposition 2.42, that the
induced map i∗ : HomR(B, M) → HomR(B ′, M) is surjective for

every M . Prove that 0 → B ′ i−→ B
p−→ B ′′ → 0 is a split short

exact sequence.
*2.21 If T : Ab → Ab is an additive functor, prove, for every abelian

group G, that the function End(G) → End(T G), given by f %→
T f , is a ring homomorphism.

*2.22 (i) Prove that HomZ(Q, C) = {0} for every cyclic group C .
(ii) Let R be a commutative ring. If M is an R-module such

that HomR(M, R/I ) = {0} for every nonzero ideal I , prove
that im f ⊆

⋂
I for every R-map f : M → R, where the

intersection is over all nonzero ideals I in R.
(iii) Let R be a domain and suppose that M is an R-module with

HomR(M, R/I ) = {0} for all nonzero ideals I in R. Prove
that HomR(M, R) = {0}.
Hint. Every r ∈

⋂
I (=0 I is nilpotent.

2.23 Generalize Proposition 2.26. Let (Si )i∈I be a family of submod-
ules of a left R-module M . If M =

〈⋃
i∈I Si

〉
, then the following

conditions are equivalent.

(i) M =
⊕

i∈I Si .

(ii) Every a ∈ M has a unique expression of the form a = si1 +
· · · + sin , where si j ∈ Si j .

(iii) Si ∩
〈⋃

j (=i S j
〉
= {0} for each i ∈ I .

*2.24 (i) Prove that any family of R-maps ( f j : U j → Vj ) j∈J can be
assembled into an R-map ϕ :

⊕
j U j →

⊕
j V j , namely,

ϕ : (u j ) %→ ( f j (u j )).
(ii) Prove that ϕ is an injection if and only if each f j is an

injection.
*2.25 (i) If Zi ∼= Z for all i , prove that

HomZ
( ∞∏

i=1

Zi , Z
)

(∼=
∞∏

i=1

HomZ(Zi , Z).

Hint. A theorem of J. Łos and, independently, of E. C.
Zeeman (see Fuchs, Infinite Abelian Groups II, Section 94)
says that

HomZ
( ∞∏

i=1

Zi , Z
)

∼=
∞⊕

i=1

HomZ(Zi , Z) ∼=
∞⊕

i=1

Zi .
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(ii) Let p be a prime and let Bn be a cyclic group of order pn ,
where n is a positive integer. If A =

⊕∞
n=1 Bn , prove that

Homk

(
A,

∞⊕

n=1

Bn

)
"∼=

∞⊕

n=1

Homk(A, Bn).

Hint. Prove that Hom(A, A) has an element of infinite or-
der, while every element in

⊕∞
n=1 Homk(A, Bn) has finite

order.

(iii) Prove that HomZ(
∏

n≥2 In, Q) "∼=
∏

n≥2 HomZ(In, Q).
*2.26 Let R be a ring with IBN.

(i) If R∞ is a free left R-module having an infinite basis, prove
that R ⊕ R∞ ∼= R∞.

(ii) Prove that R∞ "∼= Rn for any n ∈ N.
(iii) If X is a set, denote the free left R-module

⊕
x∈X Rx by

R(X). Let X and Y be sets, and let R(X) ∼= R(Y ). If X is
infinite, prove that Y is infinite and that |X | = |Y |; that is,
X and Y have the same cardinal.
Hint. Since X is a basis of R(X), each u ∈ R(X) has a
unique expression u =

∑
x∈X rx x ; define

Supp(u) = {x ∈ X : rx "= 0}.

Given a basis B of R(X) and a finite subset W ⊆ X , prove
that there are only finitely many elements b ∈ B with
Supp(b) ⊆ W . Conclude that |B| = Fin(X), where Fin(X)
is the family of all the finite subsets of X . Finally, using the
fact that |Fin(X)| = |X | when X is infinite, conclude that
R(X) ∼= R(Y ) implies |X | = |Y |.

2.2 Tensor Products

One of the most compelling reasons to introduce tensor products comes from
Algebraic Topology. The homology groups of a space are interesting (for
example, computing the homology groups of spheres enables us to prove the
Jordan Curve Theorem), and the homology groups of the cartesian product
X × Y of two topological spaces are computed (by the Künneth formula) in
terms of the tensor product of the homology groups of the factors X and Y .

Here is a second important use of tensor products. We saw, in Exam-
ple 2.2, that if k is a field, then every k-representation ϕ : H → Matn(k) of a
group H to n × n matrices makes the vector space kn into a left k H -module;
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Exercises

2.27 Let V and W be finite-dimensional vector spaces over a field F ,
say, and let v1, . . . , vm and w1, . . . , wn be bases of V and W , re-
spectively. Let S : V → V be a linear transformation having matrix
A = [ai j ], and let T : W → W be a linear transformation having
matrix B = [bk!]. Show that the matrix of S ⊗ T : V ⊗k W →
V ⊗k W , with respect to a suitable listing of the vectors vi ⊗ w j , is
the nm × nm matrix K , which we write in block form:

A ⊗ B =





a11 B a12 B · · · a1m B
a21 B a22 B · · · a2m B

...
...

...
...

am1 B am2 B · · · amm B




.

Remark. The matrix A ⊗ B is called the Kronecker product of
the matrices A and B. !

2.28 Let R be a domain with Q = Frac(R), its field of fractions. If A
is an R-module, prove that every element in Q ⊗R A has the form
q ⊗ a for q ∈ Q and a ∈ A (instead of

∑
i qi ⊗ ai ). (Compare this

result with Example 2.67.)
*2.29 (i) Let p be a prime, and let p, q be relatively prime. Prove

that if A is a p-primary group and a ∈ A, then there exists
x ∈ A with qx = a.

(ii) If D is a finite cyclic group of order m, prove that D/nD is
a cyclic group of order d = (m, n).

(iii) Let m and n be positive integers, and let d = (m, n). Prove
that there is an isomorphism of abelian groups

Im ⊗ In ∼= Id .

(iv) Let G and H be finitely generated abelian groups, so that

G = A1 ⊕ · · · ⊕ An and H = B1 ⊕ · · · ⊕ Bm,

where Ai and B j are cyclic groups. Compute G ⊗Z H
explicitly.
Hint. G ⊗Z H ∼=

∑
i, j Ai ⊗Z B j . If Ai or B j is infinite

cyclic, use Proposition 2.58; if both are finite, use part (ii).

*2.30 (i) Given AR, R BS , and SC , define T (A, B, C) = F/N , where
F is the free abelian group on all ordered triples (a, b, c) ∈
A × B × C , and N is the subgroup generated by all

(ar, b, c) − (a, rb, c),
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(a, bs, c) − (a, b, sc),

(a + a′, b, c) − (a, b, c) − (a′, b, c),

(a, b + b′, c) − (a, b, c) − (a, b′, c),

(a, b, c + c′) − (a, b, c) − (a, b, c′).

Define h : A × B × C → T (A, B, C) by h : (a, b, c) %→
a ⊗ b ⊗ c, where a ⊗ b ⊗ c = (a, b, c) + N . Prove that
this construction gives a solution to the universal mapping
problem for triadditive functions.

(ii) Let R be a commutative ring and let A1, . . . , An , M be
R-modules, where n ≥ 2. An R-multilinear function is
a function h : A1 × · · · × An → M if h is additive in
each variable (when we fix the other n − 1 variables), and
f (a1, . . . , rai , . . . , an) = r f (a1, . . . , ai , . . . , an) for all i
and all r ∈ R. Let F be the free R-module with basis
A1 × · · · × An , and define N ⊆ F to be the submodule
generated by all the elements of the form

(a1, . . . , rai , . . . , an) − r(a1, . . . , ai , . . . , an)

and

(. . . , ai + a′
i , . . .) − (. . . , ai , . . .) − (. . . , a′

i , . . .).

Define T (A1, . . . , An) = F/N and h : A1 × · · · × An →
T (A1, . . . , An) by (a1, . . . , an) %→ (a1, . . . , an)+N . Prove
that h is R-multilinear, and that h and T (A1, . . . , An) solve
the univeral mapping problem for R-multilinear functions.

(iii) Let R be a commutative ring and prove generalized asso-
ciativity for tensor products of R-modules.
Hint. Prove that any association of A1 ⊗ · · · ⊗ An is also a
solution to the universal mapping problem.

*2.31 Assume that the following diagram commutes, and that the vertical
arrows are isomorphisms.

0 !! A′ !!

""

A !!

""

A′′ !!

""

0

0 !! B ′ !! B !! B ′′ !! 0

Prove that the bottom row is exact if and only if the top row is exact.
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*2.32 (3 × 3 Lemma) Consider the following commutative diagram in
RMod having exact columns.

0
!!

0
!!

0
!!

0 "" A′

!!

"" A
!!

"" A′′

!!

"" 0

0 "" B ′

!!

"" B
!!

"" B ′′

!!

"" 0

0 "" C ′

!!

"" C
!!

"" C ′′

!!

"" 0

0 0 0

If the bottom two rows are exact, prove that the top row is exact; if
the top two rows are exact, prove that the bottom row is exact.

*2.33 Consider the following commutative diagram in RMod having exact
rows and columns.

A′

!!

"" A
!!

"" A′′

!!

"" 0

B ′

!!

"" B
!!

"" B ′′

!!

"" 0

C ′

!!

"" C
!!

"" C ′′

!!

"" 0

0 0 0

If A′′ → B ′′ and B ′ → B are injections, prove that C ′ → C is
an injection. Similarly, if C ′ → C and A → B are injections,
then A′′ → B ′′ is an injection. Conclude that if the last column
and the second row are short exact sequences, then the third row
is a short exact sequence and, similarly, if the bottom row and the
second column are short exact sequences, then the third column is a
short exact sequence.

2.34 Give an example of a commutative diagram with exact rows and
vertical maps h1, h2, h4, h5 isomorphisms

A1 ""

h1 !!

A2 ""

h2 !!

A3 "" A4 ""

h4!!

A5

h5!!
B1 "" B2 "" B3 "" B4 "" B5

for which there does not exist a map h3 : A3 → B3 making the
diagram commute.

*2.35 If A,B, and C are categories, then a bifunctor T : A × B → C as-
signs, to each ordered pair of objects (A, B), where A ∈ ob(A) and
B ∈ ob(B), an object T (A, B) ∈ ob(C), and to each ordered pair
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of morphisms f : A → A′ in A and g : B → B ′ in B, a morphism
T ( f, g) : T (A, B) → T (A′, B ′), such that

(a) fixing either variable is a functor; for example, if A ∈ ob(A),
then TA = T (A, !) : B → C is a functor, where TA(B) = T (A, B)
and TA(g) = T (1A, g),

(b) the following diagram commutes:

T (A, B)
T (1A,g)!!

T ( f,g)

""!!!!!!!!!!!

T ( f,1B )

##

T (A, B ′)

T ( f,1B′ )
##

T (A′, B)
T (1A′ ,g)

!! T (A′, B ′).

(i) Prove that ⊗ : ModR × RMod → Ab is a bifunctor.
(ii) Prove that Hom: RMod ×RMod → Ab is a bifunctor if

we modify the definition of bifunctor to allow contravari-
ance in one variable.

*2.36 Let R be a commutative ring, and let F be a free R-module.
(i) If m is a maximal ideal in R, prove that (R/m) ⊗R F and

F/mF are isomorphic as vector spaces over R/m.
(ii) Prove that rank(F) = dim

(
(R/m) ⊗R F

)
.

(iii) If R is a domain with fraction field Q, prove that rank(F) =
dim(Q ⊗R F).

*2.37 Assume that a ring R has IBN; that is, if Rm ∼= Rn as left R-
modules, then m = n. Prove that if Rm ∼= Rn as right R-modules,
then m = n.
Hint. If Rm ∼= Rn as right R-modules, apply HomR(!, R), using
Proposition 2.54(iii).

*2.38 Let R be a domain and let A be an R-module.
(i) Prove that if the multiplication µr : A → A is an injection

for all r '= 0, then A is torsion-free; that is, there are no
nonzero a ∈ A and r ∈ R with ra = 0.

(ii) Prove that if the multiplication µr : A → A is a surjection
for all r '= 0, then A is divisible.

(iii) Prove that if the multiplication µr : A → A is an isomor-
phism for all r '= 0, then A is a vector space over Q, where
Q = Frac(R).
Hint. A module A is a vector space over Q if and only if it
is torsion-free and divisible.

(iv) If either C or A is a vector space over Q, prove that both
C ⊗R A and HomR(C, A) are also vector spaces over Q.


