
Math 8211 Homework 3 PJW
Date due: Monday October 29, 2012. In class on Wednesday October 31 we
will grade your answers, so it is important to be present on that day, with your
homework.

Rotman 3.6 (page 114), 5.3(iii) (page 226), 5.6(ii) (page 227), 5.8 (page 227), 5.29 (page
271), 5.31 (page 272).
Questions 1 – 5 below.

1. Let A = Mm,m(R) and B = Mn,n(R) be matrix rings over R. Show that A ⊗R B ∼=
Mmn,mn(R), where the ring structure on the tensor product is the one described on
page 82.

2. Show that in any commutative diagram of R-modules

0 −→ A −→ B −→ C −→ 0


"



" ‖

0 −→ D −→ E −→ C −→ 0

in which the right hand vertical morphism is the identity and the rows are exact, the
left hand square is necessarily a pushout. Also the dual statement.

3. Let F and G be an adjoint pair of functors, so that F is left adjoint to G and G is
right adjoint to F . Let η and ε be the unit and counit of the adjunction (see page
271). Show that the bijection Hom(FA,B)→ Hom(A,GB) equals the mapping given
by f &→ G(f) ◦ ηA and its inverse equals g &→ εB ◦ F (g).

4. Let C be a small category and let F,G : C → Sets be functors. Show that a natural
transformation of functors τ : F → G is an epimorphism in SetsC if and only if for
every object x of C, τx : F (x) → G(x) is a surjection, and it is a monomorphism if
and only if for every object x of C, τx : F (x)→ G(x) is a 1-1 map.

5. In question 1 of HW 2 a poset C2 was constructed from each small category C. Let
us write P (C) := C2 for the poset so obtained. Recall that P (C) has objects the
equivalence classes x of objects x of C under the equivalence relation x ∼ y ⇔ there
are morphisms x → y and y → x. In P (C) there is a unique morphism x → y if and
only if there is a morphism x→ y.
(a) Show that P may be defined on morphisms of categories (i.e. functors) so as to

give a functor P from the category of small categories to the category of posets.
(b) Consider also the inclusion functor I from the category of posets to the category

of small categories. Determine whether I is a left adjoint of P , a right adjoint of
P or neither of these.

(c) On the assumption that there is an adjunction between I and P (in some order),
show that the functor F2 : C → C2 = P (C) described in HW2 qn. 1 determines
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a natural transformation which is either the unit or the count of the adjunction.
Determine which of these two it is, and describe the other one. (Recall that the
definition of F2 on objects was F2(x) = x).

Extra questions which I was considering, which you should not hand in (because
it makes too many questions):

Rotman: 3.18 (page 129), 3.28 (page 151), 3.35 (page 152),

A. Let k be a field, letD be a small category and let F : D → k-mod be a diagram of vector
spaces over k. Let k be the constant functor D → k-mod which assigns to each object
the space k and to each morphism the identity map. Show that lim

←−
F ↔ Nat(k, F )

and lim
−→

F ↔ Nat(F, k)

B. Show that a coproduct of projective objects is projective, and a product of injective
objects is injective always.

C. Let C be a small category.
(a) Use Yoneda’s lemma to show that representable functors HomC(x,−) are projective
objects in SetsC .
(b) Show that every functor F : C → Sets is the codomain of an epimorphism from a
coproduct of representable functors.
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Exercises

3.1 Let M be a free R-module, where R is a domain. Prove that if
rm = 0, where r ∈ R and m ∈ M , then either r = 0 or m = 0.
(This is false if R is not a domain.)

*3.2 Let R be a ring and let S be a nonzero submodule of a free right
R-module F . Prove that if a ∈ R is not a right zero-divisor2, then
Sa "= {0}.

3.3 Define projectivity in Groups, and prove that a group G is projec-
tive if and only if G is a free group.
Hint. Recall the Nielsen–Schreier Theorem: Every subgroup of a
free group is free.

*3.4 (i) (Pontrjagin) If A is a countable torsion-free abelian group
each of whose subgroups S of finite rank is free abelian,
prove that A is free abelian (the rank of an abelian group S
is defined as dimQ(Q⊗Z S); cf. Exercise 2.36 on page 97).
Hint. See the discussion on page 103.

(ii) Prove that every subgroup of finite rank in ZN (the product
of countably many copies of Z) is free abelian.

(iii) Prove that every countable subgroup of ZN is free. (In The-
orem 4.17, we will see that ZN itself is not free.)

*3.5 (Eilenberg) Prove that every projective left R-module P has a free
complement; that is, there exists a free left R-module F such that
P ⊕ F is free.
Hint. If P ⊕ Q is free, consider Q ⊕ P ⊕ Q ⊕ P ⊕ · · · .

3.6 Let k be a commutative ring, and let P and Q be projective k-
modules. Prove that P ⊗k Q is a projective k-module.

*3.7 (i) Prove that R = C(R), the ring of all real-valued functions
on R under pointwise operations, is not noetherian.

(ii) Recall that f : R → R is a C∞-function if ∂n f/∂xn exists
and is continuous for all n. Prove that R = C∞(R), the
ring of all C∞-functions on R under pointwise operations,
is not noetherian.

(iii) If k is a commutative ring, prove that k[X ], the polynomial
ring in infinitely many indeterminates X , is not noetherian.

*3.8 (Small) Let R be the ring of all 2 × 2 matrices
[

a 0
b c

]
with a ∈ Z

and b, c ∈ Q is a ring. Schematically, we can describe R as
[ Z 0

Q Q
]
.

Prove that R is left noetherian, but that R is not right noetherian.

2An element a ∈ R is a zero-divisor if a "= 0 and there exists a nonzero b ∈ R with
ab = 0 or ba = 0. More precisely, a is a right zero-divisor if there is a nonzero b with
ba = 0; that is, multiplication r (→ ra is not an injection R → R.
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For every open V ⊆ X , define !(V ) = {continuous f : V → R} and, if
V ⊆ W , where W ⊆ X is another open subset, define !(W ) → !(V ) to be
the restriction map f #→ f |V . Then properties (i) and (ii) say that !(U ) is
the equalizer of the family of maps !(Ui ) → !(Ui j ). !

Exercises

*5.1 (i) Prove that ∅ is an initial object in Sets.
(ii) Prove that any one-point set " = {x0} is a terminal object

in Sets. In particular, what is the function ∅ → "?
*5.2 A zero object in a category C is an object that is both an initial object

and a terminal object.
(i) Prove the uniqueness to isomorphism of initial, terminal,

and zero objects, if they exist.
(ii) Prove that {0} is a zero object in RMod and that {1} is a

zero object in Groups.
(iii) Prove that neither Sets nor Top has a zero object.
(iv) Prove that if A = {a} is a set with one element, then (A, a)

is a zero object in Sets∗, the category of pointed sets. If A
is given the discrete topology, prove that (A, a) is a zero
object in Top∗, the category of pointed topological spaces.

5.3 (i) Prove that the zero ring is not an initial object in ComRings.
(ii) If k is a commutative ring, prove that k is an initial object

in ComAlgk , the category of all commutative k-algebras.
(iii) In ComRings, prove that Z is an initial object and that the

zero ring {0} is a terminal object.
5.4 For every commutative ring k, prove that the direct product R × S

is the categorical product in ComAlgk (in particular, direct product
is the categorical product in ComAlgZ = ComRings).

*5.5 Let k be a commutative ring.
(i) Prove that k[x, y] is a free commutative k-algebra with ba-

sis {x, y}.
Hint. If A is any commutative k-algebra, and if a, b ∈ A,
there exists a unique k-algebra map ϕ : k[x, y] → A with
ϕ(x) = a and ϕ(y) = b.

(ii) Use Proposition 5.2 to prove that k[x] ⊗k k[y] is a free k-
algebra with basis {x, y}.

(iii) Use Proposition 5.4 to prove that k[x] ⊗k k[y] ∼= k[x, y] as
k-algebras.
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*5.6 (i) Let Y be a set, and let P(Y ) denote its power set; that is,
P(Y ) is the partially ordered set of all the subsets of Y . As
in Example 1.3(iii), view P(Y ) as a category. If A, B ∈
P(Y ), prove that the coproduct A"B = A ∪ B and that the
product A $ B = A ∩ B.

(ii) Generalize part (i) as follows. If X is a partially ordered set
viewed as a category, and a, b ∈ X , prove that the coprod-
uct a " b is the least upper bound of a and b, and that the
product a $ b is the greatest lower bound.

(iii) Give an example of a category in which there are two ob-
jects whose coproduct does not exist.
Hint. Let ! be a set with at least two elements, and let C be
the category whose objects are its proper subsets, partially
ordered by inclusion. If A is a nonempty subset of !, then
the coproduct of A and its complement does not exist in C.

*5.7 Define the wedge of pointed spaces (X, x0), (Y, y0) ∈ Top∗ to be
(X ∨ Y, z0), where X ∨ Y is the quotient space of the disjoint union
X "Y in which the basepoints are identified to z0. Prove that wedge
is the coproduct in Top∗.

5.8 Give an example of a covariant functor that does not preserve co-
products.

*5.9 If A and B are (not necessarily abelian) groups, prove that A $ B =
A × B (direct product) in Groups. For readers familiar with group
theory, prove that A " B = A ∗ B (free product) in Groups.

*5.10 (i) Given a pushout diagram in RMod:

A
g !!

f
""

C
β

""
B α

!! D

prove that g injective implies α injective and that g surjec-
tive implies α surjective. Thus, parallel arrows have the
same properties.

(ii) Given a pullback diagram in RMod:

D
α !!

β
""

C
g

""
B

f
!! A

prove that f injective implies α injective and that f sur-
jective implies α surjective. Thus, parallel arrows have the
same properties.
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Proof. For any integer n ≥ 1, the free module P =
⊕n

i=1 Ri , where Ri ∼=
R, is a small projective generator of ModR , and S = EndR(P) ∼= Matn(R).
The isomorphism F : ModR → ModMatn(R) in Morita’s Theorem carries
M $→ M ⊗S P ∼=

⊕
i Mi , where Mi ∼= M for all i . Hence, if M is a

projective right R-module, then F(M) is also projective. But every module
in ModMatn(R) is projective, by Proposition 4.5 (a ring R is semisimple if and
only if every R-module is projective). Therefore, Matn(R) is semisimple, •

There is a lovely part of ring theory, Morita theory (after K. Morita),
developing these ideas. A category C is isomorphic to a module category
if and only if it is an abelian category (see Section 5.5) containing a small
projective generator P , and which is closed under infinite coproducts (see
Mitchell, Theory of Categories, p. 104, or Pareigis, Categories and Func-
tors, p. 211). Given this hypothesis, then C ∼= ModS , where S = End(P) (the
proof is essentially that given for Theorem 5.55). Two rings R and S are called
Morita equivalent if ModR ∼= ModS . If R and S are Morita equivalent, then
Z(R) ∼= Z(S); that is, they have isomorphic centers (the proof actually iden-
tifies all the possible isomorphisms between the categories). In particular, two
commutative rings are Morita equivalent if and only if they are isomorphic.
See Jacobson, Basic Algebra II, pp. 177–184, Lam, Lectures on Modules and
Rings, Chapters 18 and 19, or Reiner, Maximal Orders, Chapter 4.

Exercises

5.29 Give an example of an additive functor H : Ab → Ab that has
neither a left nor a right adjoint.

*5.30 Let (F, G) be an adjoint pair, where F : C → D and G : D → C,
and let τC,D : Hom(FC, D) → Hom(C, GC) be the natural bijec-
tion.

(i) If D = FC , there is a natural bijection

τC,FC : Hom(FC, FC) → Hom(C, G FC)

with τ (1FC ) = ηC : C → G FC . Prove that η : 1C → G F
is a natural transformation.

(ii) If C = G D, there is a natural bijection

τ−1
G D,D : Hom(G D, G D) → Hom(FG D, D)

with τ−1(1D) = εD : FG D → D. Prove that ε : FG →
1D is a natural transformation. (We call ε the counit of the
adjoint pair.)
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5.31 Let (F, G) be an adjoint pair of functors between module categories.
Prove that if G is exact, then F preserves projectives; that is, if P is
a projective module, then F P is projective. Dually, prove that if F
is exact, then G preserves injectives.

5.32 (i) Let F : Groups → Ab be the functor with F(G) = G/G ′,
where G ′ is the commutator subgroup of a group G, and
let U : Ab → Groups be the functor taking every abelian
group A into itself (that is, U A regards A as a not neces-
sarily abelian group). Prove that (F, U ) is an adjoint pair
of functors.

(ii) Prove that the unit of the adjoint pair (F, U ) is the natural
map G → G/G ′.

*5.33 (i) If I is a partially ordered set, let Dir(I, RMod) denote
all direct systems of left R-modules over I . Prove that
Dir(I, RMod) is a category and that lim−→ : Dir(I, RMod) →
RMod is a functor.

(ii) In Example 1.19(ii), we saw that constant functors define a
functor |!| : C → CD; to each object C in C assign the con-
stant functor |C |, and to each morphism ϕ : C → C ′ in C,
assign the natural transformation |ϕ| : |C | → |C ′| defined
by |ϕ|D = ϕ. If C is cocomplete, prove that (lim−→, |!|) is an
adjoint pair, and conclude that lim−→ preserves direct limits.

(iii) Let I be a partially ordered set and let Inv(I, RMod) denote
the class of all inverse systems, together with their mor-
phisms, of left R-modules over I . Prove that Inv(I, RMod)
is a category and that lim←− : Inv(I, RMod) → RMod is a
functor.

(iv) Prove that if C is complete, then (|!|, lim←−) is an adjoint pair
and lim←− preserves inverse limits.

5.34 (i) If A1 ⊆ A2 ⊆ A3 ⊆ · · · is an ascending sequence of sub-
modules of a module A, prove that A/

⋃
Ai ∼=

⋃
A/Ai ;

that is, coker(lim−→ Ai ⊆ A) ∼= lim−→ coker(Ai → A).
(ii) Generalize part (i): prove that any two direct limits (per-

haps with distinct index sets) commute.
(iii) Prove that any two inverse limits (perhaps with distinct in-

dex sets) commute.
(iv) Give an example in which direct limit and inverse limit do

not commute.
5.35 (i) Define ACC in RMod, and prove that if SMod ∼= RMod,

then SMod has ACC. Conclude that if R is left noetherian,
then S is left noetherian.


