
Math 8211 Homework 4 PJW

Date due: Monday November 12, 2012. In class on Wednesday November 14

we will grade your answers, so it is important to be present on that day, with

your homework.

Rotman 6.6, 6.8 (page 339), 6.12 (page 340) 6.13 (page 376) .
Questions 1 – 3 below.

1. Let R = k[X ]/(X3) where k is a field. Let C be the complex R
X2

−→R.
(a) Find dimk Hom

R Comp(C,C), the dimension of the space of chain maps from C
to C.

(b) Find the dimension of the subspace of chain maps C → C which are homotopic
to zero. Hence find the dimension of the space Hom

R HoComp(C,C) of homotopy
classes of chain maps C → C.

(c) Show that, for this complex C, the set of chain maps C → C which are non-
isomorphisms forms a vector subspace of the space of all endomorphisms of C.
Find the dimension of this subspace.

(d) Show that it is possible to find another complex D for which the set of non-
isomorphisms D → D does not form a vector subspace of all endomorphisms.

(e) Show that, for this complex C, all chain maps C → C which are equivalences are,
in fact, automorphisms

(f) Determine, for this complex C, whether or not all invertible chain maps C → C
are homotopic to each other.

2. (a) Suppose that U , V , and W are R-modules and that there are homomorphisms

U
α
−→

←−
δ

V
β
−→

←−
γ

W

such that βα = 0 and such that the identity map on V can be written 1V = αδ+ γβ.
Show that β = βγβ. Suppose in addition to all this that α = αδα. Show that
V ∼= αδ(V )⊕ γβ(V ).
(b) Recall that a chain complex C of R-modules is called contractible if it is chain
homotopy equivalent to the zero chain complex. Prove that C is contractible if and
only if C can be written as a direct sum of chain complexes of the form · · · → 0 →
A

α
→B → 0 · · · where α is an isomorphism.
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3. (a) Suppose that we have chain maps C
f
−→D

g
−→E and suppose that D is a con-

tractible complex. Show that the composite gf is homotopic to zero (i.e. null homo-
topic).
(b) By considering the diagram

C : · · ·
d
−→ C2

d
−→ C1

d
−→ C0

d
−→ · · ·





"

iC





"
(d1)





"
(d1)





"
(d1)

IC : · · ·
δ
−→ C1 ⊕ C2

δ
−→ C0 ⊕ C1

δ
−→ C1 ⊕ C0

δ
−→ · · ·

where δ =

(

0 0
1 0

)

show that any complex complex C can be embedded in a con-

tractible complex IC .
(c) Show that if f = Td+ eT : C → D is any null-homotopic map of complexes then
f defines a chain map IC → D as follows:

IC : · · ·
δ
−→ C1 ⊕ C2

δ
−→ C0 ⊕ C1

δ
−→ C1 ⊕ C0

δ
−→ · · ·





"





"

(T,eT )





"

(T,eT )





"

(T,eT )

D : · · ·
e
−→ D2

e
−→ D1

e
−→ D0

e
−→ · · ·

such that the composite of this morphism with iC is f . Deduce that any null-
homotopic map factors through a contractible complex.

Extra questions: do not hand in!

Given a homomorphism of chain complexes of R-modules φ : C → D we may define
En = Cn−1 ⊕Dn, and a mapping en : En → En−1 by en(a, b) = (−∂a,φa+ ∂b), where we
denote the boundary maps on C and D by ∂. The specification E(φ) = {En, en} is called
the mapping cone of φ.

A. Show that E = {En, en} is indeed a chain complex.

B. Show that there is a short exact sequence of chain complexes 0→ D → E → C[1]→ 0
where C[1] denotes the chain complex with the same R-modules and boundary maps
as C but with the labeling of degrees shifted by 1 in an appropriate direction. Deduce
that there is a long exact sequence

· · ·→ Hn(C)→ Hn(D)→ Hn(E(φ))→ Hn−1(C)→ · · ·

Show that E(φ) is acyclic if and only if φ induces an isomorphism Hn(C) → Hn(D)
for every n.

C. Show that if φ & ψ : C → D then E(φ) ∼= E(ψ).
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6.1 Homology Functors 339

prove that the following diagram is commutative and has
exact rows:

A′
n/ im d ′

n+1
!!

d ′
""

An/ im dn+1 !!

d
""

A′′
n/ im d ′′

n+1
!!

d ′′
""

0

0 !! ker d ′
n−1

!! ker dn−1 !! ker d ′′
n−1.

(iv) Use part (ii) and this last diagram to give another proof of
Theorem 6.10, the Long Exact Sequence.

6.6 Let f, g : C → C′ be chain maps, and let F : C → C′ be an additive
functor. If f $ g, prove that F f $ Fg; that is, if f and g are
homotopic, then F f and Fg are homotopic.

*6.7 Let 0 → C′ i−→ C
p−→ C′′ → 0 be an exact sequence of com-

plexes in which C′ and C′′ are acyclic; prove that C is also acyclic.
6.8 Let R and A be rings, and let T : RMod → AMod be an exact

additive functor. Prove that T commutes with homology; that is, for
every complex (C, d) ∈ RComp and for every n ∈ Z, there is an
isomorphism

Hn(T C, T d) ∼= T Hn(C, d).

*6.9 (i) Prove that homology commutes with direct sums: for all n,
there are natural isomorphisms

Hn

(⊕

α

Cα
)

∼=
⊕

α

Hn(Cα).

(ii) Define a direct system of complexes (Ci )i∈I , (ϕ
i
j )i≤ j , and

prove that lim−→ Ci exists.

(iii) If (Ci )i∈I , (ϕ
i
j )i≤ j is a direct system of complexes over a

directed index set, prove, for all n ≥ 0, that

Hn(lim−→ Ci ) ∼= lim−→ Hn(Ci ).

*6.10 Assume that a complex (C, d) of R-modules has a contracting ho-
motopy in which the maps sn : Cn → Cn+1 satisfying

1Cn = dn+1sn + sn−1dn

are only Z-maps. Prove that (C, d) is an exact sequence.
*6.11 (Barratt–Whitehead). Consider the commutative diagram with ex-

act rows:

!! An
in !!

fn ""

Bn
pn !!

gn
""

Cn
∂n !!

hn""

An−1 !!

fn−1""

Bn−1 !!

gn−1""

Cn−1

hn−1""

!!

!! A′
n jn

!! B ′
n qn

!! C ′
n

!! A′
n−1

!! B ′
n−1

!! C ′
n−1

!! .
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If each hn is an isomorphism, prove that there is an exact sequence

→ An
( fn,in)−→ A′

n ⊕ Bn
jn−gn−→ B ′

n
∂nh−1

n qn−→ An−1

→ A′
n−1 ⊕ Bn−1 → B ′

n−1 →,

where

( fn, in) : an %→ ( fnan, inan) and jn − gn : (a′
n, bn) %→ jna′

n − gnbn.

*6.12 (Mayer–Vietoris). Given a commutative diagram of complexes with
exact rows,

0 !! C′ i !!

f
""

C
p !!

g
""

C′′ !!

h
""

0

0 !! A′
j

!! A q
!! A′′ !! 0,

if every third vertical map h∗ in the diagram

!! Hn(C′)
i∗ !!

f∗ ""

Hn(C)
p∗ !!

g∗
""

Hn(C′′)
∂ !!

h∗""

Hn−1(C′)

f∗""

!!

!! Hn(A′)
j∗

!! Hn(A) q∗
!! Hn(A′′)

∂ ′
!! Hn−1(A′) !!

is an isomorphism, prove that there is an exact sequence

!! Hn(C′) !! Hn(A′) ⊕ Hn(C) !! Hn(A) → Hn−1(C′) !! .

6.2 Derived Functors
In order to apply the general results in the previous section, we need a source
of short exact sequences of complexes. The idea is to replace every module by
a deleted resolution of it; given a short exact sequence of modules, we shall
see that this replacement gives a short exact sequence of complexes. We then
apply either Hom or ⊗, and the resulting homology modules are called Ext or
Tor.

We know that a module has many presentations; since resolutions are
generalized presentations, the next result is fundamental.

Theorem 6.16 (Comparison Theorem). Let A be an abelian category.
Given a morphism f : A → A′ in A, consider the diagram

!! P2
d2 !!

f̌2
""
!
!
! P1

d1 !!

f̌1
""
!
!
!

P0
ε !!

f̌0
""
!
!
! A !!

f
""

0

!! P ′
2 d ′

2

!! P ′
1 d ′

1

!! P ′
0 ε′

!! A′ !! 0,
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where ∂n =
∑n

i=0(−1)i di
n . The given identities for di

n imply ∂∂ = 0. Thus,
simplicial objects have homology. The degeneracies allow one to construct an
abstract version of homotopy groups as well (see Gelfand–Manin, Methods of
Homological Algebra, May, Simplicial Objects in Algebraic Topology, and
Weibel, An Introduction to Homological Algebra).

Exercises

6.13 If τ : F → G is a natural transformation between additive functors,
prove that τ gives chain maps τC : FC → GC for every complex
C. If τ is a natural isomorphism, prove that FC ∼= GC.

*6.14 Consider the commutative diagram with exact row

B ′ j !!

i ""!!!!!! C
q !!

#
##

B ′′

B.
p

$$""""""
k

%%

If k is an isomorphism with inverse #, prove exactness of

B ′ i−→ B
p−→ B ′′.

6.15 Let T : A → C be an exact additive functor between abelian cat-
egories, and suppose that P projective implies T P projective. If
B ∈ obj(A) and PB is a deleted projective resolution of B, prove
that T PT B is a deleted projective resolution of T B.

6.16 Let R be a k-algebra, where k is a commutative ring, which is flat as
a k-module. Prove that if B is an R-module (and hence a k-module),
then

R ⊗k Tork
n(B, C) ∼= TorR

n (B, R ⊗k C)

for all k-modules C and all n ≥ 0.
6.17 Let R be a semisimple ring.

(i) Prove, for all n ≥ 1, that TorR
n (A, B) = {0} for all right

R-modules A and all left R-modules B.
(ii) Prove, for all n ≥ 1, that ExtnR(A, B) = {0} for all left

R-modules A and B.
*6.18 If R is a PID, prove, for all n ≥ 2, that TorR

n (A, B) = {0} =
ExtnR(A, B) for all R-modules A and B.
Hint. Use Corollary 4.15.

*6.19 Let R be a domain with fraction field Q, and let A, C be R-modules.
If either C or A is a vector space over Q, prove that TorR

n (C, A) and
ExtnR(C, A) are also vector spaces over Q.
Hint. Use Exercise 2.38 on page 97.


