Date due: Monday November 12, 2012. In class on Wednesday November 14 we will grade your answers, so it is important to be present on that day, with your homework.

Rotman 6.6, 6.8 (page 339), 6.12 (page 340) 6.13 (page 376).
Questions $1-3$ below.

1. Let $R=k[X] /\left(X^{3}\right)$ where k is a field. Let C be the complex $R \xrightarrow{X^{2}} R$.
(a) Find $\operatorname{dim}_{k} \operatorname{Hom}_{R} \operatorname{Comp}(C, C)$, the dimension of the space of chain maps from C to C.
(b) Find the dimension of the subspace of chain maps $C \rightarrow C$ which are homotopic to zero. Hence find the dimension of the space $\operatorname{Hom}_{R} \operatorname{HoComp}^{(C, C)}$ of homotopy classes of chain maps $C \rightarrow C$.
(c) Show that, for this complex C, the set of chain maps $C \rightarrow C$ which are nonisomorphisms forms a vector subspace of the space of all endomorphisms of C. Find the dimension of this subspace.
(d) Show that it is possible to find another complex D for which the set of nonisomorphisms $D \rightarrow D$ does not form a vector subspace of all endomorphisms.
(e) Show that, for this complex C, all chain maps $C \rightarrow C$ which are equivalences are, in fact, automorphisms
(f) Determine, for this complex C, whether or not all invertible chain maps $C \rightarrow C$ are homotopic to each other.
2. (a) Suppose that U, V, and W are R-modules and that there are homomorphisms

such that $\beta \alpha=0$ and such that the identity map on V can be written $1_{V}=\alpha \delta+\gamma \beta$. Show that $\beta=\beta \gamma \beta$. Suppose in addition to all this that $\alpha=\alpha \delta \alpha$. Show that $V \cong \alpha \delta(V) \oplus \gamma \beta(V)$.
(b) Recall that a chain complex C of R-modules is called contractible if it is chain homotopy equivalent to the zero chain complex. Prove that C is contractible if and only if C can be written as a direct sum of chain complexes of the form $\cdots \rightarrow 0 \rightarrow$ $A \xrightarrow{\alpha} B \rightarrow 0 \cdots$ where α is an isomorphism.
3. (a) Suppose that we have chain maps $C \xrightarrow{f} D \xrightarrow{g} E$ and suppose that D is a contractible complex. Show that the composite $g f$ is homotopic to zero (i.e. null homotopic).
(b) By considering the diagram

where $\delta=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ show that any complex complex C can be embedded in a contractible complex I_{C}.
(c) Show that if $f=T d+e T: C \rightarrow D$ is any null-homotopic map of complexes then f defines a chain map $I_{C} \rightarrow D$ as follows:

such that the composite of this morphism with i_{C} is f. Deduce that any nullhomotopic map factors through a contractible complex.

Extra questions: do not hand in!

Given a homomorphism of chain complexes of R-modules $\phi: \mathcal{C} \rightarrow \mathcal{D}$ we may define $E_{n}=C_{n-1} \oplus D_{n}$, and a mapping $e_{n}: E_{n} \rightarrow E_{n-1}$ by $e_{n}(a, b)=(-\partial a, \phi a+\partial b)$, where we denote the boundary maps on \mathcal{C} and \mathcal{D} by ∂. The specification $\mathcal{E}(\phi)=\left\{E_{n}, e_{n}\right\}$ is called the mapping cone of ϕ.
A. Show that $\mathcal{E}=\left\{E_{n}, e_{n}\right\}$ is indeed a chain complex.
B. Show that there is a short exact sequence of chain complexes $0 \rightarrow \mathcal{D} \rightarrow \mathcal{E} \rightarrow \mathcal{C}[1] \rightarrow 0$ where $\mathcal{C}[1]$ denotes the chain complex with the same R-modules and boundary maps as \mathcal{C} but with the labeling of degrees shifted by 1 in an appropriate direction. Deduce that there is a long exact sequence

$$
\cdots \rightarrow H_{n}(\mathcal{C}) \rightarrow H_{n}(\mathcal{D}) \rightarrow H_{n}(\mathcal{E}(\phi)) \rightarrow H_{n-1}(\mathcal{C}) \rightarrow \cdots
$$

Show that $\mathcal{E}(\phi)$ is acyclic if and only if ϕ induces an isomorphism $H_{n}(\mathcal{C}) \rightarrow H_{n}(\mathcal{D})$ for every n.
C. Show that if $\phi \simeq \psi: \mathcal{C} \rightarrow \mathcal{D}$ then $\mathcal{E}(\phi) \cong \mathcal{E}(\psi)$.
prove that the following diagram is commutative and has exact rows:

(iv) Use part (ii) and this last diagram to give another proof of Theorem 6.10, the Long Exact Sequence.
6.6 Let $f, g: \mathbf{C} \rightarrow \mathbf{C}^{\prime}$ be chain maps, and let $F: \mathcal{C} \rightarrow \mathcal{C}^{\prime}$ be an additive functor. If $f \simeq g$, prove that $F f \simeq F g$; that is, if f and g are homotopic, then $F f$ and $F g$ are homotopic.
*6.7 Let $0 \rightarrow \mathbf{C}^{\prime} \xrightarrow{i} \mathbf{C} \xrightarrow{p} \mathbf{C}^{\prime \prime} \rightarrow 0$ be an exact sequence of complexes in which \mathbf{C}^{\prime} and $\mathbf{C}^{\prime \prime}$ are acyclic; prove that \mathbf{C} is also acyclic.
6.8 Let R and A be rings, and let $T:{ }_{R}$ Mod $\rightarrow{ }_{A}$ Mod be an exact additive functor. Prove that T commutes with homology; that is, for every complex $(\mathbf{C}, d) \in{ }_{R} \mathbf{C o m p}$ and for every $n \in \mathbb{Z}$, there is an isomorphism

$$
H_{n}(T \mathbf{C}, T d) \cong T H_{n}(\mathbf{C}, d)
$$

*6.9 (i) Prove that homology commutes with direct sums: for all n, there are natural isomorphisms

$$
H_{n}\left(\bigoplus_{\alpha} \mathbf{C}^{\alpha}\right) \cong \bigoplus_{\alpha} H_{n}\left(\mathbf{C}^{\alpha}\right) .
$$

(ii) Define a direct system of complexes $\left(\mathbf{C}^{i}\right)_{i \in I},\left(\varphi_{j}^{i}\right)_{i \leq j}$, and prove that $\underset{\longrightarrow}{\lim } \mathbf{C}^{i}$ exists.
(iii) If $\left(\mathbf{C}^{i}\right)_{i \in I},\left(\varphi_{j}^{i}\right)_{i \leq j}$ is a direct system of complexes over a directed index set, prove, for all $n \geq 0$, that

$$
H_{n}\left(\underset{\longrightarrow}{\lim } \mathbf{C}^{i}\right) \cong \underset{\longrightarrow}{\lim } H_{n}\left(\mathbf{C}^{i}\right) .
$$

*6.10 Assume that a complex (\mathbf{C}, d) of R-modules has a contracting homotopy in which the maps $s_{n}: C_{n} \rightarrow C_{n+1}$ satisfying

$$
1_{C_{n}}=d_{n+1} s_{n}+s_{n-1} d_{n}
$$

are only \mathbb{Z}-maps. Prove that (\mathbf{C}, d) is an exact sequence.
*6.11 (Barratt-Whitehead). Consider the commutative diagram with exact rows:

If each h_{n} is an isomorphism, prove that there is an exact sequence

$$
\begin{aligned}
\rightarrow A_{n} \xrightarrow{\left(f_{n}, i_{n}\right)} A_{n}^{\prime} \oplus B_{n} & \xrightarrow{j_{n}-g_{n}} B_{n}^{\prime} \xrightarrow{\partial_{n} h_{n}^{-1} q_{n}} A_{n-1} \\
& \rightarrow A_{n-1}^{\prime} \oplus B_{n-1} \rightarrow B_{n-1}^{\prime} \rightarrow,
\end{aligned}
$$

where
$\left(f_{n}, i_{n}\right): a_{n} \mapsto\left(f_{n} a_{n}, i_{n} a_{n}\right)$ and $j_{n}-g_{n}:\left(a_{n}^{\prime}, b_{n}\right) \mapsto j_{n} a_{n}^{\prime}-g_{n} b_{n}$.
*6.12 (Mayer-Vietoris). Given a commutative diagram of complexes with exact rows,

if every third vertical map h_{*} in the diagram

is an isomorphism, prove that there is an exact sequence

$$
\rightarrow H_{n}\left(\mathbf{C}^{\prime}\right) \rightarrow H_{n}\left(\mathbf{A}^{\prime}\right) \oplus H_{n}(\mathbf{C}) \rightarrow H_{n}(\mathbf{A}) \rightarrow H_{n-1}\left(\mathbf{C}^{\prime}\right) \rightarrow .
$$

6.2 Derived Functors

In order to apply the general results in the previous section, we need a source of short exact sequences of complexes. The idea is to replace every module by a deleted resolution of it; given a short exact sequence of modules, we shall see that this replacement gives a short exact sequence of complexes. We then apply either Hom or \otimes, and the resulting homology modules are called Ext or Tor.

We know that a module has many presentations; since resolutions are generalized presentations, the next result is fundamental.

Theorem 6.16 (Comparison Theorem). Let \mathcal{A} be an abelian category. Given a morphism $f: A \rightarrow A^{\prime}$ in \mathcal{A}, consider the diagram

where $\partial_{n}=\sum_{i=0}^{n}(-1)^{i} d_{n}^{i}$. The given identities for d_{n}^{i} imply $\partial \partial=0$. Thus, simplicial objects have homology. The degeneracies allow one to construct an abstract version of homotopy groups as well (see Gelfand-Manin, Methods of Homological Algebra, May, Simplicial Objects in Algebraic Topology, and Weibel, An Introduction to Homological Algebra).

Exercises

6.13 If $\tau: F \rightarrow G$ is a natural transformation between additive functors, prove that τ gives chain maps $\tau_{\mathbf{C}}: F \mathbf{C} \rightarrow G \mathbf{C}$ for every complex C. If τ is a natural isomorphism, prove that $F \mathbf{C} \cong G \mathbf{C}$.
*6.14 Consider the commutative diagram with exact row

If k is an isomorphism with inverse ℓ, prove exactness of

$$
B^{\prime} \xrightarrow{i} B \xrightarrow{p} B^{\prime \prime} .
$$

6.15 Let $T: \mathcal{A} \rightarrow \mathcal{C}$ be an exact additive functor between abelian categories, and suppose that P projective implies $T P$ projective. If $B \in \operatorname{obj}(\mathcal{A})$ and \mathbf{P}_{B} is a deleted projective resolution of B, prove that $T \mathbf{P}_{T B}$ is a deleted projective resolution of $T B$.
6.16 Let R be a k-algebra, where k is a commutative ring, which is flat as a k-module. Prove that if B is an R-module (and hence a k-module), then

$$
R \otimes_{k} \operatorname{Tor}_{n}^{k}(B, C) \cong \operatorname{Tor}_{n}^{R}\left(B, R \otimes_{k} C\right)
$$

for all k-modules C and all $n \geq 0$.
6.17 Let R be a semisimple ring.
(i) Prove, for all $n \geq 1$, that $\operatorname{Tor}_{n}^{R}(A, B)=\{0\}$ for all right R-modules A and all left R-modules B.
(ii) Prove, for all $n \geq 1$, that $\operatorname{Ext}_{R}^{n}(A, B)=\{0\}$ for all left R-modules A and B.
*6.18 If R is a PID, prove, for all $n \geq 2$, that $\operatorname{Tor}_{n}^{R}(A, B)=\{0\}=$ $\operatorname{Ext}_{R}^{n}(A, B)$ for all R-modules A and B.
Hint. Use Corollary 4.15.
*6.19 Let R be a domain with fraction field Q, and let A, C be R-modules. If either C or A is a vector space over Q, prove that $\operatorname{Tor}_{n}^{R}(C, A)$ and $\operatorname{Ext}_{R}^{n}(C, A)$ are also vector spaces over Q.
Hint. Use Exercise 2.38 on page 97.

