Math 8212

Homework 1

\mathbf{PJW}

Date due: Wednesday February 6, 2013. In class on Friday February 8 we will grade your answers, so it is important to be present on that day, with your homework.

Questions 1.1 - 1.6 on page 6 of Matsumura.

Extra questions (not part of the assignment):

As in the book, A is a commutative ring with a 1.

- 1. Write out a proof that when k is a field, the Jacobson radical of $k[x_1, \ldots, x_n]$ is 0.
- 2. (From page 3) Write out a proof that that if 1 + Ax consists of units then $x \in \text{Rad } A$.
- 3. Assume that A is an integral domain and let $a \in A$. Show that a is irreducible if and only if (a) is maximal among proper principal ideals
- 4. Find a ring A and a maximal ideal I of A[X] so that $I \cap A$ is not a maximal ideal of A.

 $A = \mathbb{Z}[\sqrt{-5}] = \mathbb{Z}[X]/(X^2 + 5); \text{ then setting } k = \mathbb{Z}/2\mathbb{Z} \text{ we have}$ $A/2A = \mathbb{Z}[X]/(2, X^2 + 5) = k[X]/(X^2 - 1) = k[X]/(X - 1)^2.$ Then $P = (2, 1 - \sqrt{-5})$ is a maximal ideal of A containing 2.

Exercises to §1. Prove the following propositions.

- 1.1. Let A be a ring, and $I \subset nil(A)$ an ideal made up of nilpotent elements; if $a \in A$ maps to a unit of A/I then a is a unit of A.
- 1.2. Let A_1, \ldots, A_n be rings; then the prime ideals of $A_1 \times \cdots \times A_n$ are of the form $A_1 \times \cdots \times A_{i-1} \times P_i \times A_{i+1} \times \cdots \times A_n$, where P_i is a prime ideal of A_i .
- 1.3. Let A and B be rings, and f: A → B a surjective homomorphism.
 (a) Prove that f(rad A) ⊂ rad B, and construct an example where the inclusion is strict.

(b) Prove that if A is a semilocal ring then $f(\operatorname{rad} A) = \operatorname{rad} B$.

- 1.4. Let A be an integral domain. Then A is a UFD if and only if every irreducible element is prime and the principal ideals of A satisfy the ascending chain condition. (Equivalently, every non-empty family of principal ideals has a maximal element.)
- 1.5. Let $\{P_{\lambda}\}_{\lambda \in \Lambda}$ be a non-empty family of prime ideals, and suppose that the P_{λ} are totally ordered by inclusion; then $\bigcap P_{\lambda}$ is a prime ideal. Also, if I is any proper ideal, the set of prime ideals containing I has a minimal element.
- 1.6. Let A be a ring, I, P_1, \ldots, P_r ideals of A, and suppose that P_3, \ldots, P_r are prime, and that I is not contained in any of the P_i ; then there exists an element $x \in I$ not contained in any P_i .

2 Modules

Let A be a ring and M an A-module. Given submodules N, N' of M, the set $\{a \in A | aN' \subset N\}$ is an ideal of A, which we write N:N'or $(N:N')_A$. Similarly, if $I \subset A$ is an ideal then $\{x \in M | Ix \subset N\}$ is a submodule of M, which we write N:I or $(N:I)_M$. For $a \in A$ we define N:a similarly. The ideal 0:M is called the *annihilator* of M, and written ann(M). We can consider M as a module over A/ann(M). If ann(M) = 0we say that M is a *faithful* A-module. For $x \in M$ we write ann(x) = $\{a \in A | ax = 0\}$.

If M and M' are A-modules, the set of A-linear maps from M to M' is written $\operatorname{Hom}_A(M, M')$. This becomes an A-module if we define the sum f + g and the scalar product af by

 $(f+g)(x) = f(x) + g(x), \quad (af)(x) = a \cdot f(x);$

(the fact that af is A-linear depends on A being commutative).