Worksheet for Matsumura Chapter 2: Prime ideals

1. Why is the following true?:

PROPOSITION. Suppose that $f : A \to B$ is a ring homomorphism satisfying the two conditions

- (1) f(x) is a unit of B for all $x \in S$;
- (2) if $g: A \to C$ is a homomorphism of rings taking every element of S to a unit of C then there exists a unique homomorphism

$$h: B \to C$$
 such that $g = hf;$

then B is uniquely determined up to isomorphism.

- 2. Why does Matsumura define the localisation in this way? Why not just construct it, like the way we introduce fractions at school?
- 3. Check for yourself that the relation \sim on $A \times S$ introduced at the bottom of page 20 is an equivalence relation. True or false: if A is an integral domain and S is a multiplicative subset then

$$(a,s) \sim (b,s') \Leftrightarrow s'a = sb$$

is an equivalence relation.

4. Is the following result easy to prove or difficult to prove?

PROPOSITION. Let $f : A \to A_S$ be the map f(a) = a/1. Then

$$\operatorname{Ker} f = \{ a \in A \mid sa = 0 \text{ for some } s \in S \}.$$

5. On page 21, prove that there is a bijection

$$\{IB \mid I \triangleleft A\} \leftrightarrow \{J \cap A \mid J \triangleleft B\}$$

- 6. If $P \triangleleft B$ is a prime ideal then $P \cap A$ is a prime ideal of A. Can you find an example of a prime ideal $P \triangleleft A$ for which PB is not a prime ideal?
- 7. Which is always true?: a prime ideal is always primary; a primary ideal is always prime.
- 8. Prove:

PROPOSITION.

- (1) $J \triangleleft B$ is primary \Leftrightarrow zero divisors of B/J are nilpotent.
- (2) If $f: A \to B$ and J is primary in B then $J \cap A$ is primary.
- 9. Exercise 4.1 is: If J is primary then \sqrt{J} is a prime ideal. What about the converse: If \sqrt{J} is a prime ideal then J is primary?
- 10. Is the following true: if S is a multiplicatively closed subset of A and I is an ideal of A then every element of IA_S can be written x/s where $x \in I$.
- 11. On page 22 there is a statement

$$\frac{a}{s} \cdot \frac{b}{t} \in IA_S \quad \text{with} \quad s, t \in S \Rightarrow rab \in I \quad \text{for some} \quad r \in S.$$

Prove this.

12. True or false: if $0 \in S$ then $A_S = 0$.