Homework 1

Math 8246 PJW Date due: Monday February 15, 2016. We will discuss these questions on Wednesday 2/17/2016

- 1. Show that the two extensions $\mathbb{Z} \xrightarrow{\mu} \mathbb{Z} \xrightarrow{\epsilon} \mathbb{Z}/3\mathbb{Z}$ and $\mathbb{Z} \xrightarrow{\mu'} \mathbb{Z} \xrightarrow{\epsilon'} \mathbb{Z}/3\mathbb{Z}$ are not equivalent, where $\mu = \mu'$ is multiplication by 3, $\epsilon(1) \equiv 1 \pmod{3}$ and $\epsilon'(1) \equiv 2 \pmod{3}$.
- 2. Prove that if $0 \to L \to M \to N \to 0$ is a split short exact sequence of $\mathbb{Z}G$ -modules, then for every $n \ge 0$ the sequence $0 \to H^n(G,L) \to H^n(G,M) \to H^n(G,N) \to 0$ is also short exact and split. [Use a splitting homomorphism and functoriality of H^n .]
- 3. (a) Let M and N be $\mathbb{Z}G$ -modules and suppose that N has the trivial G-action. Show that $\operatorname{Hom}_{\mathbb{Z}G}(M, N) \cong \operatorname{Hom}_{\mathbb{Z}G}(M/(IG \cdot M), N).$ (b) Show that for all groups G, $\operatorname{Hom}_{\mathbb{Z}G}(\mathbb{Z}, IG) = 0$; and that if we suppose that G is finite then $\operatorname{Hom}_{\mathbb{Z}G}(IG,\mathbb{Z}) = 0$. (c) By applying the functor $\operatorname{Hom}_{\mathbb{Z}G}(IG, \cdot)$ to the short exact sequence $0 \to IG \to IG$ $\mathbb{Z}G \to \mathbb{Z} \to 0$ show that for all finite groups G, if $f: IG \to \mathbb{Z}G$ is any $\mathbb{Z}G$ -module homomorphism then $f(IG) \subseteq IG$. (d) Show that if G is finite and $d: G \to \mathbb{Z}G$ is any derivation then $d(G) \subseteq IG$. Is the same true for arbitrary groups G?
- 4. Let G be a finite group. Show that the endomorphism ring $\operatorname{Hom}_{\mathbb{Z}G}(IG, IG)$ is isomorphic to $\mathbb{Z}G/(N)$ where $N = \sum_{g \in G} g$ is the norm element which generates $(N) = (\mathbb{Z}G)^G.$

[You may assume that every $\mathbb{Z}G$ -module homomorphism $IG \to \mathbb{Z}G$ has image contained in IG. Apply the functor $\operatorname{Hom}_{\mathbb{Z}G}(-,\mathbb{Z}G)$ to the short exact sequence $0 \to 0$ $IG \to \mathbb{Z}G \to \mathbb{Z} \to 0$. You may assume for a finite group G that $\operatorname{Ext}^{1}_{\mathbb{Z}G}(\mathbb{Z},\mathbb{Z}G) = 0$.]

- 5. Show that for every group G:
 - (a) all derivations $d: G \to M$ satisfy d(1) = 0, and
 - (b) the mapping $d: G \to \mathbb{Z}G$ given by d(g) = g 1 is a derivation.
- 6. (a) Show that the short exact sequence $0 \to IG \to \mathbb{Z}G \to \mathbb{Z} \to 0$ is split as a sequence of $\mathbb{Z}G$ -modules if and only if G = 1. Deduce that the identity group is the only group of cohomological dimension 0.
 - (b) Show that if G is a free group then $\operatorname{Ext}^{1}_{\mathbb{Z}G}(\mathbb{Z},\mathbb{Z}G) \neq 0$.
- 7. Suppose that we have two commutative diagrams of group homomorphisms

where i = 1, 2, the maps labeled without the suffix i are the same in both diagrams, L and M are abelian and the two rows are group extensions (i.e. short exact sequences of groups). Assume that the two module actions of G on M given by conjugation within E_1 and E_2 are the same. Show that the two bottom extensions are equivalent. [Hint: one way to proceed is to show that they are both equivalent to a third extension which you construct.]

Extra questions: do not hand in!

8. If N is a right $\mathbb{Z}G$ -module and M is a left $\mathbb{Z}G$ -module we may make $N \otimes_{\mathbb{Z}} M$ into a left $\mathbb{Z}G$ -module via $g(n \otimes m) = ng^{-1} \otimes gm$, extended linearly to the whole of $N \otimes_{\mathbb{Z}} M$. Show that $N \otimes_{\mathbb{Z}G} M \cong (N \otimes_{\mathbb{Z}} M)_G$.

[Not part of the question, just information: if N and M are two left modules we make $N \otimes_{\mathbb{Z}} M$ into a left $\mathbb{Z}G$ -module via $g(n \otimes m) = gn \otimes gm$. This is called the *diagonal* action on the tensor product.]

- 9. Let $0 \to \mathbb{Z}/4\mathbb{Z} \to \mathbb{Z}/16\mathbb{Z} \to \mathbb{Z}/4\mathbb{Z} \to 0$ be a short exact sequence.
 - (i) Construct its inverse under the group operation in $\operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z}, \mathbb{Z}/4\mathbb{Z})$ with sufficient precision that you can determine by examination of the two sequences whether or not they are equivalent.
 - (ii) Determine the isomorphism type of middle term of the sum of the sequence with itself. [By 'the sum' is meant the addition in $\operatorname{Ext}^{1}_{\mathbb{Z}}(\mathbb{Z}/4\mathbb{Z},\mathbb{Z}/4\mathbb{Z}).$]
- 10. Let $G = \langle g \rangle$ be an infinite cyclic group. Consider an extension of $\mathbb{Z}G$ -modules

$$0 \to \mathbb{Z} \xrightarrow{\iota_1} \mathbb{Z} \oplus \mathbb{Z} \xrightarrow{\pi_2} \mathbb{Z} \to 0$$

in which the maps are inclusion into the first summand and projection onto the second summand, and where g acts on $\mathbb{Z} \oplus \mathbb{Z}$ as the matrix $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ with respect to the basis given by this direct sum decomposition. In the identification $\operatorname{Ext}_{\mathbb{Z}G}^1(\mathbb{Z},\mathbb{Z}) \cong \mathbb{Z}$, determine the Ext class of this extension, and conclude that the extension is not split. Find a description of an extension represented by $5 \in \operatorname{Ext}_{\mathbb{Z}G}^1(\mathbb{Z},\mathbb{Z})$.