
Math 8300 Solutions 1 PJW

1. (2 pts) Let M be a kG-module. Show that M admits a non-singular G-invariant

bilinear form if and only if M ∼= M∗ as kG-modules.

Solution: Suppose 〈−,−〉 is a non-singular G-invariant bilinear form on M . Then θ : M →

M∗ given by θ(x)(v) = 〈x, v〉 is an isomorphism of vector spaces by something done in class.

Furthermore θ(xg)(v) = 〈xg, v〉 = 〈x, vg−1〉 = θ(x)(vg−1) = (θ(x))g(V ) so θ(xg) = (θ(x))g

for all x ∈M and g ∈ G. This means θ is a homomorphism of kG-modules.

Conversely ifM ∼= M∗ as kG-modules, let ψ : M →M∗ be a kG-module isomorphism.

Then 〈x, v〉 := ψ(x)(v) is a bilinear form, and by something done in class it is non-singular.

The same algebra as above shows that it is G-invariant.

2. Let M be a kG-module and let B be the vector space of bilinear forms M ×M → k.

a) (2 pts) For each g ∈ G we may construct two new bilinear forms 〈−,−〉g
1

: v, w 7→

〈vg, wg〉, and 〈−,−〉g
2

: v, w 7→ 〈vg−1, wg−1〉. One of these definitions makes B

into a kG-module via 〈−,−〉 · g = 〈−,−〉gi , i = 1 or 2. Which value of i achieves

this?

Solution: We show that 〈−,−〉gh
2

= (〈−,−〉g
2
)h
2
.

The left sends v, w 7→ 〈vh−1g−1, wh−1g−1〉.

The right sends v, w 7→ 〈vh−1, wh−1〉g
2

= 〈vh−1g−1, wh−1g−1〉 and these are equal. Thus

〈−,−〉g
2

does the trick.

c) (2 pts) Taking a standard basis for M and for B we may express a bilinear form

f by its Gram matrix Af , and the action of g ∈ G on M by its matrix ρ(g).

Which of the following gives the right action of G on B (pun intended): (i)

Af 7→ ρ(g)TAfρ(g), or (ii) Af 7→ ρ(g)Afρ(g)
T?

Solution: At this point I realize I am in big trouble with right actions and left actions.

If I have group elements acting from the right then they must act on row vectors, and in

order to have linear maps act on these also they must also act from the right, unless we

do something crazy with transposes. Let’s say vectors are row vectors.

Neither possibility seems to be correct. Since

〈v, w〉g
2

= 〈vρ(g−1), wρ(g−1)〉g
2

= vρ(g−1)Afρ(g
−1)TwT

we should have Af 7→ ρ(g−1)Afρ(g
−1)T .

3. Let G = C3 = 〈g〉 be cyclic of order 3 and let k = F3. We define M2 = ke1 ⊕ ke2 to

be a 2-dimensional space acted on by g via the matrix ρ(g) =

[

1 0
1 1

]

.

a) (1 pts) Find the matrix via which g acts on the space B of bilinear formsM×M →

k.
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Solution: With the convention of 2c g acts via

[

1 0
−1 1

]

Af

[

1 −1
0 1

]

and computing the

effect of this on a basis for bilinear forms gives a matrix







1 −1 −1 1
0 1 0 −1
0 0 1 −1
0 0 0 1







b) (2 pts) Show that the space of G-invariant bilinear forms has dimension 2.

Solution: We compute the nullspace of the last matrix minus the identity, i.e.







0 −1 −1 1
0 0 0 −1
0 0 0 −1
0 0 0 0







and it has dimension 2, with basis [0, 0, 0, 1] and [0, 1,−1, 0] corresponding to bilinear forms
[

0 0
0 1

]

and

[

0 1
−1 0

]

.

c) (1 pts) Show thatM2
∼= M∗

2
as kG-modules and find aG-invariant non-degenerate

form on M2.

Solution:

[

0 1
−1 0

]

is a G-invariant non-singular bilinear form, so by question 1 M ∼= M∗.

d) (2 pts) Show that M2 does not admit any symmetric G-invariant non-degenerate

bilinear form, but that it does admit a skew-symmetric such form.

Solution: The form just shown is skew-symmetric. The general G-invariant form is
[

0 a
−a b

]

and this is symmetric if and only if a = 0, but then the form is singular.

4. (1 pts) Let U be a kG-submodule of the kG-module M . Show that U◦ is a kG-

submodule of M∗.

Solution: U◦ = {f
∣

∣ (u)f = 0 for all u ∈ U}. Now f ∈ U◦ implies ufg = (ug−1)fg = 0

since ug−1 ∈ U . Thus fg ∈ U◦ for all g ∈ G and U◦ is a kG-submodule.

(3 pts) Suppose further that M comes supplied with a non-singular G-invariant bilin-

ear form. Show that U⊥ ∼= U◦ as kG-modules. Deduce that the isomorphism type of U⊥

is independent of the choice of non-singular G-invariant bilinear form.

Solution: The map θ : M → M∗of question 1 is a map of kG-modules, and we have seen

that θ(x) ∈ U◦ if and only if x ∈ U⊥. Thus θ restricts to an isomorphism of kG-modules

U⊥ → U◦. Since U◦ is independent of the choice of bilinear form, so is the isomorphism

type of U⊥.

5. (2 pts) Let H be a subgroup of a group G, and write

H\G = {Hg
∣

∣ g ∈ G}

for the set of right cosets of H in G. There is a permutation action of G on this set

from the right, namely (Hg1)g2 = Hg1g2. Let H =
∑

h∈H h ∈ kG denote the sum of

2



the elements of H, as an element of the group ring of G. Show that the permutation

module k[H\G] is isomorphic as an kG-module to the submodule H · kG of kG.

Solution: We define k[H\G] → H · kG by Hg 7→ Hg on the basis elements Hg of k[H\G].

This is well defined since Hg = Hg1 if and only if g1 = hg for some h ∈ H, so Hg1 =

hg = Hg. It is surjective since H · kG is spanned by the elements Hg, g ∈ G. It is one

to one since the distinct elements Hg are obtained by letting g range over a set of coset

representatives, and since these elements have disjoint supports in G, they form a basis

for H · kG in bijection with the basis of k[G\g].

6. (3=1+2 pts) Let V be the subspace of the 10-dimensional space k10 over the field k

which has as a basis the vectors

[0, 1, −1, −1, 1, 0, 0, 0, 0, 0]
[1, 0, −1, −1, 0, 1, 0, 0, 0, 0]
[0, 1, −1, 0, 0, 0, −1, 1, 0, 0]
[1, 0, −1, 0, 0, 0, −1, 0, 1, 0]
[1, 0, 0, 0, −1, 0, −1, 0, 0, 1].

With respect to this basis of V , write down the Gram matrix for the bilinear form

on V which is the restriction of the standard bilinear form on k10. Supposing further

that k has characteristic 3, determine the dimension of the space V/(V ∩ V ⊥).

Solution: It is










4 2 2 1 −1
2 4 1 2 1
2 1 4 2 1
1 2 2 4 2
−1 1 1 2 4











Over F3 this is










1 −1 −1 1 −1
−1 1 1 −1 1
−1 1 1 −1 1
1 −1 −1 1 −1
−1 1 1 −1 1











This has rank 1, so dimV/(V ∩ V ⊥) = 1.
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