Math 8300

Solutions 2

1. (4 pts) Show by example that the homomorphism $FGL(E) \to S_F(n,r)$ given by the representation of GL(E) on $E^{\otimes r}$ need not be surjective if the field F is not infinite.

Solution: We have computed in class that dim $S_{\mathbb{F}_2}(2,2) = 10$. On the other hand, |GL(2,2)| = 6 and this is the dimension of $\mathbb{F}_2GL(E)$. Since 6 < 10 the map is not surjective.

2. (4 pts) Show by example that it is possible to find a group G, a $\mathbb{Z}G$ -module U and a prime p so that the ring homomorphism $\operatorname{End}_{\mathbb{Z}G} \to \operatorname{End}_{\mathbb{F}_pG}(U/pU)$ is not surjective.

Solution: Let $G = C_2 = \langle g \rangle$ and $U = \mathbb{Z} \oplus \mathbb{Z}$ with g acting via $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$. Then $\operatorname{End}_{\mathbb{Z}G}(U) \cong \mathbb{Z}^2$, but $\operatorname{End}_{\mathbb{F}_2G}(U/2U) \cong \mathbb{F}_2^4$.

3. (2 pts) Let M be a module for a ring A, and suppose that M has just two composition factors and is indecomposable. Show that M has a unique submodule, other than 0 and M.

Solution: If M has two distinct proper submodules U, V they must both be simple and so $U \cap V = 0$ because this is a proper submodule of a simple module. Now $U + V = U \oplus V$ has composition length 2, so $U \oplus V = M$.

- 4. True or false? Provide either a proof or a counterexample for each part. Let t be a λ -tableau.
 - (a) (2 pts) In any direct sum decomposition of M^{λ} as a direct sum of indecomposable $\mathbb{F}_p S_r$ -modules, there is a unique summand on which κ_t has non-zero action.
 - (b) (2 pts) Furthermore, if Y^{μ} is a Young module for $\mathbb{F}_p S_r$ which has a submodule isomorphic to S^{λ} then $\lambda \geq \mu$.
 - (c) (2 pts) Determine whether or not this gives a proof that the various Young modules Y^{λ} , as λ ranges through partitions of r, are all non-isomorphic.

Solution: (a) We know from Lemma 2.2.3 that for any λ -tableau t^* we have $\{t^*\}\kappa_t = \pm e_t \in S^{\lambda}$, so $M^{\lambda}\kappa_t \subseteq S^{\lambda}$. In any decomposition $M^{\lambda} = Y_1 \oplus \cdots \oplus Y_d$ into indecomposable summands, one Y_i contains S^{λ} , so $M^{\lambda}\kappa_t \subseteq Y_i$. Since $Y_j\kappa_t \subseteq Y_j$ for all $j, Y_j\kappa_t = 0$ if $j \neq i$. This proves the statement.

(b) This is false. For \mathbb{F}_2S_2 we have $S^{[2]} \cong S^{[1^2]} \cong \mathbb{F}_2$, and so $Y^{[2]} = S^{[2]}$ has $S^{[1^2]}$ as a submodule, but $[1^2] \not\geq [2]$.

(c) My hope was that the action of κ_t would allow us to distinguish the different Y^{λ} . Maybe this can be done, but not by the sort of consideration in part (b).

5. In this question, tableaux may have repeated entries. Let λ be a partition of r, and let μ be any sequence of non-negative integers, whose sum is r. We say that a λ -tableau T has type μ if, for every i, the number i occurs μ_i times in T. For example, $\begin{pmatrix} 2 & 2 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

is a [4, 1]-tableau of type [3, 2]. We will number the positions in T according to some tableau with distinct entries, such as

$$t = \frac{1}{5} \quad \frac{2}{5} \quad \frac{3}{5} \quad \frac{4}{5},$$

but it could have been some other such tableau.

(a) (2 pts) Show that the set of λ -tableaux of type μ is in bijection with the set of μ -tabloids.

We now let S_r act on the λ -tableaux of type μ by permuting the positions of the entries. Thus if $T = \begin{pmatrix} 2 & 2 & 1 & 1 \\ 1 & &$

- (b) (2 pts) Show that the row equivalence classes of λ -tableaux of type μ are in bijection with the double cosets $S_{\mu} \backslash S_r / S_{\lambda}$.
- (c) (2 pts) Show that for each λ -tableau T of type μ there is a RS_r -module homomorphism $\theta_T : M^{\lambda} \to M^{\mu}$ such that $\theta_T(\{t\}) = \sum \{T_i \mid T_i \text{ is row equivalent to } T\}$. Thus, in the above example,

(d) (2 pts) Show that, as T ranges over the row equivalence classes of λ -tableaux of type μ the homomorphisms θ_T give a basis for $\operatorname{Hom}_{RS_r}(M^{\lambda}, M^{\mu})$.

Solution: (a) The bijection sends T to the μ -tabloid where row *i* consists of the positions where the symbol *i* appears.

(b) This bijection is S_r -equivariant. We see that S_r acts transitively on the λ -tableaux of type μ and the stabilizer of one of them is S_{μ} , so this S_r -set is $S_{\mu} \setminus S_r$. The orbits under S_{λ} are the row equivalence classes, so these biject with $S_{\mu} \setminus S_r / S_{\lambda}$.

(c) The λ -tabloid $\{t\}$ bijects with the coset $S_{\lambda} \cdot 1$ in $S_{\lambda} \setminus S_r$. In class it was shown that for each coset $S_{\mu}g \in S_{\mu} \setminus S_r$, corresponding to T say, there is a homomorphism $M^{\lambda} \to M^{\mu}$ determined by $S_{\lambda} \mapsto$ sum of the S_{λ} -orbit of $S_{\mu}g$ in $R[S_{\mu} \setminus S_r]$. This translates to the expression given in terms of row equivalence.

(d) We have seen in class, with the language of cosets, that this gives a basis for $\operatorname{Hom}_{RS_r}(M^{\lambda}, M^{\mu})$.

6. In this question you may assume that there is a decomposition of the group algebra $\mathbb{F}_2 S_3 \cong Y^{[1^3]} \oplus Y^{[2,1]} \oplus Y^{[2,1]}$ and that $Y^{[1^3]}$ has dimension 2, and has a unique $\mathbb{F}_2 S_3$ -submodule of dimension 1. Let $E = \mathbb{F}_2^3$ be a 3-dimensional space over \mathbb{F}_2 .

- (a) (2 pts) Express $E^{\otimes 3}$ as a direct sum of modules M^{λ} , determining the multiplicity of each M^{λ} summand.
- (b) (2 pts) Make a table with rows and columns indexed by the partitions of 3, whose λ, μ entry is the number of double cosets $|S_{\lambda} \setminus S_3 / S_{\mu}|$.
- (c) (2 pts) Compute the dimension of $S_{\mathbb{F}_2}(3,3)$.
- (d) (2 pts) Compute the dimensions of the simple modules for $S_{\mathbb{F}_2}(3,3)$.
- (e) (2 pts) Compute a list of the composition factors of each indecomposable projective $S_{\mathbb{F}_2}(3,3)$ -module, assuming the projective has the form $S_{\mathbb{F}_2}(3,3)e$ for some idempotent e.
- (f) (2 pts) Show that, as $S_{\mathbb{F}_2}(3,3)$ -modules, the symmetric tensors $ST^3(E)$ is indecomposable, but that $E^{\otimes 3}$ is the direct sum of three indecomposable submodules, and find their dimensions.

Solution: (a) $E^{\otimes 3} \cong (M^{[3]})^3 \oplus (M^{[2,1]})^6 \oplus (M^{[1^3]})$ on considering the orbits of basic tensors of shapes $e_1 \otimes e_1 \otimes e_1$, $e_1 \otimes e_1 \otimes e_2$ and $e_1 \otimes e_2 \otimes e_3$.

(b) The table for the partitions $[3], [2, 1], [1^3]$ is $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}$

(c) The numbers of double cosets in the table give the dimension of homomorphisms between the M^{λ} and so the dimension of $S_{\mathbb{F}_2}(3,3)$ is the inner product of (3,6,1) with itself with respect to this matrix, namely 165.

(d) From the decompositions $M^{[3]} = Y^{[3]}$, $M^{[2,1]} = Y^{[3]} \oplus Y^{[2,1]}$ and $M^{[1^3]} = Y^{[1^3]} \oplus Y^{[2,1]} \oplus Y^{[2,1]} \oplus Y^{[2,1]}$ we get $E^{\otimes 3} \cong (Y^{[3]})^9 \oplus (Y^{[2,1]})^8 \oplus (Y^{[1^3]})$. Each sum of Y^{λ} for a given λ has endomorphism ring with semisimple quotient a matrix ring of degree the multiplicity of the summand Y^{λ} , so these multiplicities are the dimensions of the simples: 9, 8 and 1.

(e) We find that $Y^{[2,1]}$ is simple and that $Y^{[3]}$ is the trivial module, and $Y^{[1^2]}$ is described in the question, with two trivial composition factors. Thus, labelling the simples α, β, γ , the projective covers are P_{α} : uniserial with composition factors $\gamma, \alpha; P_{\beta} = \beta$ is simple; P_{γ} : uniserial with composition factors γ, α, γ .

(f) As with $S_{\mathbb{F}_2}(2,2)$ we find that $ST^3(E) = P_{\alpha}$ is uniserial. Also $E^{\otimes 3} = Y^{[1^3]\natural} = P_{\gamma} \oplus P_{\beta} \oplus P_{\beta}$ of dimensions (1+9+1) + 8 + 8 = 11 + 8 + 8 = 27).