1. (4 pts) Show by example that the homomorphism $F G L(E) \rightarrow S_{F}(n, r)$ given by the representation of $G L(E)$ on $E^{\otimes r}$ need not be surjective if the field F is not infinite. Solution: We have computed in class that $\operatorname{dim} S_{\mathbb{F}_{2}}(2,2)=10$. On the other hand, $|G L(2,2)|=6$ and this is the dimension of $\mathbb{F}_{2} G L(E)$. Since $6<10$ the map is not surjective.
2. (4 pts) Show by example that it is possible to find a group G, a $\mathbb{Z} G$-module U and a prime p so that the ring homomorphism $\operatorname{End}_{\mathbb{Z} G} \rightarrow \operatorname{End}_{\mathbb{F}_{p} G}(U / p U)$ is not surjective.
Solution: Let $G=C_{2}=\langle g\rangle$ and $U=\mathbb{Z} \oplus \mathbb{Z}$ with g acting via $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$. Then $\operatorname{End}_{\mathbb{Z} G}(U) \cong$ \mathbb{Z}^{2}, but $\operatorname{End}_{\mathbb{F}_{2} G}(U / 2 U) \cong \mathbb{F}_{2}^{4}$.
3. (2 pts) Let M be a module for a ring A, and suppose that M has just two composition factors and is indecomposable. Show that M has a unique submodule, other than 0 and M.
Solution: If M has two distinct proper submodules U, V they must both be simple and so $U \cap V=0$ because this is a proper submodule of a simple module. Now $U+V=U \oplus V$ has composition length 2 , so $U \oplus V=M$.
4. True or false? Provide either a proof or a counterexample for each part. Let t be a λ-tableau.
(a) (2 pts) In any direct sum decomposition of M^{λ} as a direct sum of indecomposable $\mathbb{F}_{p} S_{r}$-modules, there is a unique summand on which κ_{t} has non-zero action.
(b) (2 pts) Furthermore, if Y^{μ} is a Young module for $\mathbb{F}_{p} S_{r}$ which has a submodule isomorphic to S^{λ} then $\lambda \unrhd \mu$.
(c) (2 pts) Determine whether or not this gives a proof that the various Young modules Y^{λ}, as λ ranges through partitions of r, are all non-isomorphic.
Solution: (a) We know from Lemma 2.2 .3 that for any λ-tableau t^{*} we have $\left\{t^{*}\right\} \kappa_{t}=$ $\pm e_{t} \in S^{\lambda}$, so $M^{\lambda} \kappa_{t} \subseteq S^{\lambda}$. In any decomposition $M^{\lambda}=Y_{1} \oplus \cdots \oplus Y_{d}$ into indecomposable summands, one Y_{i} contains S^{λ}, so $M^{\lambda} \kappa_{t} \subseteq Y_{i}$. Since $Y_{j} \kappa_{t} \subseteq Y_{j}$ for all $j, Y_{j} \kappa_{t}=0$ if $j \neq i$. This proves the statement.
(b) This is false. For $\mathbb{F}_{2} S_{2}$ we have $S^{[2]} \cong S^{\left[1^{2}\right]} \cong \mathbb{F}_{2}$, and so $Y^{[2]}=S^{[2]}$ has $S^{\left[1^{2}\right]}$ as a submodule, but $\left[1^{2}\right] \unrhd[2]$.
(c) My hope was that the action of κ_{t} would allow us to distinguish the different Y^{λ}. Maybe this can be done, but not by the sort of consideration in part (b).
5. In this question, tableaux may have repeated entries. Let λ be a partition of r, and let μ be any sequence of non-negative integers, whose sum is r. We say that a λ-tableau T has type μ if, for every i, the number i occurs μ_{i} times in T. For example, $\begin{array}{llll}2 & 2 & 1 & 1\end{array}$
is a $[4,1]$-tableau of type $[3,2]$. We will number the positions in T according to some tableau with distinct entries, such as

$$
t=\begin{array}{llll}
1 & 2 & 3 & 4 \\
5
\end{array}
$$

but it could have been some other such tableau.
(a) (2 pts) Show that the set of λ-tableaux of type μ is in bijection with the set of μ-tabloids.

We now let S_{r} act on the λ-tableaux of type μ by permuting the positions of the entries. Thus if $T=\begin{array}{llll}2 & 2 & 1 & 1 \\ 1 & & & \end{array}$ then $T(1,5)=\begin{array}{lllll}1 & 2 & 1 & 1 \\ 2\end{array}$ since $(1,5,2)=(1,5)(1,2)$. We say that T_{1} and T_{2} are row equivalent if $T_{2}=T_{1} \pi$ for some permutation in the row stabilizer of the λ-tableau t.
(b) (2 pts) Show that the row equivalence classes of λ-tableaux of type μ are in bijection with the double cosets $S_{\mu} \backslash S_{r} / S_{\lambda}$.
(c) (2 pts) Show that for each λ-tableau T of type μ there is a $R S_{r}$-module homomorphism $\theta_{T}: M^{\lambda} \rightarrow M^{\mu}$ such that $\theta_{T}(\{t\})=\sum\left\{T_{i} \mid T_{i}\right.$ is row equivalent to $\left.T\right\}$. Thus, in the above example,

$$
\left.\begin{array}{rl}
\theta_{T}(\{t\}) & =\begin{array}{lllllllllll}
2 & 2 & 1 & 1 & +\begin{array}{llllll}
2 & 1 & 2 & 1 \\
1 & & & & 1 & 1
\end{array} & 2 \\
1 & &
\end{array} \\
& +\begin{array}{llllll}
1 & 2 & 2 & 1 \\
1 & & & & 2 & 1
\end{array} \\
1 & 2
\end{array} \begin{array}{l}
1 \\
1
\end{array}\right)
$$

(d) (2 pts) Show that, as T ranges over the row equivalence classes of λ-tableaux of type μ the homomorphisms θ_{T} give a basis for $\operatorname{Hom}_{R S_{r}}\left(M^{\lambda}, M^{\mu}\right)$.
Solution: (a) The bijection sends T to the μ-tabloid where row i consists of the positions where the symbol i appears.
(b) This bijection is S_{r}-equivariant. We see that S_{r} acts transitively on the λ-tableaux of type μ and the stabilizer of one of them is S_{μ}, so this S_{r}-set is $S_{\mu} \backslash S_{r}$. The orbits under S_{λ} are the row equivalence classes, so these biject with $S_{\mu} \backslash S_{r} / S_{\lambda}$.
(c) The λ-tabloid $\{t\}$ bijects with the coset $S_{\lambda} \cdot 1$ in $S_{\lambda} \backslash S_{r}$. In class it was shown that for each coset $S_{\mu} g \in S_{\mu} \backslash S_{r}$, corresponding to T say, there is a homomorphism $M^{\lambda} \rightarrow$ M^{μ} determined by $S_{\lambda} \mapsto$ sum of the S_{λ}-orbit of $S_{\mu} g$ in $R\left[S_{\mu} \backslash S_{r}\right]$. This translates to the expression given in terms of row equivalence.
(d) We have seen in class, with the language of cosets, that this gives a basis for $\operatorname{Hom}_{R S_{r}}\left(M^{\lambda}, M^{\mu}\right)$.
6. In this question you may assume that there is a decomposition of the group algebra $\mathbb{F}_{2} S_{3} \cong Y^{\left[1^{3}\right]} \oplus Y^{[2,1]} \oplus Y^{[2,1]}$ and that $Y^{\left[1^{3}\right]}$ has dimension 2 , and has a unique $\mathbb{F}_{2} S_{3^{-}}$ submodule of dimension 1 . Let $E=\mathbb{F}_{2}^{3}$ be a 3-dimensional space over \mathbb{F}_{2}.
(a) (2 pts) Express $E^{\otimes 3}$ as a direct sum of modules M^{λ}, determining the multiplicity of each M^{λ} summand.
(b) (2 pts) Make a table with rows and columns indexed by the partitions of 3, whose λ, μ entry is the number of double cosets $\left|S_{\lambda} \backslash S_{3} / S_{\mu}\right|$.
(c) $(2 \mathrm{pts})$ Compute the dimension of $S_{\mathbb{F}_{2}}(3,3)$.
(d) $(2 \mathrm{pts})$ Compute the dimensions of the simple modules for $S_{\mathbb{F}_{2}}(3,3)$.
(e) (2 pts) Compute a list of the composition factors of each indecomposable projective $S_{\mathbb{F}_{2}}(3,3)$-module, assuming the projective has the form $S_{\mathbb{F}_{2}}(3,3) e$ for some idempotent e.
(f) (2 pts) Show that, as $S_{\mathbb{F}_{2}}(3,3)$-modules, the symmetric tensors $S T^{3}(E)$ is indecomposable, but that $E^{\otimes 3}$ is the direct sum of three indecomposable submodules, and find their dimensions.
Solution: (a) $E^{\otimes 3} \cong\left(M^{[3]}\right)^{3} \oplus\left(M^{[2,1]}\right)^{6} \oplus\left(M^{\left[1^{3}\right]}\right)$ on considering the orbits of basic tensors of shapes $e_{1} \otimes e_{1} \otimes e_{1}, e_{1} \otimes e_{1} \otimes e_{2}$ and $e_{1} \otimes e_{2} \otimes e_{3}$.
$\begin{array}{lll}1 & 1 & 1\end{array}$
(b) The table for the partitions $[3],[2,1],\left[1^{3}\right]$ is $1 \mathrm{I}_{2} \quad 3$.

136
(c) The numbers of double cosets in the table give the dimension of homomorphisms between the M^{λ} and so the dimension of $S_{\mathbb{F}_{2}}(3,3)$ is the inner product of $(3,6,1)$ with itself with respect to this matrix, namely 165.
(d) From the decompositions $M^{[3]}=Y^{[3]}, M^{[2,1]}=Y^{[3]} \oplus Y^{[2,1]}$ and $M^{\left[1^{3}\right]}=Y^{\left[1^{3}\right]} \oplus$ $Y^{[2,1]} \oplus Y^{[2,1]}$ we get $E^{\otimes 3} \cong\left(Y^{[3]}\right)^{9} \oplus\left(Y^{[2,1]}\right)^{8} \oplus\left(Y^{\left[1^{3}\right]}\right)$. Each sum of Y^{λ} for a given λ has endomorphism ring with semisimple quotient a matrix ring of degree the multiplicity of the summand Y^{λ}, so these multiplicities are the dimensions of the simples: 9,8 and 1 .
(e) We find that $Y^{[2,1]}$ is simple and that $Y^{[3]}$ is the trivial module, and $Y^{\left[1^{2}\right]}$ is described in the question, with two trivial composition factors. Thus, labelling the simples α, β, γ, the projective covers are P_{α} : uniserial with composition factors $\gamma, \alpha ; P_{\beta}=\beta$ is simple; P_{γ} : uniserial with composition factors γ, α, γ.
(f) As with $S_{\mathbb{F}_{2}}(2,2)$ we find that $S T^{3}(E)=P_{\alpha}$ is uniserial. Also $E^{\otimes 3}=Y^{\left[1^{3}\right] \natural}=$ $P_{\gamma} \oplus P_{\beta} \oplus P_{\beta}$ of dimensions $(1+9+1)+8+8=11+8+8(=27)$.

