
Math 8300 Solutions 2 PJW

1. (4 pts) Show by example that the homomorphism FGL(E) → SF (n, r) given by the

representation of GL(E) on E⊗r need not be surjective if the field F is not infinite.

Solution: We have computed in class that dimSF2
(2, 2) = 10. On the other hand,

|GL(2, 2)| = 6 and this is the dimension of F2GL(E). Since 6 < 10 the map is not

surjective.

2. (4 pts) Show by example that it is possible to find a group G, a ZG-module U and a

prime p so that the ring homomorphism EndZG → EndFpG(U/pU) is not surjective.

Solution: LetG = C2 = 〈g〉 and U = Z⊕Z with g acting via

(
1 0
0 −1

)
. Then EndZG(U) ∼=

Z2, but EndF2G(U/2U) ∼= F4
2.

3. (2 pts) Let M be a module for a ring A, and suppose that M has just two composition

factors and is indecomposable. Show that M has a unique submodule, other than 0

and M .

Solution: If M has two distinct proper submodules U, V they must both be simple and so

U ∩ V = 0 because this is a proper submodule of a simple module. Now U + V = U ⊕ V
has composition length 2, so U ⊕ V = M .

4. True or false? Provide either a proof or a counterexample for each part. Let t be a

λ-tableau.

(a) (2 pts) In any direct sum decomposition of Mλ as a direct sum of indecomposable

FpSr-modules, there is a unique summand on which κt has non-zero action.

(b) (2 pts) Furthermore, if Y µ is a Young module for FpSr which has a submodule

isomorphic to Sλ then λ D µ.

(c) (2 pts) Determine whether or not this gives a proof that the various Young mod-

ules Y λ, as λ ranges through partitions of r, are all non-isomorphic.

Solution: (a) We know from Lemma 2.2.3 that for any λ-tableau t∗ we have {t∗}κt =

±et ∈ Sλ, so Mλκt ⊆ Sλ. In any decomposition Mλ = Y1 ⊕ · · · ⊕ Yd into indecomposable

summands, one Yi contains Sλ, so Mλκt ⊆ Yi. Since Yjκt ⊆ Yj for all j, Yjκt = 0 if j 6= i.

This proves the statement.

(b) This is false. For F2S2 we have S[2] ∼= S[12] ∼= F2, and so Y [2] = S[2] has S[12] as

a submodule, but [12] 6D [2].

(c) My hope was that the action of κt would allow us to distinguish the different Y λ.

Maybe this can be done, but not by the sort of consideration in part (b).

5. In this question, tableaux may have repeated entries. Let λ be a partition of r, and let

µ be any sequence of non-negative integers, whose sum is r. We say that a λ-tableau T

has type µ if, for every i, the number i occurs µi times in T . For example,
2 2 1 1
1
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is a [4, 1]-tableau of type [3, 2]. We will number the positions in T according to some

tableau with distinct entries, such as

t =
1 2 3 4
5

,

but it could have been some other such tableau.

(a) (2 pts) Show that the set of λ-tableaux of type µ is in bijection with the set of

µ-tabloids.

We now let Sr act on the λ-tableaux of type µ by permuting the positions of the entries.

Thus if T =
2 2 1 1
1

then T (1, 5) =
1 2 1 1
2

and T (1, 5, 2) =
2 1 1 1
2

since (1, 5, 2) = (1, 5)(1, 2). We say that T1 and T2 are row equivalent if T2 = T1π for

some permutation in the row stabilizer of the λ-tableau t.

(b) (2 pts) Show that the row equivalence classes of λ-tableaux of type µ are in

bijection with the double cosets Sµ\Sr/Sλ.

(c) (2 pts) Show that for each λ-tableau T of type µ there is a RSr-module homomor-

phism θT : Mλ → Mµ such that θT ({t}) =
∑
{Ti

∣∣ Ti is row equivalent to T}.
Thus, in the above example,

θT ({t}) =
2 2 1 1
1

+
2 1 2 1
1

+
2 1 1 2
1

+
1 2 2 1
1

+
1 2 1 2
1

+
1 1 2 2
1

.

(d) (2 pts) Show that, as T ranges over the row equivalence classes of λ-tableaux of

type µ the homomorphisms θT give a basis for HomRSr (Mλ,Mµ).

Solution: (a) The bijection sends T to the µ-tabloid where row i consists of the positions

where the symbol i appears.

(b) This bijection is Sr-equivariant. We see that Sr acts transitively on the λ-tableaux

of type µ and the stabilizer of one of them is Sµ, so this Sr-set is Sµ\Sr. The orbits under

Sλ are the row equivalence classes, so these biject with Sµ\Sr/Sλ.

(c) The λ-tabloid {t} bijects with the coset Sλ · 1 in Sλ\Sr. In class it was shown

that for each coset Sµg ∈ Sµ\Sr, corresponding to T say, there is a homomorphism Mλ →
Mµ determined by Sλ 7→ sum of the Sλ-orbit of Sµg in R[Sµ\Sr]. This translates to the

expression given in terms of row equivalence.

(d) We have seen in class, with the language of cosets, that this gives a basis for

HomRSr
(Mλ,Mµ).

6. In this question you may assume that there is a decomposition of the group algebra

F2S3
∼= Y [13] ⊕ Y [2,1] ⊕ Y [2,1] and that Y [13] has dimension 2, and has a unique F2S3-

submodule of dimension 1. Let E = F3
2 be a 3-dimensional space over F2.
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(a) (2 pts) Express E⊗3 as a direct sum of modules Mλ, determining the multiplicity

of each Mλ summand.

(b) (2 pts) Make a table with rows and columns indexed by the partitions of 3, whose

λ, µ entry is the number of double cosets |Sλ\S3/Sµ|.
(c) (2 pts) Compute the dimension of SF2

(3, 3).

(d) (2 pts) Compute the dimensions of the simple modules for SF2(3, 3).

(e) (2 pts) Compute a list of the composition factors of each indecomposable projec-

tive SF2(3, 3)-module, assuming the projective has the form SF2(3, 3)e for some

idempotent e.

(f) (2 pts) Show that, as SF2(3, 3)-modules, the symmetric tensors ST 3(E) is inde-

composable, but that E⊗3 is the direct sum of three indecomposable submodules,

and find their dimensions.

Solution: (a) E⊗3 ∼= (M [3])3⊕(M [2,1])6⊕(M [13]) on considering the orbits of basic tensors

of shapes e1 ⊗ e1 ⊗ e1, e1 ⊗ e1 ⊗ e2 and e1 ⊗ e2 ⊗ e3.

(b) The table for the partitions [3], [2, 1], [13] is
1 1 1
1 2 3
1 3 6

.

(c) The numbers of double cosets in the table give the dimension of homomorphisms

between the Mλ and so the dimension of SF2
(3, 3) is the inner product of (3, 6, 1) with

itself with respect to this matrix, namely 165.

(d) From the decompositions M [3] = Y [3], M [2,1] = Y [3] ⊕ Y [2,1] and M [13] = Y [13] ⊕
Y [2,1] ⊕ Y [2,1] we get E⊗3 ∼= (Y [3])9 ⊕ (Y [2,1])8 ⊕ (Y [13]). Each sum of Y λ for a given λ

has endomorphism ring with semisimple quotient a matrix ring of degree the multiplicity

of the summand Y λ, so these multiplicities are the dimensions of the simples: 9, 8 and 1.

(e) We find that Y [2,1] is simple and that Y [3] is the trivial module, and Y [12] is

described in the question, with two trivial composition factors. Thus, labelling the simples

α, β, γ, the projective covers are Pα: uniserial with composition factors γ, α; Pβ = β is

simple; Pγ : uniserial with composition factors γ, α, γ.

(f) As with SF2(2, 2) we find that ST 3(E) = Pα is uniserial. Also E⊗3 = Y [13]\ =

Pγ ⊕ Pβ ⊕ Pβ of dimensions (1 + 9 + 1) + 8 + 8 = 11 + 8 + 8(= 27).
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