1. (8 points) Give a proof of the following result by following the suggested steps.

THEOREM. Let $E \supset F$ be a field extension of finite degree and let A be an F algebra. Let U and V be A-modules. Then

$$
E \otimes_{F} \operatorname{Hom}_{A}(U, V) \cong \operatorname{Hom}_{E \otimes_{F} A}\left(E \otimes_{F} U, E \otimes_{F} V\right)
$$

via an isomorphism $\lambda \otimes_{F} f \mapsto\left(\mu \otimes_{F} u \mapsto \lambda \mu \otimes_{F} f(u)\right)$.
(a) Verify that there is indeed a homomorphism as indicated.

Solution: We verify that the specification $\mu \otimes_{F} u \mapsto \lambda \mu \otimes_{F} f(u)$ is balanced for F. This is because if $x \in F$ then $\mu x \otimes_{F} u \mapsto \lambda \mu x \otimes_{F} f(u)=\lambda \mu \otimes_{F} x f(u)=\lambda \mu \otimes_{F} f(x u)$ and this is what $\mu \otimes_{F} x u$ is sent to. We also check that the assignment on $\lambda \otimes_{F} f$ is F-balanced by showing similarly that $\lambda x \otimes_{F} f$ is sent to the same mapping as $\lambda \otimes_{F} x f$.
(b) Let x_{1}, \ldots, x_{n} be a basis for E as an F-vector space. Show that for any F-vector space M, each element of $E \otimes_{F} M$ can be written uniquely in the form $\sum_{i=1}^{n} x_{i} \otimes_{F} m_{i}$ with $m_{i} \in M$.
Solution: Each element of $E \otimes_{F} M$ can be written in the form $\sum_{i=1}^{n} \lambda_{i} x_{i} \otimes_{F} u_{i}$ with $u_{i} \in M$ and $\lambda_{i} \in F$. Because E is free as an F-module with the given basis, each term is in the sum has a unique value. Since $\lambda_{i} x_{i} \otimes_{F} u_{i}=x_{i} \otimes_{F} \lambda_{i} u_{i}$ and $x_{i} \otimes_{F} M \cong M$, putting $m_{i}=\lambda_{i} u_{i}$ we obtain a unique expression for this term as $x_{i} \otimes_{F} m_{i}$.
(c) Show that if an element $\sum_{i=1}^{n} x_{i} \otimes f_{i} \in E \otimes_{F} \operatorname{Hom}_{A}(U, V)$ maps to 0 then $\sum_{i=1}^{n} x_{i} \otimes$ $f_{i}(u)=0$ for all $u \in U$. Deduce that the homomorphism is injective.
Solution: If $\sum_{i=1}^{n} x_{i} \otimes f_{i}$ maps to the zero mapping then the effect of the image map on $1 \otimes u$ is $\sum_{i=1}^{n} x_{i} \otimes f_{i}(u)$, and this is zero, for all u. By the uniqueness from (b) we deduce that $x_{i} \otimes f_{i}(u)=0$ always, which implies $x_{i} \otimes f_{i}=0$ and hence that $\sum_{i=1}^{n} x_{i} \otimes f_{i}=0$. Thus the homomorphism is injective.
(d) Show that the homomorphism is surjective as follows: given an $E \otimes_{F} A$-module homomorphism $g: E \otimes_{F} U \rightarrow E \otimes_{F} V$, write $g\left(1 \otimes_{F} u\right)=\sum_{i=1}^{n} x_{i} \otimes f_{i}(u)$ for some elements $f_{i}(u) \in V$. Show that this defines A-module homomorphisms $f_{i}: U \rightarrow V$. Show that g is the image of $\sum_{i=1}^{n} x_{i} \otimes f_{i}$.
Solution: If $a \in A$ we have that $\sum_{i=1}^{n} x_{i} \otimes f_{i}(a u)=g\left(1 \otimes_{F} a u\right)=\left(1 \otimes_{F} a\right) g\left(1 \otimes_{F} u\right)=\left(1 \otimes_{F}\right.$ a) $\sum_{i=1}^{n} x_{i} \otimes f_{i}(u)=\sum_{i=1}^{n} x_{i} \otimes a f_{i}(u)$. By uniqueness of expression we deduce $f_{i}(a u)=$ $a f_{i}(u)$ always and f_{i} is an A-module homomorphism. Now the image of $\sum_{i=1}^{n} x_{i} \otimes f_{i}$ equals g on elements $1 \otimes_{F} u$, and hence equals g since g is E-linear.
2. (5 points) The antiautomorphism of $S_{F}(n, r)$ used in defining the dual of a representation of the Schur algebra was defined as sending an endomorphism of $E^{\otimes r}$ to its transpose with respect to the standard bilinear form on $E^{\otimes r}$. Compute the effect of
this antiautomorphism on the basis elements $\xi_{\mathbf{i}, \mathbf{j}}$ of $S_{F}(n, r)$ constructed as the duals of the monomial functions $c_{\mathbf{i}, \mathbf{j}}$.
Solution: We have seen in class that $\xi_{\mathbf{a}, \mathbf{b}}\left(e_{\mathbf{b}}\right)=\sum_{\mathbf{k} \in \mathbf{a} \cdot \operatorname{Stab}_{S_{r}}(\mathbf{b})} e_{\mathbf{k}}$. This means that the matrix of $\xi_{\mathbf{a}, \mathbf{b}}$ has a 1 in every position $(\mathbf{a} \pi, \mathbf{b} \pi)$. Applying the antiautomorphism we get an element that acts by the transpose matrix, with a 1 in every position ($\mathbf{b} \pi, \mathbf{a} \pi$) and this is the matrix of $\xi_{\mathbf{b}, \mathbf{a}}$. Thus $\xi_{\mathbf{i}, \mathbf{j}}$ is exchanged with $\xi_{\mathbf{j}, \mathbf{i}}$.
3. (5 points) For any finite dimensional representation V of a group G we can construct another representation V^{*} whose representation space is $\operatorname{Hom}_{F}(V, F)$ and where $g \in G$ acts on a linear map $f: V \rightarrow F$ to give ${ }^{g} f$, where ${ }^{g} f(v)=f\left(g^{? 1} v\right)$. Suppose that F is infinite and V is a polynomial representation of $G L_{n}(F)$. Show that V^{*} is polynomial if and only if $G L_{n}(F)$ acts trivially on V.
Solution: If $g=\operatorname{diag}\left(t_{1}, \ldots, t_{n}\right)$ then it acts on each weight space V^{α} as $t_{1}^{\alpha_{1}} \cdots t_{n}^{\alpha_{n}}$. On V^{*} the $-\alpha$ weight space is thus nonzero, so that if V^{*} is polynomial then both α and $-\alpha$ must be non-negative, and hence zero. Thus $V=V^{0}$ is the zero weight space and the diagonal subgroup acts trivially on V. From this it follows that each diagonalizable element acts trivially on V. Since these elements are dense in $G L_{n}(F)$, the whole group must act trivially on V. Thus if V is polynomial it must be trivial. Conversely, if V has trivial action then so does V^{*} so that V^{*} is polynomial.
4. (5 points) Show that the simple $S_{F}(n, r)$-modules are self-dual.

Solution: The formal character of a representation and its dual V° are always the same. Since the simple modules are determined by their formal characters, they are self dual. This is because the antiautomorphism of $S_{F}(n, r)$ fixes ξ_{α} and so the α-weight spaces of V and V° pair in a non-degenerate fashion, and hence have the same dimension.
5. (5 points) In the situation where we have an algebra B containing an idempotent e and a Schur functor $f: B-\bmod \rightarrow e B e-m o d$, show that the left adjoint and the right adjoint functors of f need not be naturally isomorphic. The left adjoint is $W \mapsto B e \otimes_{e B e} W$ and the right adjoint is $W \mapsto \operatorname{Hom}_{e B e}(e B, W)$.
Solution: Let $A=F S_{2}$ where $F=\mathbb{F}_{2}$. We have seen that the regular representation is an indecomposable module with structure $A={ }_{F}^{F}$ and the Schur algebra $B=S_{F}(2,2)=$ $\operatorname{End}_{A}(F \oplus A)$ has dimension 3. Let $e \in B$ be projection onto the second summand. We have seen $e B e \cong A$, and that e and $1-e$ are primitive orthogonal idempotents corresponding to simple B-modules β and α, so that $e \beta \neq 0$ and $e \alpha=0,(1-e) \beta=0$ and $(1-e) \alpha \neq 0$. Let W be the simple A-module F. If S is a simple B-module then $\operatorname{Hom}_{B}\left(B e \otimes_{e B e} W, S\right) \cong$ $\operatorname{Hom}_{e B e}\left(W, \operatorname{Hom}_{B}(B e, S)\right)$. We have also calculated that the projective B-module $B e$ is uniserial with top composition factor β, so the latter group is non-zero when $S \cong \beta$, zero when $S=\alpha$. As a right A-module, $B e \cong F \oplus A$, so $B e \otimes_{e B e} W$ has dimension 2. It follows that $B e \otimes_{e B e} W$ is uniserial with top composition factor β, bottom composition factor α. By a similar argument, $\operatorname{Hom}_{B}\left(S, \operatorname{Hom}_{A}(e B, W)\right) \cong \operatorname{Hom}_{A}\left(e B \otimes_{B} S, W\right)$ is nonzero if $S=\beta$, zero if $S=\alpha$. This shows that $B e \otimes_{e B e} W$ is not isomorphic to $\operatorname{Hom}_{e B e}(e B, W)$.

