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2.5.8 False: while the image of g is obviously in the kernel of f (or the
composition would not be 0), the image if g is not necessarily all of the
kernel of f. (For example, if both f and g are 0 functions, with m # 0 then
imgg =0 #ker f =R™.)

2.5.9 a. The matrix of a linear transformation has as its columns the im-
ages of the standard basis vectors, in this case identified to the polynomials
pi(z) =1, pao(a) = @, ps(x) = 2. Since

T(p1)(z) =0, T(p2)(x) =z, T(ps)(w)=4a?,

0 0 O
the matrixof Tis |0 1 0
0 0 4
0 0 O
0 1 0

0 0 0
b. The matrix row reducesto | 1 0 O [. Thus the image
010

0 0 4
has dimension 2 (the number of pivotal columns) and has a basis made up
of the polynomials ax + 4bx?, the linear combinations of the second and
third columns of the matrix of T. The kernel has dimension 1 (the number
of nonpivotal columns), and consists precisely of the constant polynomials.

2.5.10 Recall from equation 2.5.15 that the linear transformation T} :
P, — R*1 given by

p(0)

is invertible, i.e., there exists T}, ' : R**! — Py such that

p(0)
T | =P
p(k)

The linear transformation R**! — R given by

P /On (T4 (@) (B)dt

has a matrix, which is a line matrix [cg,...,ck]. The assertion is exactly
that
p(0) N
[607 7Ck] = / p(t)dt
0
p(k)
REMARK. The entries cg, ..., c; depend on the interval over which one is

integrating; we are integrating over the interval from 0 to n, and there are
different ¢; for each n.
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FIGURE FOR SOLUTION 2.5.11

Top: On the curves, the kernel
of A has dimension 1 and its image
has dimension 1. Elsewhere, the
rank (dimension of the image) is
2, so by the dimension formula the
kernel has dimension 0. The rank
is never 0 or 3.

BorTOoM: On the b-axis and
on the hyperbola, the image of B
has dimension 2, i.e., its kernel has
At the origin the
rank is 1 and the dimension of the

dimension 1.

kernel is 2. Elsewhere, the kernel
has dimension 0 and the rank is 3.
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Actually computing the numbers ¢; by which each “sampled value” p(7)
of the polynomial must be weighted can be quite involved if done by hand.
In the case where k = 2 we can use MATLAB or the equivalent to com-

1 0 0
pute T, ' = | =3/2 2 —1/2|, but computing it from the definition
1/2 —1  1/2
(the ith column of T, ' is T, ' (&;)) is already fairly involved; for example,
1
T{l 0| = ao+ a1z + asx? tells us that ag = 1,a9 + a1 + az = 0, and
0

ap + 2a; + 4ag =0, ie., ag = 1,a; = —3/2,a2 = 1/2. Thus to compute ¢
we would compute

Another approach would be to use the Lagrange interpolation formula.

2.5.11 The sketch is shown at left.
a. If ab # 2, then dim(ker (A)) = 0, so in that case the image has
dimension 2. If ab = 2, the image and the kernel have dimension 1.

b. This is more complicated. By row operations, we can bring the matrix
B to

1 2 a
0 b ab—a
0 2a—0b a

We now separate the case b # 0 and b = 0.

e If b # 0, then we can do further row operations to bring the matrix to
the form

10
0 1 >

bh—
0 0 —a—(b—2a)%*

a— 2ab7a

ab—a The entry in the 3rd row, 3rd column is

- %(b2 — 2ab + 2a).

So if b # 0, and the point (g) is neither on the line ¢ = 0 nor on the
hyperbola of equation b — 2ab + 2a = 0, the matrix has rank 3, whereas if
b # 0 and the point (g) is on one of these curves, the matrix has rank 2.

1 2 a
o If b = 0, the matrix is |0 —2a —a |, which evidently has rank 3
0 0 a

unless a = 0, in which case it has rank 1.

2.5.12 a. If we put the right side on a common denominator, we find

z+2? = A(z? + 52+ 6) + B(z? + 4z + 3) + C(z* + 32+ 2)
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which leads to the system of linear equations
A+B+C=1
5A+4B+3C =1
6A+3B+2C =0.

One way to solve this system of equations is to see that the matrix of
coeflicients

|
D O =
W =
N W =

is invertible, with inverse

1/2 —1/2 1/2

M*t=|-4 2 -1,
9/2 =3/2 1/2
and that the solution is
A 1/2 —1/2 1/2 1
B|=1|-4 2 -1 1| =[0 -2 3].
C 9/2 -3/2 1/2 0

If you now look back at the problem, you will observe that 22+ = x(z+1),
and that the x + 1’s cancel. That explains why A = 0.

b. This time, if you put the right side on a common denominator, you
find

(A+C)az* + (-3A+ B —2C + D)2* + (3A — 3B+ C — 2D + F)z?
+(~A+3B+D-2F)z+ (-B+F)=x+2°
which leads to the system of equations
A+C=0
—-3A+B-2C+D=1
3A—-3B+C—-2D+F =0
—A+3B+D—-2F=1
—-B+F=0.

This time let us solve the system in the obvious way, by row reduction. The
matrix

1 01000 1000 0 —-1/8
-3 1 2 1 01 01000 1/8
3 =3 1 2 10 row reduces to 001 00O 1/8
-1 3 01 21 00010 1/4
0 -1 0 0 1 0 0 00 01 1/8

In particular, the matrix of coefficients is invertible, since it row reduces to
the identity. This gives the answer:

x4+ a3 1 z—1 1a24+2c+1

C+12@—1F 8@+12 8 (@—1)p
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2.5.13 a. As in the example following proposition 2.5.14, we need to put
the right side on a common denominator and consider the resulting system
of linear equations. Row reduction then tells us for what values of a the
system has no solutions. So:

r—1 o AQ BlfL‘+B0
(x+1)(z2+ax+5) x+1 224ax+5b
- A0$2+GA0$+5A0+31£L'2+31$+Bol'+Bo

(x 4+ 1)(22 4+ ax + 5)

This gives
xr — 1 = 1405(,‘2 —|— CLAol‘ —|— 5A0 —|— B1I2 + Bll‘ —|— BO,I + Bo,

ie.,
aAyg+ By + By = 1, which we can writeas |a 1 1 1 By
Ao+ Bi= 0. L Lo 0B
100 2
Row reduction gives |0 1 0 a__26 , so the fraction in question cannot
0 0 1 =f4=a
a—6

be written as a partial fraction when a = 6.
b. This does not contradict proposition 2.5.14 because that proposition
requires that p be factored as
p(@)=(z—a)" (v —ap)".

with the a; distinct. If you substitute 6 for a in 22 + ax + 5 you get
22462+ 5= (z+ 1)(z +5), so factoring p/q as

p(x) r—1 Ay Biz + By Ap Bix + By

q(z) (x4 1)(22 +ax +5) _x+1+x2+ax+5 _a:+1+(x+1)(x—|—5)

does not meet that requirement; both terms contain (z + 1) in the denom-

inator.
Note that you could avoid this by using a different factorization:
p(z) z—1 z—1 A+ Ay By

02 @ D@ +6245) @t+1)2@+5)  (@+1? z+5

2.5.14 a. We have

go f(z) =z + (A4 o)z + (24Aa + B + B)z° + O(z*),
where O(z%) represents terms of degree 4 or higher, which we will ignore.
If A+ a=0=2Aa+ B+ 3, then g(f(x)) — x will have 2* (or a higher
power of x) as its lowest order term. These two equations are simple to

solve for & and B: a = —A, and 8 = 242 — B. Thus the ¢ with the specified
properties is g(x) = v — Az? + (242 — B)x3.
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b. Consider the composition

gof(z) =(x +asx® +...+a+ka®) +ba(x 4+ axx®+.. .+ a+ ka®)2+. . +bp(z + a2’ +.. .+ a+ ka®)*

:x+02x2+...—|—ckxk—|—...,

Recall that the nullity of a lin-
ear transformation is the dimen-
sion of its kernel.

By proposition 1.2.15, since the
matrices A™! and AB are invert-
ible, so is the product

B=(A"'A)B=A"'(AB),

and B~! = (AB)™'A. Note that
this uses associativity of matrix
mutiplication (corollary 1.3.12)

and notice that the coefficients co, ..., c; depend in a complicated way on
the a’s, but are of degree 1 as functions of the b’s, say

Cj = cj71(a) -+ Cj_rg(a)bg —+ ... cj,k(a)bk.
The ¢; 5,2 < 1,5 < k form a square matrix C, and if it is invertible, then it
will be possible to choose the b’s so that ¢; = 0,7 = 2,...,k, which is the
point of the exercise. It is enough to prove that its kernel is 0.

Suppose Cb = 0, and that j is the smallest index such that b; # 0. Then
the term

bj(z 4 agx® 4 -+ 4 apa®)

will contribute a term bjxj , which cannot be canceled by any other term,
since all others are of degree > j. This contradicts the statement Cb = 0,
so the kernel of C' is 0.

2.5.15 Note first the following results: if 77,75 : R™ — R”™ are linear
transformations, then

1. the image of T} contains the image of T} o T5, and

2. the kernel of T} o Ty contains the kernel of T5.

The first is true because for any v € img Ty o Ts, there exists a vector w
such that (77 07%)w = v (by the definition of image). Since 17 (7T5(W)) = V,
the vector Vv is also in the image of T7.

The second is true because for any v € ker Ty, we have Ty(¥) = 0. Since
T1(0) = 0, we see that

(Ty 0 T3)(¥) = T1(T2(¥)) = T1(0) = 0,

so V is also in the kernel of T} o T5.

If AB is invertible, then the image of A contains the image of AB by
statement 1. So A has rank n, hence nullity 0 by the dimension formula,
so A is invertible. Since B = A71(AB), we have B~ = (AB) ' A.

For B, one could argue that ker B C ker AB = {0}, so B has nullity 0,
and thus rank n, so B is invertible.

2.5.16

*2.5.17 a. Since p(0) = a + 0b + 0%c = 1, we have a = 1. Since
p(1) =a+b+c =4, we have b+ ¢ = 3. Since p(3) = a+ 3b+ 9¢c = —2, we
have 3b+ 9c = —3. It follows that ¢ = —2 and b = 5.



Solution 2.5.17, part b : The
polynomials themselves are almost
certainly nonlinear, but My is lin-
ear since it handles polynomials
that have already been evaluated
at the given points.
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b. Let My be the linear transformation from the space of P, of poly-
nomials of degree at most n to R™*! given by

p(xo) o
D : , wherex = | :
p(l'n) Ln
Assume that the polynomial ¢ is in the kernel of M. Then ¢ vanishes at
n+ 1 distinct points, so that either ¢ is the zero polynomial or it has degree
at least n + 1. Since ¢ cannot have degree greater than n, it must be the
zero polynomial. So ker (My) = {0}, hence My is injective, so by corollary
ao
2.5.10 it is surjective. It follows that a solution of Mx(p) = | : | exists
Qn
and is unique.

c. Take the linear transformation M. from Pj, to R*"*2 defined by

(o) | [ao ]
D 5,((?;)) . If ker (M) = 0, then a solution of M, (p) = Z:
P’ (2n) | L bn

exists and so a value for k is 2n + 2 (as shown above). In fact this is the
lowest value for k that always has a solution.

2.5.18
1 1 1 1 1
2.5.19 a. H, = [1/2 1/4} , Hs=|1/2 1/4 1/8
1/3 1/9 1/27
1 1 1 1
1/2 1/4 1/8 ... 1/2n
b. H, = /3 1/9 1/27 ... 1/3"
1/n 1/n% 1/n% ... 1/n"
c. If H, is not invertible, then there exist numbers ay,...,a, not all
zero such that
fa(l) == fa(n) = 0.

But we can write

a1zt a2+ 4a
fﬁ(ﬂ?) = nv

xn

and the only way this function can vanish at the integers 1,...,n is if the
numerator vanishes at all these points. But it is a polynomial of degree
n—1, and cannot vanish at n different points without vanishing identically.
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2.5.20 a. The matrices are

1 1/2 1/3
112 _
ma=[ijy v = |2
b. More generally, the matrix is

1 1/2 /3 ... 1/n
12 1/3 1/4 ... 1/n+1)
oo |13 1/ 1/5 ... 1/(n+2)
Un Ym+1) 1Ym+2) ... 1/@n—1)

¢. The question is whether H,, is onto, which will happen if and only if
it is one to one, i.e., if and only if its kernel is {0}. Thus the question is
whether

fa(1) = fa(2) = -+ = fa(n) =0
implies that a; = ao = --- = a, = 0. This is indeed true: by putting all
the terms of fz on a common denominator, we can write
palT
fala) = )

x(x—1)---(x+n-1)

where pgz is a polynomial of degree at most n—1; requiring it to vanish at the
n points 1, 2,...,n is saying that it is the zero polynomial, or equivalently,
that fz is the zero function. But if any a; is nonzero, then
li z(x) =
I—»l—n;'l-‘rl fa(l‘) 0

S0 fz cannot be the zero function.

2.5.21 a. If Py is one to one, then P has kernel {0}. It then follows that

> (a;¥;) = 0 has as its only solution a; = 0,4, so Vy,...,V, are linearly
independent.
Conversely, if the vectors vy,...,V,, are linearly independent, then the

equation Y (a;V;) = 0 has as its only solution a; = 0,Vi. This means that
Py has kernel {0} and so is one to one.

b. If Py, is onto, then ¥w € R™, 3& € R™ such that
P[v] (5) = Z(CLZVZ) =w,

so the vectors vy, ...V,, span R™.
Conversely, if vy,...,V, span R™ then

YW € R™,3a1,...an such that » (a;¥;) = W,
so Vw € R™, 3a € R" such that Pj,j(a) = w. Therefore, Py is onto.

c. The vectors Vvq,...,V, form a basis of R™ if and only if they are
linearly independent and they span R™. By parts a and b, this is equivalent
to Py) being one to one (part a) and onto (part b).
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*2.5.22 a. First, we will show that if there exists S : R™ — R"” such that
Ty = S oT5 then ker Ty C ker T7:
Indeed, if T5(V) = 0, then (S o T%)(V) = (11)(V) = 0.

Now we will show that if ker 75 C ker 77 then there exists S : R™ — R"™
such that T} = S o Ts:

For any v € imgTh, choose v. € R™ such that T5(V) = v, and set
S(v) = T1(Vv). We need to show that this does not depend on the choice
of v. If vy also satisfies T5(Vy) = v, then v — vy € ker To C ker T7, so
Ty(v) = T1(v1), showing that S is well defined on imgT>. Now extend it
to R™ in any way, for instance by choosing a basis for img 75, extending it

to a basis of R", and setting it equal to 0 on all the new basis vectors.

b. If 35 : R™ — R"” such that T} = T5 o S then imgT) C img T5:
For each w € img T} there is a vector ¥ such that 71V = w (by definition
of image). If Ty =Ty 0 S, To(S(V)) =W, so w € img Th.

Conversely, we need to show that if img7} C img 75 then 35 : R* — R"
such that T} =715 0 S.

Choose, for each 7, a vector v; such that
TQ‘_;Z' =1 (éz)

This is possible, since img 7% D img77.
Set S = [Vi,...,Vy,]. Then Ty =T, 0 S, since

(T> 0 5)(€&) = Ta(Vi) = T1(&)).

2.6.1 a. It corresponds to the basis v; = Ll) 8], v, = 8 (1) ’
vy = (1) 8’X4: 8 (1) . We have g i =2V, + ¥V, +5v3 +4vy.
b. It corresponds to the basis v; = [(1) 8} v, = (1) 8 )

2.6.2 There is almost nothing to this: everything is true about functions
f € C(0,1) because it is true of f(z) for each z € (0,1). Remember that

0 € C(0,1) stands for the zero function; to distinguish it from the number
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0 we will denote it by 0.

(f+9)(@) = f(z) +

(f +0)(z) = f() + 0= f(2)
(f + (=P)(2) = f(z) = f(z) = 0 =0(x)

((ab).f) (z) = (ab) f(z) = a(b(f(x))) = (a(b(f)))(=)
(a(f +9))(2) = (af + ag))(x) = af(z) + ag(x) = ((af) + (ag))(z)
((@+b)f)(@) = (a+b)(f(2)) = af(z) + bf(z) = (af + bg) ()

(1) (@) = 1(f(x)) = f(x
2.6.3

‘I’{v}(EDa[é ﬂ”[é —ﬂ”[? H”H _H:[Zifl Z:i]

2.6.4 Define the linear transformation 7' : V- x W — R" by T'(V,wW) —
v — w. The kernel of T is V N W. So by the dimension formula,

dimker T+ dimimg 7 = dim(V x W) = dim V 4 dim W.

Since the image of T' is a subspace of R” and thus has dimension at most

n,

dimker 7=dimV +dim W — dimimg7 > dim V 4+ dim W — n.

2.6.5 a. The ith column of [R4] is [R4]€;:

-
L |b . . . a bl |1 0]|fla b
[Ral€1 = ol which corresponds to [O O}_[O 0} [c d}

L0

.
L |d . c d| |0 1| |a b
[Ral€2 = ol which corresponds to [0 0}—[0 0} L d]'

LOJ

01
.o . 0 0] [0 0][a b
[Ral€3 = ol which corresponds to [a b}_[l 0} [c d}

LD
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0
_ 10 . 0 0| |0 Of|a b
[Ral€s = el which corresponds to [c d} = [0 1} L d]'
d
- a b||1 O
Similarly, the first column of [L4] corresponds to c dllo ol the
a b0 1 . a b||0 O
second column to L d} {0 O]’ the third to L d] [1 O}’ and the

a b||0 O
fourth to [c d} {0 1].

b. From part a. we have

|Ra| = |La| = /202 + 262 4 2¢2 + 2d2 = V/2| A|.

2.6.6 a. The matrix for the transformation L, : B — AB that multiplies

ayp az ag
a 3 X 3 matrix on the left by | ay a5 ag | is
a7 ag ag
ra; O 0 ay O 0 a3 O 07
0 al 0 0 a9 0 0 as 0
0 0 a 0 0 ay 0O 0 a3
Q4 0 0 as 0 0 ag 0 0
La=10 a 0 0 a5 O O ag O
0 0 ayq 0 0 as 0 0 Qg
ar 0 0 as 0 0 a9 0 0
0 ar 0 0 as 0 0 ag 0
L0 0 ay O 0 ag 0 O agl
The matrix for the transformation R4 : B +— AB is
rair a4 ay 0O 0 0 0 0 07

s a5 as 0 0 0 0 0 0

as Qg QA9 0 0 0 0 0 0

0O 0 O a a4 ay 0 0 O

0 0 0 as af as 0 0 0

0 0 0 az Qg Qa9 0 0 0

0 0 0 0 0 0 ay a4 ary

0 0 0 0 0 0 a a5 as

LO 0 0 O 0 0 a3 ag agl

b. The matrix for the transformation L 4 that multiples an n X n matrix
on the left is an n? x n? matrix constructed as follows. The main diagonal
consists of the diagonal entries of A, each appearing n times: first a; ;, then
az,2, etc. On either side of the main diagonal are n — 1 smaller diagonals,
whose entries are all 0. The next diagonal below the main diagonal contains
the entries on the diagonal of A that is next to, and below, the main
diagonal. Each entry appears n times. The next diagonal above the main
diagonal contains the entries on the diagonal of A next to and above the
main diagonal. Then we again have n — 1 diagonals whose entries are all 0.
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We continue until every entry of A has appeared n times in a row, always
on a diagonal.

The matrix R4 is easier to describe. On the diagonal put n copies of
AT, positioned so that the diagonal entries of each A" are on the main
diagonal of R4. All other entries are 0.

2.6.7 a. This is not a subspace, since 0 is not in it.

b. This is a subspace: If f, g satisfy the differential equation, then so
does af + bg:

(af +bg)(x) = af(x) + bg(x) = axf'(z) + brg'(x) = x(af + bg)'(x).

c. This is not a vector space: the function f(r) = z2/4 is in it, but

2 = 4(2?/4) is not, so it isn’t closed under multiplication by scalars.

x
2.6.8 a. Immediate from (f +g) = f'+ 4.

b. We must compute the polynomials T(1) = 2, T(z) = z,T(2?) =
202 + 2 — 222 4+ 222 = 24 222. Now the coefficients of these polynomials
are the desired matrix.

c. If we compute, we find T'(z") = (n? —2n+2)z" +n(n—1)2" =2, which
leads to

(2 0 2 0 0 O T
01 06 0 O
0 0 3 0 12 0
T7T=10 0 0 5 0 20

0 0 0 0 10 O

000 0 0 17
2.6.9 a. Take any basis wy,...,w, of V, and discard from the ordered
set of vectors

Vi, Vi, Wi, .., Wy

any vectors w; that are linear combinations of earlier vectors. At all stages,
the set of vectors obtained will span V', since they do when you start and
discarding a vector that is a linear combination of others doesn’t change
the span. When you are through, the vectors obtained will be linearly
independent, so they satisfy condition 3 of definition 2.4.12.

b. The approach is identical: eliminate from Vy,... V) any vectors that
depend linearly on earlier vectors; this never changes the span, and you end
up with linearly independent vectors that span V.

2.6.10 Clearly,
Alx1, X9, ..., Xp] = [AX1, AXa, ..., AX,].
This can be rewritten

X1 Axq

X9 AXQ
La| .| =1 .

Xp Ax,,
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where L 4 is a linear transformation L 4 : R™ — R"". In this representation,
it is clear that

A 0 ... 0
0o A ... 0
La=1|. . . :
0 0 ... A

so |Lal* = n|A%
The result is the same for R4, but this time you have to take the entries
of the matrix X by rows, i.e., write

x| x| A (ATx)T
Xg xq A (ATxo)T
A= i =
X, x| A (ATx,)T
Thus in this basis, the matrix of R4 is
AT 0 ... 0
0 AT ... 0
0 0o ... AT

and again |R4|? = n|AT|? = n|A|2.

2.6.11 We have

_|1+ab a |1 a
AB_{ b 1]’ BA_[b 1+ab]'

Thus we are asking about the rank of the matrix

1 1 14ab 1
a 0 a a
0 b b b
1 1 1 1+ ab

We need to row reduce this matrix, but before starting let us see what
11 1 1

happens if a = 0, or b= 0, or both. Ifa = 0, the matrix s || o .
1 1 1 1
which evidently has rank 2 if b # 0, and rank 1 if b = 0. Similarly, if b = 0

and a # 0, the matrix has rank 2. Now let us suppose that ab # 0. Then
row reduction gives

rl1 1 1+4ab 1 1 1 1+4+ab 1
a 0 a a . 0 —a —a?b 0
0 b b b 0 b b b
L1 1 1 1+ ab 0 0 —ab ab
rl1 0 ab 0 1 0 0 ab
0 a 1 1 0 1 0 2
0 0 a—a’ a - 0 0 1 -1
LO 0 1 -1 0 0 0 a(2-—ab)




