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2.5.8 False: while the image of g is obviously in the kernel of f (or the
composition would not be 0), the image if g is not necessarily all of the
kernel of f . (For example, if both f and g are 0 functions, with m ̸= 0 then
img g = 0 ̸= ker f = Rm.)

2.5.9 a. The matrix of a linear transformation has as its columns the im-
ages of the standard basis vectors, in this case identified to the polynomials
p1(x) = 1, p2(x) = x, p3(x) = x2. Since

T (p1)(x) = 0, T (p2)(x) = x, T (p3)(x) = 4x2,

the matrix of T is

⎡

⎣
0 0 0
0 1 0
0 0 4

⎤

⎦.

b. The matrix

⎡

⎣
0 0 0
0 1 0
0 0 4

⎤

⎦ row reduces to

⎡

⎣
0 0 0
1 0 0
0 1 0

⎤

⎦. Thus the image

has dimension 2 (the number of pivotal columns) and has a basis made up
of the polynomials ax + 4bx2, the linear combinations of the second and
third columns of the matrix of T . The kernel has dimension 1 (the number
of nonpivotal columns), and consists precisely of the constant polynomials.

2.5.10 Recall from equation 2.5.15 that the linear transformation Tk :
Pk → Rk+1 given by

Tk(p) =

⎡

⎢⎣
p(0)

...
p(k)

⎤

⎥⎦

is invertible, i.e., there exists T−1
k : Rk+1 → Pk such that

T−1
k

⎡

⎢⎣
p(0)

...
p(k)

⎤

⎥⎦ = p.

The linear transformation Rk+1 → R given by

a⃗ #→
∫ n

0

(
T−1

k (a⃗)
)
(t)dt

has a matrix, which is a line matrix [c0, . . . , ck]. The assertion is exactly
that

[c0, . . . , ck]

⎡

⎢⎣
p(0)

...
p(k)

⎤

⎥⎦ =
∫ n

0
p(t)dt.

Remark. The entries c0, . . . , ck depend on the interval over which one is
integrating; we are integrating over the interval from 0 to n, and there are
different ci for each n.
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Actually computing the numbers ci by which each “sampled value” p(i)
of the polynomial must be weighted can be quite involved if done by hand.
In the case where k = 2 we can use Matlab or the equivalent to com-

pute T−1
2 =

⎡

⎣
1 0 0

−3/2 2 −1/2
1/2 −1 1/2

⎤

⎦, but computing it from the definition

(the ith column of T−1
2 is T−1

2 (⃗ei)) is already fairly involved; for example,

T−1
2

⎛

⎝
1
0
0

⎞

⎠ = a0 + a1x + a2x2 tells us that a0 = 1, a0 + a1 + a2 = 0, and

a0 + 2a1 + 4a2 = 0, i.e., a0 = 1, a1 = −3/2, a2 = 1/2. Thus to compute c0

we would compute
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Figure for solution 2.5.11
Top: On the curves, the kernel

of A has dimension 1 and its image
has dimension 1. Elsewhere, the
rank (dimension of the image) is
2, so by the dimension formula the
kernel has dimension 0. The rank
is never 0 or 3.

Bottom: On the b-axis and

on the hyperbola, the image of B

has dimension 2, i.e., its kernel has

dimension 1. At the origin the

rank is 1 and the dimension of the

kernel is 2. Elsewhere, the kernel

has dimension 0 and the rank is 3.

c0 =
∫ n

0

(
1− 3

2
x +

1
2
x2
)

dx.

Another approach would be to use the Lagrange interpolation formula.

2.5.11 The sketch is shown at left.
a. If ab ̸= 2, then dim(ker (A)) = 0, so in that case the image has

dimension 2. If ab = 2, the image and the kernel have dimension 1.
b. This is more complicated. By row operations, we can bring the matrix

B to
⎡

⎣
1 2 a
0 b ab− a
0 2a− b a

⎤

⎦ .

We now separate the case b ̸= 0 and b = 0.
• If b ̸= 0, then we can do further row operations to bring the matrix to

the form
⎡

⎣
1 0 a− 2ab−a

b
0 1 ab−a

b
0 0 −a− (b− 2a)ab−a

b

⎤

⎦ . The entry in the 3rd row, 3rd column is

− a

b
(b2 − 2ab + 2a).

So if b ̸= 0, and the point
(

a
b

)
is neither on the line a = 0 nor on the

hyperbola of equation b2 − 2ab + 2a = 0, the matrix has rank 3, whereas if
b ̸= 0 and the point

(
a
b

)
is on one of these curves, the matrix has rank 2.

• If b = 0, the matrix is

⎡

⎣
1 2 a
0 −2a −a
0 0 a

⎤

⎦, which evidently has rank 3

unless a = 0, in which case it has rank 1.

2.5.12 a. If we put the right side on a common denominator, we find

x + x2 = A(x2 + 5x + 6) + B(x2 + 4x + 3) + C(x2 + 3x + 2)
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which leads to the system of linear equations

A + B + C = 1

5A + 4B + 3C = 1

6A + 3B + 2C = 0.

One way to solve this system of equations is to see that the matrix of
coefficients

M =

⎡

⎣
1 1 1
5 4 3
6 3 2

⎤

⎦

is invertible, with inverse

M−1 =

⎡

⎣
1/2 −1/2 1/2
−4 2 −1
9/2 −3/2 1/2

⎤

⎦ ,

and that the solution is
⎡

⎣
A
B
C

⎤

⎦ =

⎡

⎣
1/2 −1/2 1/2
−4 2 −1
9/2 −3/2 1/2

⎤

⎦

⎡

⎣
1
1
0

⎤

⎦ = [ 0 −2 3 ] .

If you now look back at the problem, you will observe that x2+x = x(x+1),
and that the x + 1’s cancel. That explains why A = 0.

b. This time, if you put the right side on a common denominator, you
find

(A + C)x4 + (−3A + B − 2C + D)x3 + (3A− 3B + C − 2D + F )x2

+ (−A + 3B + D − 2F )x + (−B + F ) = x + x3,

which leads to the system of equations

A + C = 0

−3A + B − 2C + D = 1

3A− 3B + C − 2D + F = 0

−A + 3B + D − 2F = 1

−B + F = 0.

This time let us solve the system in the obvious way, by row reduction. The
matrix
⎡

⎢⎢⎢⎣

1 0 1 0 0 0
−3 1 2 1 0 1

3 −3 1 2 1 0
−1 3 0 1 2 1

0 −1 0 0 1 0

⎤

⎥⎥⎥⎦
row reduces to

⎡

⎢⎢⎢⎣

1 0 0 0 0 −1/8
0 1 0 0 0 1/8
0 0 1 0 0 1/8
0 0 0 1 0 1/4
0 0 0 0 1 1/8

⎤

⎥⎥⎥⎦
.

In particular, the matrix of coefficients is invertible, since it row reduces to
the identity. This gives the answer:

x + x3

(x + 1)2(x− 1)3
= −1

8
x− 1

(x + 1)2
+

1
8

x2 + 2x + 1
(x− 1)3

.
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2.5.13 a. As in the example following proposition 2.5.14, we need to put
the right side on a common denominator and consider the resulting system
of linear equations. Row reduction then tells us for what values of a the
system has no solutions. So:

x− 1
(x + 1)(x2 + ax + 5)

=
A0

x + 1
+

B1x + B0

x2 + ax + 5

=
A0x2 + aA0x + 5A0 + B1x2 + B1x + B0x + B0

(x + 1)(x2 + ax + 5)
.

This gives

x− 1 = A0x
2 + aA0x + 5A0 + B1x

2 + B1x + B0x + B0,

i.e.,

5A0 + B0 = −1

aA0 + B1 + B0 = 1

A0 + B1 = 0.

, which we can write as

⎡

⎣
5 0 1 −1
a 1 1 1
1 1 0 0

⎤

⎦

⎡

⎣
A0

B1

B0

⎤

⎦ .

Row reduction gives

⎡

⎣
1 0 0 2

a−6

0 1 0 −2
a−6

0 0 1 −4−a
a−6

⎤

⎦, so the fraction in question cannot

be written as a partial fraction when a = 6.

b. This does not contradict proposition 2.5.14 because that proposition
requires that p be factored as

p (x) = (x− a1)n1 · · · (x− ak)nk .

with the ai distinct. If you substitute 6 for a in x2 + ax + 5 you get
x2 + 6x + 5 = (x + 1)(x + 5), so factoring p/q as

p(x)
q(x)

=
x− 1

(x + 1)(x2 + ax + 5)
=

A0

x + 1
+

B1x + B0

x2 + ax + 5
=

A0

x + 1
+

B1x + B0

(x + 1)(x + 5)

does not meet that requirement; both terms contain (x + 1) in the denom-
inator.

Note that you could avoid this by using a different factorization:

p(x)
q(x)

=
x− 1

(x + 1)(x2 + 6x + 5)
=

x− 1
(x + 1)2(x + 5)

=
A1x + A0

(x + 1)2
+

B0

x + 5

2.5.14 a. We have

g ◦ f(x) = x + (A + α)x2 + (2Aα+ B + β)x3 + O(x4),

where O(x4) represents terms of degree 4 or higher, which we will ignore.
If A + α = 0 = 2Aα + B + β, then g(f(x)) − x will have x4 (or a higher
power of x) as its lowest order term. These two equations are simple to
solve for α and β: α = −A, and β = 2A2−B. Thus the g with the specified
properties is g(x) = x−Ax2 + (2A2 −B)x3.
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b. Consider the composition

g ◦ f(x) =(x + a2x
2 +. . .+ a + kxk) + b2(x + a2x

2+. . .+ a + kxk)2+. . .+ bk(x + a2x
2+. . .+ a + kxk)k

=x + c2x
2 +. . .+ ckxk + . . . ,

and notice that the coefficients c2, . . . , ck depend in a complicated way on
the a’s, but are of degree 1 as functions of the b’s, say

cj = cj,1(a) + cj,2(a)b2 + . . . cj,k(a)bk.

The ci,j , 2 ≤ i, j ≤ k form a square matrix C, and if it is invertible, then it
will be possible to choose the b’s so that cj = 0, j = 2, . . . , k, which is the
point of the exercise. It is enough to prove that its kernel is 0.

Suppose Cb = 0, and that j is the smallest index such that bj ̸= 0. Then
the term

bj(x + a2x
2 + · · · + akxk)j

will contribute a term bjxj , which cannot be canceled by any other term,
since all others are of degree > j. This contradicts the statement Cb = 0,
so the kernel of C is 0.

2.5.15 Note first the following results: if T1, T2 : Rn → Rn are linear
transformations, then

1. the image of T1 contains the image of T1 ◦ T2, and

2. the kernel of T1 ◦ T2 contains the kernel of T2.

The first is true because for any v⃗ ∈ img T1 ◦ T2, there exists a vector w⃗
such that (T1◦T2)w⃗ = v⃗ (by the definition of image). Since T1(T2(w⃗)) = v⃗,
the vector v⃗ is also in the image of T1.

Recall that the nullity of a lin-
ear transformation is the dimen-
sion of its kernel.

By proposition 1.2.15, since the
matrices A−1 and AB are invert-
ible, so is the product

B = (A−1A)B = A−1(AB),

and B−1 = (AB)−1A. Note that
this uses associativity of matrix
mutiplication (corollary 1.3.12)

The second is true because for any v⃗ ∈ ker T2, we have T2(v⃗) = 0⃗. Since
T1(0⃗) = 0⃗, we see that

(T1 ◦ T2)(v⃗) = T1

(
T2(v⃗)

)
= T1(0⃗) = 0⃗,

so v⃗ is also in the kernel of T1 ◦ T2.
If AB is invertible, then the image of A contains the image of AB by

statement 1. So A has rank n, hence nullity 0 by the dimension formula,
so A is invertible. Since B = A−1(AB), we have B−1 = (AB)−1A.

For B, one could argue that ker B ⊂ ker AB = {0}, so B has nullity 0,
and thus rank n, so B is invertible.

2.5.16

*2.5.17 a. Since p(0) = a + 0b + 02c = 1, we have a = 1. Since
p(1) = a + b + c = 4, we have b + c = 3. Since p(3) = a + 3b + 9c = −2, we
have 3b + 9c = −3. It follows that c = −2 and b = 5.
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b. Let Mx be the linear transformation from the space of Pn of poly-
nomials of degree at most n to Rn+1 given by

p #→

⎡

⎢⎣
p(x0)

...
p(xn)

⎤

⎥⎦ , where x =

⎡

⎣
x0
...

xn

⎤

⎦.

Assume that the polynomial q is in the kernel of Mx. Then q vanishes at
n+1 distinct points, so that either q is the zero polynomial or it has degree
at least n + 1. Since q cannot have degree greater than n, it must be the
zero polynomial. So ker (Mx) = {0}, hence Mx is injective, so by corollary

2.5.10 it is surjective. It follows that a solution of Mx(p) =

⎡

⎣
a0
...

an

⎤

⎦ exists

and is unique.

Solution 2.5.17, part b : The
polynomials themselves are almost
certainly nonlinear, but Mx is lin-
ear since it handles polynomials
that have already been evaluated
at the given points. c. Take the linear transformation M ′x from Pk to R2n+2 defined by

p #→

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

p(x0)
...

p(xn)
p′(x0)

...
p′(xn)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

. If ker (M ′
x) = 0, then a solution of M ′x(p) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

a0
...

an

b0
...

bn

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

exists and so a value for k is 2n + 2 (as shown above). In fact this is the
lowest value for k that always has a solution.

2.5.18

2.5.19 a. H2 =
[

1 1
1/2 1/4

]
, H3 =

⎡

⎣
1 1 1

1/2 1/4 1/8
1/3 1/9 1/27

⎤

⎦.

b. Hn =

⎡

⎢⎢⎢⎢⎣

1 1 1 . . . 1
1/2 1/4 1/8 . . . 1/2n

1/3 1/9 1/27 . . . 1/3n

...
...

...
. . .

...
1/n 1/n2 1/n3 . . . 1/nn

⎤

⎥⎥⎥⎥⎦
.

c. If Hn is not invertible, then there exist numbers a1, . . . , an not all
zero such that

fa⃗(1) = · · · = fa⃗(n) = 0.

But we can write

fa⃗(x) =
a1xn−1 + a2xn−2 + · · · + an

xn
,

and the only way this function can vanish at the integers 1, . . . , n is if the
numerator vanishes at all these points. But it is a polynomial of degree
n−1, and cannot vanish at n different points without vanishing identically.
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2.5.20 a. The matrices are

H2 =
[

1 1/2
1/2 1/3

]
, H3 =

⎡

⎣
1 1/2 1/3

1/2 1/3 1/4
1/3 1/4 1/5

⎤

⎦ .

b. More generally, the matrix is

Hn =

⎡

⎢⎢⎢⎢⎣

1 1/2 1/3 . . . 1/n
1/2 1/3 1/4 . . . 1/(n + 1)
1/3 1/4 1/5 . . . 1/(n + 2)
...

...
...

. . .
...

1/n 1/(n + 1) 1/(n + 2) . . . 1/(2n− 1)

⎤

⎥⎥⎥⎥⎦
.

c. The question is whether Hn is onto, which will happen if and only if
it is one to one, i.e., if and only if its kernel is {0}. Thus the question is
whether

fa⃗(1) = fa⃗(2) = · · · = fa⃗(n) = 0

implies that a1 = a2 = · · · = an = 0. This is indeed true: by putting all
the terms of fa⃗ on a common denominator, we can write

fa⃗(x) =
pa⃗(x)

x(x− 1) · · · (x + n− 1)

where pa⃗ is a polynomial of degree at most n−1; requiring it to vanish at the
n points 1, 2, . . . , n is saying that it is the zero polynomial, or equivalently,
that fa⃗ is the zero function. But if any ai is nonzero, then

lim
x→−i+1

fa⃗(x) =∞,

so fa⃗ cannot be the zero function.

2.5.21 a. If P[v] is one to one, then P[v] has kernel {0}. It then follows that∑
(aiv⃗i) = 0 has as its only solution ai = 0,∀i, so v⃗1, . . . , v⃗n are linearly

independent.
Conversely, if the vectors v⃗1, . . . , v⃗n are linearly independent, then the

equation
∑

(aiv⃗i) = 0 has as its only solution ai = 0, ∀i. This means that
P[v] has kernel {0} and so is one to one.

b. If P[v] is onto, then ∀w⃗ ∈ Rm, ∃a⃗ ∈ Rn such that

P[v](a⃗) =
∑

(aiv⃗i) = w⃗,

so the vectors v⃗1, ...v⃗n span Rm.
Conversely, if v⃗1, . . . , v⃗n span Rm then

∀w⃗ ∈ Rm, ∃a1, ...an such that
∑

(aiv⃗i) = w⃗,

so ∀w⃗ ∈ Rm, ∃a⃗ ∈ Rn such that P[v](a⃗) = w⃗. Therefore, P[v] is onto.

c. The vectors v⃗1, . . . , v⃗n form a basis of Rm if and only if they are
linearly independent and they span Rm. By parts a and b, this is equivalent
to P[v] being one to one (part a) and onto (part b).
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*2.5.22 a. First, we will show that if there exists S : Rn → Rn such that

T1 = S ◦ T2 then ker T2 ⊂ ker T1:

Indeed, if T2(v⃗) = 0, then (S ◦ T2)(v⃗) = (T1)(v⃗) = 0.

Now we will show that if ker T2 ⊂ ker T1 then there exists S : Rn → Rn

such that T1 = S ◦ T2:

For any v ∈ img T2, choose ṽ ∈ Rn such that T2(ṽ) = v, and set

S(v) = T1(ṽ). We need to show that this does not depend on the choice

of ṽ. If ṽ1 also satisfies T2(ṽ1) = v, then ṽ − ṽ1 ∈ ker T2 ⊂ ker T1, so

T1(ṽ) = T1(ṽ1), showing that S is well defined on img T2. Now extend it

to Rn in any way, for instance by choosing a basis for img T2, extending it

to a basis of Rn, and setting it equal to 0 on all the new basis vectors.

b. If ∃S : Rn → Rn such that T1 = T2 ◦ S then img T1 ⊂ img T2:

For each w⃗ ∈ img T1 there is a vector v⃗ such that T1v⃗ = w⃗ (by definition

of image). If T1 = T2 ◦ S, T2(S(v⃗)) = w⃗, so w⃗ ∈ img T2.

Conversely, we need to show that if img T1 ⊂ img T2 then ∃S : Rn → Rn

such that T1 = T2 ◦ S.

Choose, for each i, a vector v⃗i such that

T2v⃗i = T1(⃗ei).

This is possible, since img T2 ⊃ img T1.

Set S = [v⃗1, . . . , v⃗n]. Then T1 = T2 ◦ S, since

(T2 ◦ S)(⃗ei) = T2(v⃗i) = T1(⃗ei).

2.6.1 a. It corresponds to the basis v1 =
[

1 0
0 0

]
, v2 =

[
0 1
0 0

]
,

v3 =
[

0 0
1 0

]
, v4 =

[
0 0
0 1

]
. We have

[
2 1
5 4

]
= 2v1 + v2 + 5v3 + 4v4.

b. It corresponds to the basis v1 =
[

1 0
0 0

]
, v2 =

[
0 0
1 0

]
,

v3 =
[

0 1
0 0

]
, v4 =

[
0 0
0 1

]
. We have

[
2 1
5 4

]
= 2v1 + 5v2 + v3 + 4v4.

2.6.2 There is almost nothing to this: everything is true about functions

f ∈ C(0, 1) because it is true of f(x) for each x ∈ (0, 1). Remember that

0 ∈ C(0, 1) stands for the zero function; to distinguish it from the number
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0 we will denote it by 0̃.
(
(f + g) + h

)
(x) = (f + g)(x) + h(x) =

(
f(x) + g(x)

)
+ h(x)

= f(x) + (g(x) + h(x)) = f(x) + (g + h)(x) =
(
f + (g + h)

)
(x)

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x)

(f + 0̃)(x) = f(x) + 0 = f(x)

(f + (−f))(x) = f(x)− f(x) = 0 = 0̃(x)
(
(ab)f

)
(x) = (ab)f(x) = a(b(f(x))) = (a(b(f)))(x)

(
a(f + g)

)
(x) = (af + ag))(x) = af(x) + ag(x) = ((af) + (ag))(x)

(
(a + b)f

)
(x) = (a + b)(f(x)) = af(x) + bf(x) = (af + bg)(x)

(1f)(x) = 1(f(x)) = f(x).

2.6.3

Φ{v}

⎛

⎜⎝

⎡

⎢⎣

a
b
c
d

⎤

⎥⎦

⎞

⎟⎠ = a

[
1 0
0 1

]
+ b

[
1 0
0 −1

]
+ c

[
0 1
1 0

]
+ d

[
0 −1
1 0

]
=
[

a + b c− d
c + d a− b

]

2.6.4 Define the linear transformation T : V ×W → Rn by T (v⃗, w⃗) #→
v⃗ − w⃗. The kernel of T is V ∩W . So by the dimension formula,

dim ker T + dim img T = dim(V ×W ) = dimV + dimW.

Since the image of T is a subspace of Rn and thus has dimension at most
n,

dim ker T = dimV + dimW − dim img T ≥ dimV + dimW − n.

2.6.5 a. The ith column of [RA] is [RA ]⃗ei:

[RA ]⃗e1 =

⎡

⎢⎣

a
b
0
0

⎤

⎥⎦ , which corresponds to
[

a b
0 0

]
=
[

1 0
0 0

] [
a b
c d

]
.

[RA ]⃗e2 =

⎡

⎢⎣

c
d
0
0

⎤

⎥⎦ , which corresponds to
[

c d
0 0

]
=
[

0 1
0 0

] [
a b
c d

]
.

[RA ]⃗e3 =

⎡

⎢⎣

0
0
a
b

⎤

⎥⎦ , which corresponds to
[

0 0
a b

]
=
[

0 0
1 0

] [
a b
c d

]
.
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[RA ]⃗e4 =

⎡

⎢⎣

0
0
c
d

⎤

⎥⎦ , which corresponds to
[

0 0
c d

]
=
[

0 0
0 1

] [
a b
c d

]
.

Similarly, the first column of [LA] corresponds to
[

a b
c d

] [
1 0
0 0

]
; the

second column to
[

a b
c d

] [
0 1
0 0

]
, the third to

[
a b
c d

] [
0 0
1 0

]
, and the

fourth to
[

a b
c d

] [
0 0
0 1

]
.

b. From part a. we have

|RA| = |LA| =
√

2a2 + 2b2 + 2c2 + 2d2 =
√

2|A|.

2.6.6 a. The matrix for the transformation LA : B → AB that multiplies

a 3× 3 matrix on the left by

⎡

⎣
a1 a2 a3

a4 a5 a6

a7 a8 a9

⎤

⎦ is

LA =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 0 0 a2 0 0 a3 0 0
0 a1 0 0 a2 0 0 a3 0
0 0 a1 0 0 a2 0 0 a3

a4 0 0 a5 0 0 a6 0 0
0 a4 0 0 a5 0 0 a6 0
0 0 a4 0 0 a5 0 0 a6

a7 0 0 a8 0 0 a9 0 0
0 a7 0 0 a8 0 0 a9 0
0 0 a7 0 0 a8 0 0 a9

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The matrix for the transformation RA : B #→ AB is
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 a4 a7 0 0 0 0 0 0
a2 a5 a8 0 0 0 0 0 0
a3 a6 a9 0 0 0 0 0 0
0 0 0 a1 a4 a7 0 0 0
0 0 0 a2 a5 a8 0 0 0
0 0 0 a3 a6 a9 0 0 0
0 0 0 0 0 0 a1 a4 a7

0 0 0 0 0 0 a2 a5 a8

0 0 0 0 0 0 a3 a6 a9

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

b. The matrix for the transformation LA that multiples an n×n matrix
on the left is an n2 × n2 matrix constructed as follows. The main diagonal
consists of the diagonal entries of A, each appearing n times: first a1,1, then
a2,2, etc. On either side of the main diagonal are n − 1 smaller diagonals,
whose entries are all 0. The next diagonal below the main diagonal contains
the entries on the diagonal of A that is next to, and below, the main
diagonal. Each entry appears n times. The next diagonal above the main
diagonal contains the entries on the diagonal of A next to and above the
main diagonal. Then we again have n− 1 diagonals whose entries are all 0.
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We continue until every entry of A has appeared n times in a row, always
on a diagonal.

The matrix RA is easier to describe. On the diagonal put n copies of
A⊤, positioned so that the diagonal entries of each A⊤ are on the main
diagonal of RA. All other entries are 0.

2.6.7 a. This is not a subspace, since 0 is not in it.
b. This is a subspace: If f, g satisfy the differential equation, then so

does af + bg:

(af + bg)(x) = af(x) + bg(x) = axf ′(x) + bxg′(x) = x(af + bg)′(x).

c. This is not a vector space: the function f(x) = x2/4 is in it, but
x2 = 4(x2/4) is not, so it isn’t closed under multiplication by scalars.

2.6.8 a. Immediate from (f + g)′ = f ′ + g′.
b. We must compute the polynomials T (1) = 2, T (x) = x, T (x2) =

2x2 + 2 − 2x2 + 2x2 = 2 + 2x2. Now the coefficients of these polynomials
are the desired matrix.

c. If we compute, we find T (xn) = (n2−2n+2)xn +n(n−1)xn−2, which
leads to

T =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 0 2 0 0 0 . . .
0 1 0 6 0 0 . . .
0 0 3 0 12 0 . . .
0 0 0 5 0 20 . . .
0 0 0 0 10 0 . . .
0 0 0 0 0 17 . . .
...

...
...

...
...

...

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2.6.9 a. Take any basis w⃗1, . . . , w⃗n of V , and discard from the ordered
set of vectors

v⃗1, . . . v⃗k, w⃗1, . . . , w⃗n

any vectors w⃗i that are linear combinations of earlier vectors. At all stages,
the set of vectors obtained will span V , since they do when you start and
discarding a vector that is a linear combination of others doesn’t change
the span. When you are through, the vectors obtained will be linearly
independent, so they satisfy condition 3 of definition 2.4.12.

b. The approach is identical: eliminate from v⃗1, . . . v⃗k any vectors that
depend linearly on earlier vectors; this never changes the span, and you end
up with linearly independent vectors that span V .

2.6.10 Clearly,

A[x1,x2, . . . ,xn] = [Ax1, Ax2, . . . , Axn].

This can be rewritten

LA

⎡

⎢⎢⎣

x1

x2
...

xn

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

Ax1

Ax2
...

Axn

⎤

⎥⎥⎦ ,
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where LA is a linear transformation LA : Rn2 → Rn2
. In this representation,

it is clear that

LA =

⎡

⎢⎢⎣

A 0 . . . 0
0 A . . . 0
...

...
. . .

...
0 0 . . . A

⎤

⎥⎥⎦

so |LA|2 = n|A|2.
The result is the same for RA, but this time you have to take the entries

of the matrix X by rows, i.e., write
⎡

⎢⎢⎣

x⊤1
x⊤2
...

x⊤n

⎤

⎥⎥⎦A =

⎡

⎢⎢⎣

x⊤1 A
x⊤2 A

...
x⊤n A

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

(A⊤x1)⊤
(A⊤x2)⊤

...
(A⊤xn)⊤

⎤

⎥⎥⎦ .

Thus in this basis, the matrix of RA is
⎡

⎢⎢⎣

A⊤ 0 . . . 0
0 A⊤ . . . 0
...

...
. . .

...
0 0 . . . A⊤

⎤

⎥⎥⎦ ,

and again |RA|2 = n|A⊤|2 = n|A|2.

2.6.11 We have

AB =
[

1 + ab a
b 1

]
, BA =

[
1 a
b 1 + ab

]
.

Thus we are asking about the rank of the matrix
⎡

⎢⎣

1 1 1 + ab 1
a 0 a a
0 b b b
1 1 1 1 + ab

⎤

⎥⎦ .

We need to row reduce this matrix, but before starting let us see what

happens if a = 0, or b = 0, or both. If a = 0, the matrix is

⎡

⎢⎣

1 1 1 1
0 0 0 0
0 b b b
1 1 1 1

⎤

⎥⎦,

which evidently has rank 2 if b ̸= 0, and rank 1 if b = 0. Similarly, if b = 0
and a ̸= 0, the matrix has rank 2. Now let us suppose that ab ̸= 0. Then
row reduction gives

⎡

⎢⎣

1 1 1 + ab 1
a 0 a a
0 b b b
1 1 1 1 + ab

⎤

⎥⎦ →

⎡

⎢⎣

1 1 1 + ab 1
0 −a −a2b 0
0 b b b
0 0 −ab ab

⎤

⎥⎦

⎡

⎢⎣

1 0 ab 0
0 a 1 1
0 0 a− a2b a
0 0 1 −1

⎤

⎥⎦ →

⎡

⎢⎣

1 0 0 ab
0 1 0 2
0 0 1 −1
0 0 0 a(2− ab)

⎤

⎥⎦ .


