2.5.8 False: while the image of g is obviously in the kernel of f (or the composition would not be 0), the image if g is not necessarily all of the kernel of f. (For example, if both f and g are 0 functions, with $m \neq 0$ then $\operatorname{img} g=0 \neq \operatorname{ker} f=\mathbb{R}^{m}$.)
2.5.9 a. The matrix of a linear transformation has as its columns the images of the standard basis vectors, in this case identified to the polynomials $p_{1}(x)=1, p_{2}(x)=x, p_{3}(x)=x^{2}$. Since

$$
T\left(p_{1}\right)(x)=0, \quad T\left(p_{2}\right)(x)=x, \quad T\left(p_{3}\right)(x)=4 x^{2}
$$

the matrix of T is $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right]$.
b. The matrix $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right]$ row reduces to $\left[\begin{array}{lll}0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$. Thus the image has dimension 2 (the number of pivotal columns) and has a basis made up of the polynomials $a x+4 b x^{2}$, the linear combinations of the second and third columns of the matrix of T. The kernel has dimension 1 (the number of nonpivotal columns), and consists precisely of the constant polynomials.
2.5.10 Recall from equation 2.5 .15 that the linear transformation T_{k} : $P_{k} \rightarrow \mathbb{R}^{k+1}$ given by

$$
T_{k}(p)=\left[\begin{array}{c}
p(0) \\
\vdots \\
p(k)
\end{array}\right]
$$

is invertible, i.e., there exists $T_{k}^{-1}: \mathbb{R}^{k+1} \rightarrow P_{k}$ such that

$$
T_{k}^{-1}\left[\begin{array}{c}
p(0) \\
\vdots \\
p(k)
\end{array}\right]=p
$$

The linear transformation $\mathbb{R}^{k+1} \rightarrow \mathbb{R}$ given by

$$
\overrightarrow{\mathbf{a}} \mapsto \int_{0}^{n}\left(T_{k}^{-1}(\overrightarrow{\mathbf{a}})\right)(t) d t
$$

has a matrix, which is a line matrix $\left[c_{0}, \ldots, c_{k}\right]$. The assertion is exactly that

$$
\left[c_{0}, \ldots, c_{k}\right]\left[\begin{array}{c}
p(0) \\
\vdots \\
p(k)
\end{array}\right]=\int_{0}^{n} p(t) d t
$$

REMARK. The entries c_{0}, \ldots, c_{k} depend on the interval over which one is integrating; we are integrating over the interval from 0 to n, and there are different c_{i} for each n.

Actually computing the numbers c_{i} by which each "sampled value" $p(i)$ of the polynomial must be weighted can be quite involved if done by hand. In the case where $k=2$ we can use Matlab or the equivalent to compute $T_{2}^{-1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -3 / 2 & 2 & -1 / 2 \\ 1 / 2 & -1 & 1 / 2\end{array}\right]$, but computing it from the definition (the i th column of T_{2}^{-1} is $T_{2}^{-1}\left(\overrightarrow{\mathbf{e}}_{i}\right)$) is already fairly involved; for example, $T_{2}^{-1}\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right)=a_{0}+a_{1} x+a_{2} x^{2}$ tells us that $a_{0}=1, a_{0}+a_{1}+a_{2}=0$, and $a_{0}+2 a_{1}+4 a_{2}=0$, i.e., $a_{0}=1, a_{1}=-3 / 2, a_{2}=1 / 2$. Thus to compute c_{0} we would compute

$$
c_{0}=\int_{0}^{n}\left(1-\frac{3}{2} x+\frac{1}{2} x^{2}\right) d x
$$

Another approach would be to use the Lagrange interpolation formula.
2.5.11 The sketch is shown at left.
a. If $a b \neq 2$, then $\operatorname{dim}(\operatorname{ker}(A))=0$, so in that case the image has dimension 2. If $a b=2$, the image and the kernel have dimension 1 .
b. This is more complicated. By row operations, we can bring the matrix B to

$$
\left[\begin{array}{ccc}
1 & 2 & a \\
0 & b & a b-a \\
0 & 2 a-b & a
\end{array}\right]
$$

We now separate the case $b \neq 0$ and $b=0$.

- If $b \neq 0$, then we can do further row operations to bring the matrix to the form

$$
\left[\begin{array}{ccc}
1 & 0 & a-2 \frac{a b-a}{b} \\
0 & 1 & \frac{a b-a}{b} \\
0 & 0 & -a-(b-2 a) \frac{a b-a}{b}
\end{array}\right] \text {. The entry in the 3rd row, 3rd column is }
$$

$$
-\frac{a}{b}\left(b^{2}-2 a b+2 a\right)
$$

So if $b \neq 0$, and the point $\binom{a}{b}$ is neither on the line $a=0$ nor on the hyperbola of equation $b^{2}-2 a b+2 a=0$, the matrix has rank 3 , whereas if $b \neq 0$ and the point $\binom{a}{b}$ is on one of these curves, the matrix has rank 2.

- If $b=0$, the matrix is $\left[\begin{array}{ccr}1 & 2 & a \\ 0 & -2 a & -a \\ 0 & 0 & a\end{array}\right]$, which evidently has rank 3 unless $a=0$, in which case it has rank 1 .
2.5.12 a. If we put the right side on a common denominator, we find

$$
x+x^{2}=A\left(x^{2}+5 x+6\right)+B\left(x^{2}+4 x+3\right)+C\left(x^{2}+3 x+2\right)
$$

which leads to the system of linear equations

$$
\begin{aligned}
A+B+C & =1 \\
5 A+4 B+3 C & =1 \\
6 A+3 B+2 C & =0 .
\end{aligned}
$$

One way to solve this system of equations is to see that the matrix of coefficients

$$
M=\left[\begin{array}{lll}
1 & 1 & 1 \\
5 & 4 & 3 \\
6 & 3 & 2
\end{array}\right]
$$

is invertible, with inverse

$$
M^{-1}=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
-4 & 2 & -1 \\
9 / 2 & -3 / 2 & 1 / 2
\end{array}\right]
$$

and that the solution is

$$
\left[\begin{array}{l}
A \\
B \\
C
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
-4 & 2 & -1 \\
9 / 2 & -3 / 2 & 1 / 2
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{lll}
0 & -2 & 3
\end{array}\right] .
$$

If you now look back at the problem, you will observe that $x^{2}+x=x(x+1)$, and that the $x+1$'s cancel. That explains why $A=0$.
b. This time, if you put the right side on a common denominator, you find

$$
\begin{aligned}
(A+C) x^{4} & +(-3 A+B-2 C+D) x^{3}+(3 A-3 B+C-2 D+F) x^{2} \\
& +(-A+3 B+D-2 F) x+(-B+F)=x+x^{3},
\end{aligned}
$$

which leads to the system of equations

$$
\begin{aligned}
A+C & =0 \\
-3 A+B-2 C+D & =1 \\
3 A-3 B+C-2 D+F & =0 \\
-A+3 B+D-2 F & =1 \\
-B+F & =0
\end{aligned}
$$

This time let us solve the system in the obvious way, by row reduction. The matrix

$$
\left[\begin{array}{rrrrrr}
1 & 0 & 1 & 0 & 0 & 0 \\
-3 & 1 & 2 & 1 & 0 & 1 \\
3 & -3 & 1 & 2 & 1 & 0 \\
-1 & 3 & 0 & 1 & 2 & 1 \\
0 & -1 & 0 & 0 & 1 & 0
\end{array}\right] \quad \text { row reduces to }\left[\begin{array}{lllllr}
1 & 0 & 0 & 0 & 0 & -1 / 8 \\
0 & 1 & 0 & 0 & 0 & 1 / 8 \\
0 & 0 & 1 & 0 & 0 & 1 / 8 \\
0 & 0 & 0 & 1 & 0 & 1 / 4 \\
0 & 0 & 0 & 0 & 1 & 1 / 8
\end{array}\right] .
$$

In particular, the matrix of coefficients is invertible, since it row reduces to the identity. This gives the answer:

$$
\frac{x+x^{3}}{(x+1)^{2}(x-1)^{3}}=-\frac{1}{8} \frac{x-1}{(x+1)^{2}}+\frac{1}{8} \frac{x^{2}+2 x+1}{(x-1)^{3}}
$$

2.5.13 a. As in the example following proposition 2.5.14, we need to put the right side on a common denominator and consider the resulting system of linear equations. Row reduction then tells us for what values of a the system has no solutions. So:

$$
\begin{aligned}
\frac{x-1}{(x+1)\left(x^{2}+a x+5\right)} & =\frac{A_{0}}{x+1}+\frac{B_{1} x+B_{0}}{x^{2}+a x+5} \\
& =\frac{A_{0} x^{2}+a A_{0} x+5 A_{0}+B_{1} x^{2}+B_{1} x+B_{0} x+B_{0}}{(x+1)\left(x^{2}+a x+5\right)} .
\end{aligned}
$$

This gives

$$
x-1=A_{0} x^{2}+a A_{0} x+5 A_{0}+B_{1} x^{2}+B_{1} x+B_{0} x+B_{0},
$$

i.e.,

$$
\begin{aligned}
& \qquad 5 A_{0}+B_{0}=-1 \\
& a A_{0}+B_{1}+B_{0}=1, \text { which we can write as }\left[\begin{array}{rrrr}
5 & 0 & 1 & -1 \\
a & 1 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
A_{0} \\
B_{1} \\
B_{0}
\end{array}\right] . \\
& A_{0}+B_{1}=0 . \\
& \text { Row reduction gives }\left[\begin{array}{llll}
1 & 0 & 0 & \frac{2}{a-6} \\
0 & 1 & 0 & \frac{-2}{a-6} \\
0 & 0 & 1 & \frac{-4-a}{a-6}
\end{array}\right] \text {, so the fraction in question cannot }
\end{aligned}
$$ be written as a partial fraction when $a=6$.

b. This does not contradict proposition 2.5.14 because that proposition requires that p be factored as

$$
p(x)=\left(x-a_{1}\right)^{n_{1}} \cdots\left(x-a_{k}\right)^{n_{k}} .
$$

with the a_{i} distinct. If you substitute 6 for a in $x^{2}+a x+5$ you get $x^{2}+6 x+5=(x+1)(x+5)$, so factoring p / q as

$$
\frac{p(x)}{q(x)}=\frac{x-1}{(x+1)\left(x^{2}+a x+5\right)}=\frac{A_{0}}{x+1}+\frac{B_{1} x+B_{0}}{x^{2}+a x+5}=\frac{A_{0}}{x+1}+\frac{B_{1} x+B_{0}}{(x+1)(x+5)}
$$

does not meet that requirement; both terms contain $(x+1)$ in the denominator.

Note that you could avoid this by using a different factorization:

$$
\frac{p(x)}{q(x)}=\frac{x-1}{(x+1)\left(x^{2}+6 x+5\right)}=\frac{x-1}{(x+1)^{2}(x+5)}=\frac{A_{1} x+A_{0}}{(x+1)^{2}}+\frac{B_{0}}{x+5}
$$

2.5.14 a. We have

$$
g \circ f(x)=x+(A+\alpha) x^{2}+(2 A \alpha+B+\beta) x^{3}+O\left(x^{4}\right)
$$

where $O\left(x^{4}\right)$ represents terms of degree 4 or higher, which we will ignore. If $A+\alpha=0=2 A \alpha+B+\beta$, then $g(f(x))-x$ will have x^{4} (or a higher power of x) as its lowest order term. These two equations are simple to solve for α and β : $\alpha=-A$, and $\beta=2 A^{2}-B$. Thus the g with the specified properties is $g(x)=x-A x^{2}+\left(2 A^{2}-B\right) x^{3}$.
b. Consider the composition

$$
\begin{aligned}
g \circ f(x) & =\left(x+a_{2} x^{2}+\ldots+a+k x^{k}\right)+b_{2}\left(x+a_{2} x^{2}+\ldots+a+k x^{k}\right)^{2}+\ldots+b_{k}\left(x+a_{2} x^{2}+\ldots+a+k x^{k}\right)^{k} \\
& =x+c_{2} x^{2}+\ldots+c_{k} x^{k}+\ldots,
\end{aligned}
$$

and notice that the coefficients c_{2}, \ldots, c_{k} depend in a complicated way on the a 's, but are of degree 1 as functions of the b 's, say

$$
c_{j}=c_{j, 1}(\mathbf{a})+c_{j, 2}(\mathbf{a}) b_{2}+\ldots c_{j, k}(\mathbf{a}) b_{k} .
$$

The $c_{i, j}, 2 \leq i, j \leq k$ form a square matrix C, and if it is invertible, then it will be possible to choose the b 's so that $c_{j}=0, j=2, \ldots, k$, which is the point of the exercise. It is enough to prove that its kernel is 0 .

Suppose $C \mathbf{b}=0$, and that j is the smallest index such that $b_{j} \neq 0$. Then the term

$$
b_{j}\left(x+a_{2} x^{2}+\cdots+a_{k} x^{k}\right)^{j}
$$

will contribute a term $b_{j} x^{j}$, which cannot be canceled by any other term, since all others are of degree $>j$. This contradicts the statement $C \mathbf{b}=0$, so the kernel of C is 0 .
2.5.15 Note first the following results: if $T_{1}, T_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ are linear transformations, then

1. the image of T_{1} contains the image of $T_{1} \circ T_{2}$, and
2. the kernel of $T_{1} \circ T_{2}$ contains the kernel of T_{2}.

The first is true because for any $\overrightarrow{\mathbf{v}} \in \operatorname{img} T_{1} \circ T_{2}$, there exists a vector $\overrightarrow{\mathbf{w}}$ such that $\left(T_{1} \circ T_{2}\right) \overrightarrow{\mathbf{w}}=\overrightarrow{\mathbf{v}}$ (by the definition of image). Since $T_{1}\left(T_{2}(\overrightarrow{\mathbf{w}})\right)=\overrightarrow{\mathbf{v}}$, the vector $\overrightarrow{\mathrm{v}}$ is also in the image of T_{1}.

The second is true because for any $\overrightarrow{\mathbf{v}} \in \operatorname{ker} T_{2}$, we have $T_{2}(\overrightarrow{\mathbf{v}})=\overrightarrow{\mathbf{0}}$. Since $T_{1}(\overrightarrow{\mathbf{0}})=\overrightarrow{\mathbf{0}}$, we see that

$$
\left(T_{1} \circ T_{2}\right)(\overrightarrow{\mathbf{v}})=T_{1}\left(T_{2}(\overrightarrow{\mathbf{v}})\right)=T_{1}(\overrightarrow{\mathbf{0}})=\overrightarrow{\mathbf{0}},
$$

so $\overrightarrow{\mathbf{v}}$ is also in the kernel of $T_{1} \circ T_{2}$.
If $A B$ is invertible, then the image of A contains the image of $A B$ by statement 1 . So A has rank n, hence nullity 0 by the dimension formula, so A is invertible. Since $B=A^{-1}(A B)$, we have $B^{-1}=(A B)^{-1} A$.

For B, one could argue that $\operatorname{ker} B \subset \operatorname{ker} A B=\{\mathbf{0}\}$, so B has nullity 0 , and thus rank n, so B is invertible.

2.5.16

*2.5.17 a. Since $p(0)=a+0 b+0^{2} c=1$, we have $a=1$. Since $p(1)=a+b+c=4$, we have $b+c=3$. Since $p(3)=a+3 b+9 c=-2$, we have $3 b+9 c=-3$. It follows that $c=-2$ and $b=5$.
b. Let $M_{\mathbf{x}}$ be the linear transformation from the space of P_{n} of polynomials of degree at most n to \mathbb{R}^{n+1} given by

$$
p \mapsto\left[\begin{array}{c}
p\left(x_{0}\right) \\
\vdots \\
p\left(x_{n}\right)
\end{array}\right], \quad \text { where } \mathbf{x}=\left[\begin{array}{c}
x_{0} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Assume that the polynomial q is in the kernel of $M_{\mathbf{x}}$. Then q vanishes at $n+1$ distinct points, so that either q is the zero polynomial or it has degree at least $n+1$. Since q cannot have degree greater than n, it must be the zero polynomial. So $\operatorname{ker}\left(M_{\mathbf{x}}\right)=\{0\}$, hence $M_{\mathbf{x}}$ is injective, so by corollary 2.5.10 it is surjective. It follows that a solution of $M_{\mathbf{x}}(p)=\left[\begin{array}{c}a_{0} \\ \vdots \\ a_{n}\end{array}\right]$ exists and is unique.
c. Take the linear transformation $M_{\mathbf{x}}^{\prime}$ from P_{k} to $R^{2 n+2}$ defined by

$$
p \mapsto\left[\begin{array}{c}
p\left(x_{0}\right) \\
\vdots \\
p\left(x_{n}\right) \\
p^{\prime}\left(x_{0}\right) \\
\vdots \\
p^{\prime}\left(x_{n}\right)
\end{array}\right] . \text { If ker }\left(M_{\mathbf{x}}^{\prime}\right)=0 \text {, then a solution of } M_{\mathbf{x}}^{\prime}(p)=\left[\begin{array}{c}
a_{0} \\
\vdots \\
a_{n} \\
b_{0} \\
\vdots \\
b_{n}
\end{array}\right]
$$

exists and so a value for k is $2 n+2$ (as shown above). In fact this is the lowest value for k that always has a solution.

2.5.18

2.5.19 a.

$$
\begin{array}{llll}
5.19 & \text { a. } & H_{2}=\left[\begin{array}{cc}
1 & 1 \\
1 / 2 & 1 / 4
\end{array}\right], & H_{3}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 / 2 & 1 / 4 & 1 / 8 \\
1 / 3 & 1 / 9 & 1 / 27
\end{array}\right] . \\
\text { b. } H_{n}=\left[\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 / 2 & 1 / 4 & 1 / 8 & \ldots & 1 / 2^{n} \\
1 / 3 & 1 / 9 & 1 / 27 & \ldots & 1 / 3^{n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 / n & 1 / n^{2} & 1 / n^{3} & \ldots & 1 / n^{n}
\end{array}\right] .
\end{array}
$$

c. If H_{n} is not invertible, then there exist numbers a_{1}, \ldots, a_{n} not all zero such that

$$
f_{\overrightarrow{\mathbf{a}}}(1)=\cdots=f_{\overrightarrow{\mathbf{a}}}(n)=0
$$

But we can write

$$
f_{\overrightarrow{\mathbf{a}}}(x)=\frac{a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}}{x^{n}}
$$

and the only way this function can vanish at the integers $1, \ldots, n$ is if the numerator vanishes at all these points. But it is a polynomial of degree $n-1$, and cannot vanish at n different points without vanishing identically.
2.5.20 a. The matrices are

$$
H_{2}=\left[\begin{array}{cc}
1 & 1 / 2 \\
1 / 2 & 1 / 3
\end{array}\right], \quad H_{3}=\left[\begin{array}{ccc}
1 & 1 / 2 & 1 / 3 \\
1 / 2 & 1 / 3 & 1 / 4 \\
1 / 3 & 1 / 4 & 1 / 5
\end{array}\right]
$$

b. More generally, the matrix is

$$
H_{n}=\left[\begin{array}{ccccc}
1 & 1 / 2 & 1 / 3 & \ldots & 1 / n \\
1 / 2 & 1 / 3 & 1 / 4 & \ldots & 1 /(n+1) \\
1 / 3 & 1 / 4 & 1 / 5 & \ldots & 1 /(n+2) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 / n & 1 /(n+1) & 1 /(n+2) & \ldots & 1 /(2 n-1)
\end{array}\right]
$$

c. The question is whether H_{n} is onto, which will happen if and only if it is one to one, i.e., if and only if its kernel is $\{0\}$. Thus the question is whether

$$
f_{\overrightarrow{\mathbf{a}}}(1)=f_{\overrightarrow{\mathbf{a}}}(2)=\cdots=f_{\overrightarrow{\mathbf{a}}}(n)=0
$$

implies that $a_{1}=a_{2}=\cdots=a_{n}=0$. This is indeed true: by putting all the terms of $f_{\overrightarrow{\mathrm{a}}}$ on a common denominator, we can write

$$
f_{\overrightarrow{\mathbf{a}}}(x)=\frac{p_{\overrightarrow{\mathbf{a}}}(x)}{x(x-1) \cdots(x+n-1)}
$$

where $p_{\overrightarrow{\mathbf{a}}}$ is a polynomial of degree at most $n-1$; requiring it to vanish at the n points $1,2, \ldots, n$ is saying that it is the zero polynomial, or equivalently, that $f_{\overrightarrow{\mathrm{a}}}$ is the zero function. But if any a_{i} is nonzero, then

$$
\lim _{x \rightarrow-i+1} f_{\overrightarrow{\mathbf{a}}}(x)=\infty
$$

so $f_{\vec{a}}$ cannot be the zero function.
2.5.21 a. If $P_{[\mathbf{v}]}$ is one to one, then $P_{[\mathbf{v}]}$ has kernel $\{\mathbf{0}\}$. It then follows that $\sum\left(a_{i} \overrightarrow{\mathbf{v}}_{i}\right)=\mathbf{0}$ has as its only solution $a_{i}=0, \forall i$, so $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{n}$ are linearly independent.

Conversely, if the vectors $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{n}$ are linearly independent, then the equation $\sum\left(a_{i} \overrightarrow{\mathbf{v}}_{i}\right)=\mathbf{0}$ has as its only solution $a_{i}=0, \forall i$. This means that $P_{[\mathbf{v}]}$ has kernel $\{\mathbf{0}\}$ and so is one to one.
b. If $P_{[\mathbf{v}]}$ is onto, then $\forall \overrightarrow{\mathbf{w}} \in \mathbb{R}^{m}, \exists \overrightarrow{\mathbf{a}} \in \mathbb{R}^{n}$ such that

$$
P_{[\mathbf{v}]}(\overrightarrow{\mathbf{a}})=\sum\left(a_{i} \overrightarrow{\mathbf{v}}_{i}\right)=\overrightarrow{\mathbf{w}}
$$

so the vectors $\overrightarrow{\mathbf{v}}_{1}, \ldots \overrightarrow{\mathbf{v}}_{n}$ span \mathbb{R}^{m}.
Conversely, if $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{n}$ span \mathbb{R}^{m} then

$$
\forall \overrightarrow{\mathbf{w}} \in \mathbb{R}^{m}, \exists a_{1}, \ldots a_{n} \quad \text { such that } \sum\left(a_{i} \overrightarrow{\mathbf{v}}_{i}\right)=\overrightarrow{\mathbf{w}},
$$

so $\forall \overrightarrow{\mathbf{w}} \in \mathbb{R}^{m}, \exists \overrightarrow{\mathbf{a}} \in \mathbb{R}^{n}$ such that $P_{[\mathbf{v}]}(\overrightarrow{\mathbf{a}})=\overrightarrow{\mathbf{w}}$. Therefore, $P_{[\mathbf{v}]}$ is onto.
c. The vectors $\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{n}$ form a basis of \mathbb{R}^{m} if and only if they are linearly independent and they span \mathbb{R}^{m}. By parts a and b , this is equivalent to $P_{[\mathbf{v}]}$ being one to one (part a) and onto (part b).
*2.5.22 a. First, we will show that if there exists $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T_{1}=S \circ T_{2}$ then ker $T_{2} \subset \operatorname{ker} T_{1}$:

Indeed, if $T_{2}(\overrightarrow{\mathbf{v}})=0$, then $\left(S \circ T_{2}\right)(\overrightarrow{\mathbf{v}})=\left(T_{1}\right)(\overrightarrow{\mathbf{v}})=0$.
Now we will show that if ker $T_{2} \subset$ ker T_{1} then there exists $S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T_{1}=S \circ T_{2}$:

For any $\mathbf{v} \in \operatorname{img} T_{2}$, choose $\tilde{\mathbf{v}} \in \mathbb{R}^{n}$ such that $T_{2}(\tilde{\mathbf{v}})=\mathbf{v}$, and set $S(\mathbf{v})=T_{1}(\tilde{\mathbf{v}})$. We need to show that this does not depend on the choice of $\tilde{\mathbf{v}}$. If $\tilde{\mathbf{v}}_{1}$ also satisfies $T_{2}\left(\tilde{\mathbf{v}}_{1}\right)=\mathbf{v}$, then $\tilde{\mathbf{v}}-\tilde{\mathbf{v}}_{1} \in \operatorname{ker} T_{2} \subset \operatorname{ker} T_{1}$, so $T_{1}(\tilde{\mathbf{v}})=T_{1}\left(\tilde{\mathbf{v}}_{1}\right)$, showing that S is well defined on $\operatorname{img} T_{2}$. Now extend it to \mathbb{R}^{n} in any way, for instance by choosing a basis for $\operatorname{img} T_{2}$, extending it to a basis of \mathbb{R}^{n}, and setting it equal to 0 on all the new basis vectors.
b. If $\exists S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T_{1}=T_{2} \circ S$ then $\operatorname{img} T_{1} \subset \operatorname{img} T_{2}$:

For each $\overrightarrow{\mathbf{w}} \in \operatorname{img} T_{1}$ there is a vector $\overrightarrow{\mathbf{v}}$ such that $T_{1} \overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{w}}$ (by definition of image). If $T_{1}=T_{2} \circ S, T_{2}(S(\overrightarrow{\mathbf{v}}))=\overrightarrow{\mathbf{w}}$, so $\overrightarrow{\mathbf{w}} \in \operatorname{img} T_{2}$.

Conversely, we need to show that if img $T_{1} \subset \operatorname{img} T_{2}$ then $\exists S: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ such that $T_{1}=T_{2} \circ S$.

Choose, for each i, a vector $\overrightarrow{\mathbf{v}}_{i}$ such that

$$
T_{2} \overrightarrow{\mathbf{v}}_{i}=T_{1}\left(\overrightarrow{\mathbf{e}}_{i}\right)
$$

This is possible, since $\operatorname{img} T_{2} \supset \operatorname{img} T_{1}$.
Set $S=\left[\overrightarrow{\mathbf{v}}_{1}, \ldots, \overrightarrow{\mathbf{v}}_{n}\right]$. Then $T_{1}=T_{2} \circ S$, since

$$
\left(T_{2} \circ S\right)\left(\overrightarrow{\mathbf{e}}_{i}\right)=T_{2}\left(\overrightarrow{\mathbf{v}}_{i}\right)=T_{1}\left(\overrightarrow{\mathbf{e}}_{i}\right)
$$

2.6.1 a. It corresponds to the basis $\mathbf{v}_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], \underline{\mathbf{v}}_{2}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, $\underline{\mathbf{v}}_{3}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], \underline{\mathbf{v}}_{4}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. We have $\left[\begin{array}{ll}2 & 1 \\ 5 & 4\end{array}\right]=2 \underline{\mathbf{v}}_{1}+\underline{\mathbf{v}}_{2}+5 \underline{\mathbf{v}}_{3}+4 \underline{\mathbf{v}}_{4}$.
b. It corresponds to the basis $\underline{\mathbf{v}}_{1}=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right], \quad \underline{\mathbf{v}}_{2}=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$, $\underline{\mathbf{v}}_{3}=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right], \underline{\mathbf{v}}_{4}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$. We have $\left[\begin{array}{ll}2 & 1 \\ 5 & 4\end{array}\right]=2 \underline{\mathbf{v}}_{1}+5 \underline{\mathbf{v}}_{2}+\underline{\mathbf{v}}_{3}+4 \underline{\mathbf{v}}_{4}$.
2.6.2 There is almost nothing to this: everything is true about functions $f \in \mathcal{C}(0,1)$ because it is true of $f(x)$ for each $x \in(0,1)$. Remember that $0 \in \mathcal{C}(0,1)$ stands for the zero function; to distinguish it from the number

0 we will denote it by $\tilde{0}$.

$$
\begin{aligned}
((f+g)+h)(x) & =(f+g)(x)+h(x)=(f(x)+g(x))+h(x) \\
& =f(x)+(g(x)+h(x))=f(x)+(g+h)(x)=(f+(g+h))(x) \\
(f+g)(x) & =f(x)+g(x)=g(x)+f(x)=(g+f)(x) \\
(f+\tilde{0})(x) & =f(x)+0=f(x) \\
(f+(-f))(x) & =f(x)-f(x)=0=\tilde{0}(x) \\
((a b) f)(x) & =(a b) f(x)=a(b(f(x)))=(a(b(f)))(x) \\
(a(f+g))(x) & =(a f+a g))(x)=a f(x)+a g(x)=((a f)+(a g))(x) \\
((a+b) f)(x) & =(a+b)(f(x))=a f(x)+b f(x)=(a f+b g)(x) \\
(1 f)(x) & =1(f(x))=f(x)
\end{aligned}
$$

2.6 .3

$$
\Phi_{\{\underline{\mathbf{v}}\}}\left(\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]\right)=a\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+b\left[\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right]+c\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+d\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
a+b & c-d \\
c+d & a-b
\end{array}\right]
$$

2.6.4 Define the linear transformation $T: V \times W \rightarrow \mathbb{R}^{n}$ by $T(\overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}) \mapsto$ $\overrightarrow{\mathbf{v}}-\overrightarrow{\mathbf{w}}$. The kernel of T is $V \cap W$. So by the dimension formula,

$$
\operatorname{dim} \operatorname{ker} T+\operatorname{dimimg} T=\operatorname{dim}(V \times W)=\operatorname{dim} V+\operatorname{dim} W
$$

Since the image of T is a subspace of \mathbb{R}^{n} and thus has dimension at most n,

$$
\operatorname{dim} \operatorname{ker} T=\operatorname{dim} V+\operatorname{dim} W-\operatorname{dim} \operatorname{img} T \geq \operatorname{dim} V+\operatorname{dim} W-n
$$

2.6.5 a. The i th column of $\left[R_{A}\right]$ is $\left[R_{A}\right] \overrightarrow{\mathbf{e}}_{i}$:

$$
\begin{aligned}
& {\left[R_{A}\right] \overrightarrow{\mathbf{e}}_{1}=\left[\begin{array}{l}
a \\
b \\
0 \\
0
\end{array}\right], \quad \text { which corresponds to }\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .} \\
& {\left[R_{A}\right] \overrightarrow{\mathbf{e}}_{2}=\left[\begin{array}{l}
c \\
d \\
0 \\
0
\end{array}\right], \quad \text { which corresponds to }\left[\begin{array}{ll}
c & d \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .} \\
& {\left[R_{A}\right] \overrightarrow{\mathbf{e}}_{3}=\left[\begin{array}{l}
0 \\
0 \\
a \\
b
\end{array}\right], \quad \text { which corresponds to }\left[\begin{array}{ll}
0 & 0 \\
a & b
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .}
\end{aligned}
$$

$$
\left[R_{A}\right] \overrightarrow{\mathbf{e}}_{4}=\left[\begin{array}{l}
0 \\
0 \\
c \\
d
\end{array}\right], \quad \text { which corresponds to }\left[\begin{array}{ll}
0 & 0 \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Similarly, the first column of $\left[L_{A}\right]$ corresponds to $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$; the second column to $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$, the third to $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$, and the fourth to $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.
b. From part a. we have

$$
\left|R_{A}\right|=\left|L_{A}\right|=\sqrt{2 a^{2}+2 b^{2}+2 c^{2}+2 d^{2}}=\sqrt{2}|A|
$$

2.6.6 a. The matrix for the transformation $L_{A}: B \rightarrow A B$ that multiplies a 3×3 matrix on the left by $\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & a_{9}\end{array}\right]$ is

$$
L_{A}=\left[\begin{array}{ccccccccc}
a_{1} & 0 & 0 & a_{2} & 0 & 0 & a_{3} & 0 & 0 \\
0 & a_{1} & 0 & 0 & a_{2} & 0 & 0 & a_{3} & 0 \\
0 & 0 & a_{1} & 0 & 0 & a_{2} & 0 & 0 & a_{3} \\
a_{4} & 0 & 0 & a_{5} & 0 & 0 & a_{6} & 0 & 0 \\
0 & a_{4} & 0 & 0 & a_{5} & 0 & 0 & a_{6} & 0 \\
0 & 0 & a_{4} & 0 & 0 & a_{5} & 0 & 0 & a_{6} \\
a_{7} & 0 & 0 & a_{8} & 0 & 0 & a_{9} & 0 & 0 \\
0 & a_{7} & 0 & 0 & a_{8} & 0 & 0 & a_{9} & 0 \\
0 & 0 & a_{7} & 0 & 0 & a_{8} & 0 & 0 & a_{9}
\end{array}\right]
$$

The matrix for the transformation $R_{A}: B \mapsto A B$ is

$$
\left[\begin{array}{ccccccccc}
a_{1} & a_{4} & a_{7} & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{2} & a_{5} & a_{8} & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{3} & a_{6} & a_{9} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a_{1} & a_{4} & a_{7} & 0 & 0 & 0 \\
0 & 0 & 0 & a_{2} & a_{5} & a_{8} & 0 & 0 & 0 \\
0 & 0 & 0 & a_{3} & a_{6} & a_{9} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & a_{1} & a_{4} & a_{7} \\
0 & 0 & 0 & 0 & 0 & 0 & a_{2} & a_{5} & a_{8} \\
0 & 0 & 0 & 0 & 0 & 0 & a_{3} & a_{6} & a_{9}
\end{array}\right] .
$$

b. The matrix for the transformation L_{A} that multiples an $n \times n$ matrix on the left is an $n^{2} \times n^{2}$ matrix constructed as follows. The main diagonal consists of the diagonal entries of A, each appearing n times: first $a_{1,1}$, then $a_{2,2}$, etc. On either side of the main diagonal are $n-1$ smaller diagonals, whose entries are all 0 . The next diagonal below the main diagonal contains the entries on the diagonal of A that is next to, and below, the main diagonal. Each entry appears n times. The next diagonal above the main diagonal contains the entries on the diagonal of A next to and above the main diagonal. Then we again have $n-1$ diagonals whose entries are all 0 .

We continue until every entry of A has appeared n times in a row, always on a diagonal.

The matrix R_{A} is easier to describe. On the diagonal put n copies of A^{\top}, positioned so that the diagonal entries of each A^{\top} are on the main diagonal of R_{A}. All other entries are 0 .
2.6.7 a. This is not a subspace, since 0 is not in it.
b. This is a subspace: If f, g satisfy the differential equation, then so does $a f+b g$:

$$
(a f+b g)(x)=a f(x)+b g(x)=a x f^{\prime}(x)+b x g^{\prime}(x)=x(a f+b g)^{\prime}(x)
$$

c. This is not a vector space: the function $f(x)=x^{2} / 4$ is in it, but $x^{2}=4\left(x^{2} / 4\right)$ is not, so it isn't closed under multiplication by scalars.
2.6.8 a. Immediate from $(f+g)^{\prime}=f^{\prime}+g^{\prime}$.
b. We must compute the polynomials $T(1)=2, T(x)=x, T\left(x^{2}\right)=$ $2 x^{2}+2-2 x^{2}+2 x^{2}=2+2 x^{2}$. Now the coefficients of these polynomials are the desired matrix.
c. If we compute, we find $T\left(x^{n}\right)=\left(n^{2}-2 n+2\right) x^{n}+n(n-1) x^{n-2}$, which leads to

$$
T=\left[\begin{array}{ccccccc}
2 & 0 & 2 & 0 & 0 & 0 & \cdots \\
0 & 1 & 0 & 6 & 0 & 0 & \cdots \\
0 & 0 & 3 & 0 & 12 & 0 & \cdots \\
0 & 0 & 0 & 5 & 0 & 20 & \ldots \\
0 & 0 & 0 & 0 & 10 & 0 & \cdots \\
0 & 0 & 0 & 0 & 0 & 17 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots &
\end{array}\right]
$$

2.6.9 a. Take any basis $\overrightarrow{\mathbf{w}}_{1}, \ldots, \overrightarrow{\mathbf{w}}_{n}$ of V, and discard from the ordered set of vectors

$$
\overrightarrow{\mathbf{v}}_{1}, \ldots \overrightarrow{\mathbf{v}}_{k}, \overrightarrow{\mathbf{w}}_{1}, \ldots, \overrightarrow{\mathbf{w}}_{n}
$$

any vectors $\overrightarrow{\mathbf{w}}_{i}$ that are linear combinations of earlier vectors. At all stages, the set of vectors obtained will span V, since they do when you start and discarding a vector that is a linear combination of others doesn't change the span. When you are through, the vectors obtained will be linearly independent, so they satisfy condition 3 of definition 2.4.12.
b. The approach is identical: eliminate from $\overrightarrow{\mathbf{v}}_{1}, \ldots \overrightarrow{\mathbf{v}}_{k}$ any vectors that depend linearly on earlier vectors; this never changes the span, and you end up with linearly independent vectors that span V.
2.6.10 Clearly,

$$
A\left[\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right]=\left[A \mathbf{x}_{1}, A \mathbf{x}_{2}, \ldots, A \mathbf{x}_{n}\right]
$$

This can be rewritten

$$
L_{A}\left[\begin{array}{c}
\mathbf{x}_{1} \\
\mathbf{x}_{2} \\
\vdots \\
\mathbf{x}_{n}
\end{array}\right]=\left[\begin{array}{c}
A \mathbf{x}_{1} \\
A \mathbf{x}_{2} \\
\vdots \\
A \mathbf{x}_{n}
\end{array}\right]
$$

where L_{A} is a linear transformation $L_{A}: \mathbb{R}^{n^{2}} \rightarrow \mathbb{R}^{n^{2}}$. In this representation, it is clear that

$$
L_{A}=\left[\begin{array}{cccc}
A & 0 & \ldots & 0 \\
0 & A & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & A
\end{array}\right]
$$

so $\left|L_{A}\right|^{2}=n|A|^{2}$.
The result is the same for R_{A}, but this time you have to take the entries of the matrix X by rows, i.e., write

$$
\left[\begin{array}{c}
\mathbf{x}_{1}^{\top} \\
\mathbf{x}_{2}^{\top} \\
\vdots \\
\mathbf{x}_{n}^{\top}
\end{array}\right] A=\left[\begin{array}{c}
\mathbf{x}_{1}^{\top} A \\
\mathbf{x}_{2}^{\top} A \\
\vdots \\
\mathbf{x}_{n}^{\top} A
\end{array}\right]=\left[\begin{array}{c}
\left(A^{\top} \mathbf{x}_{1}\right)^{\top} \\
\left(A^{\top} \mathbf{x}_{2}\right)^{\top} \\
\vdots \\
\left(A^{\top} \mathbf{x}_{n}\right)^{\top}
\end{array}\right]
$$

Thus in this basis, the matrix of R_{A} is

$$
\left[\begin{array}{cccc}
A^{\top} & 0 & \ldots & 0 \\
0 & A^{\top} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & A^{\top}
\end{array}\right]
$$

and again $\left|R_{A}\right|^{2}=n\left|A^{\top}\right|^{2}=n|A|^{2}$.
2.6.11 We have

$$
A B=\left[\begin{array}{cc}
1+a b & a \\
b & 1
\end{array}\right], \quad B A=\left[\begin{array}{cc}
1 & a \\
b & 1+a b
\end{array}\right]
$$

Thus we are asking about the rank of the matrix

$$
\left[\begin{array}{cccc}
1 & 1 & 1+a b & 1 \\
a & 0 & a & a \\
0 & b & b & b \\
1 & 1 & 1 & 1+a b
\end{array}\right]
$$

We need to row reduce this matrix, but before starting let us see what happens if $a=0$, or $b=0$, or both. If $a=0$, the matrix is $\left[\begin{array}{llll}1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & b & b & b \\ 1 & 1 & 1 & 1\end{array}\right]$, which evidently has rank 2 if $b \neq 0$, and rank 1 if $b=0$. Similarly, if $b=0$ and $a \neq 0$, the matrix has rank 2 . Now let us suppose that $a b \neq 0$. Then row reduction gives

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
1 & 1 & 1+a b & 1 \\
a & 0 & a & a \\
0 & b & b & b \\
1 & 1 & 1 & 1+a b
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & a b & 0 \\
0 & a & 1 & 1 \\
0 & 0 & a-a^{2} b & a \\
0 & 0 & 1 & -1
\end{array}\right]}
\end{aligned} \rightarrow\left[\begin{array}{cccc}
1 & 1 & 1+a b & 1 \\
0 & -a & -a^{2} b & 0 \\
0 & b & b & b \\
0 & 0 & -a b & a b
\end{array}\right]
$$

