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The diagonal entries of B3 correspond to the fact that there are exactly 10
loops of length 3 going from any given vertex back to itself.

1.2.20

1.2.21 a. The proof is the same as with unoriented walks (proposition
1.2.23): first we state that if Bn is the n × n matrix whose i, jth entry is
the number of walks of length n from Vi to Vj , then B1 = A1 = A for the
same reasons as in the proof of proposition 1.2.23. Here again if we assume
the proposition true for n, we have:

(Bn+1)i,j =
n∑

k=1

(Bn)i,k(B1)k,j =
n∑

k=1

(An)i,kAk,j = (An+1)i,j .

So An = Bn for all n.

Solution 1.2.21, part b: The
first column of an adjacency cor-
responds to vertex 1, the second
to vertex 2, and so on, and the
same for the rows. If the ma-
trix is upper triangle, for example,⎡

⎢⎢⎣

1 1 1 0
0 0 1 0
0 0 1 1
0 0 0 1

⎤

⎥⎥⎦, you can go from

vertex 1 to vertex 2, but not from
2 to 1; from 2 to 3, but not from
3 to 2, and so on: once you have
gone from a lower-numbered ver-
tex to a higher-numbered vertex,
there is no returning.

b. If the adjacency matrix is upper triangular, then you can only go from
a lower number vertex to a higher number vertex; if it is lower triangular,
you can only go from a higher number vertex to a lower number vertex. If
it is diagonal, you can never go from any vertex to any other.

1.2.22

1.2.23 a. Let A =
[

a 1 0
b 0 1

]
and let B =

⎡

⎣
0 0
1 0
0 1

⎤

⎦ . Then AB = I.

b. Whatever matrix one multiplies B by on the right, the top left corner
of the resultant matrix will always be 0 when we need it to be 1. So the
matrix B has no right inverse.

c. With A and B as in part a, write I⊤ = I = AB = (AB)⊤ = B⊤A⊤.
So A⊤ is a right inverse for B⊤, so B⊤ has infinitely many right inverses.

1.3.1 a. Every linear transformation T : R4 → R2 is given by a 2×4 matrix.

For example, A =
[

1 0 1 2
3 2 1 7

]
is a linear transformation T : R4 → R2.

b. Any row matrix 3 wide will do, for example, [1, −1, 2]; such a matrix
takes a vector in R3 and gives a number.

1.3.2 a. 3× 2 (3 high, 2 wide); b. 3× 3; c. 2× 4; d. 1× 4 (a row matrix
with four entries)

1.3.3 a. R4 → R3 b. R2 → R5 c. R4 → R2 d. R4 → R.

1.3.4 a.

⎡

⎣
2 0 0
0 1 0
0 0 1

⎤

⎦ b.

⎡

⎣
0 1 0
1 2 0
1 0 1

⎤

⎦
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1.3.5 Multiply the original matrix by the vector v⃗ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.25
.025
.025
.025
.025
.025
.025
.025
.025
.025
.025
.5

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, putting v⃗

on the right.

1.3.6 The only one characterized by linearity is (b).

1.3.7 It is enough to know what T gives when evaluated on the three

standard basis vectors

⎡

⎣
1
0
0

⎤

⎦,

⎡

⎣
0
1
0

⎤

⎦,

⎡

⎣
0
0
1

⎤

⎦. The matrix of T is

⎡

⎢⎣

3 −1 0
1 1 2
2 3 1
1 0 1

⎤

⎥⎦.

1.3.8 a. Five questions: what are T e⃗1, T e⃗2, T e⃗3, T e⃗4, T e⃗5, where the e⃗i

are the five standard basis vectors in R5? The matrix is

[T e⃗1, T e⃗2, T e⃗3, T e⃗4, T e⃗5].

b. Six questions: what does T give when evaluated on the six standard
basis vectors in R6?

c. No. For example, you could evaluate T on 2e⃗i, for the appropriate
e⃗i, and divide the answer by 2, to get the ith column of the matrix.

1.3.9 No, T is not linear. If it were, the matrix would be [T ] =

⎡

⎣
2 1 1
1 2 0
1 1 1

⎤

⎦,

but [T ]

⎡

⎣
2
−1

4

⎤

⎦ =

⎡

⎣
7
0
5

⎤

⎦, which contradicts the definition of the transforma-

tion.

1.3.10 Yes there is; its matrix is

⎡

⎣
3 1 −2
0 2 1
1 3 −1

⎤

⎦. Since by the definition of

linearity T (v⃗ + w⃗) = T (v⃗) + T (w⃗), we have

T

⎡

⎣
0
1
0

⎤

⎦ = T

⎡

⎣
1
1
0

⎤

⎦− T

⎡

⎣
1
0
0

⎤

⎦ =

⎡

⎣
4
2
4

⎤

⎦−

⎡

⎣
3
0
1

⎤

⎦ =

⎡

⎣
1
2
3

⎤

⎦

T

⎡

⎣
0
0
1

⎤

⎦ = T

⎡

⎣
1
1
1

⎤

⎦− T

⎡

⎣
1
1
0

⎤

⎦ =

⎡

⎣
−2

1
−1

⎤

⎦ .
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1.3.11 The rotation matrix is
[

cos θ sin θ
− sin θ cos θ

]
. This transformation takes

e⃗1 to
[

cos θ
− sin θ

]
, which is thus the first column of the matrix, by Theorem

1.3.4; it takes e⃗2 to
[

cos(90◦ − θ) = sin θ
sin(90◦ − θ) = cos θ

]
, which is the second column.

One could also write this transformation as the rotation matrix of Ex-
ample 1.3.9, applied to −θ:

[
cos(−θ) − sin(−θ)
sin(−θ) cos(−θ)

]
.

1.3.12 a. The matrices corresponding to S and T are

[S] =

⎡

⎣
0 1 0
1 0 0
0 0 1

⎤

⎦ and [T ] =

⎡

⎣
1 0 0
0 0 1
0 1 0

⎤

⎦ .

The matrix of the composition S ◦ T is given by matrix multiplication:

[S ◦ T ] = [S][T ] =

⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦ .

b. The matrices [S ◦ T ] and [T ◦ S] are inverses of each other: you can
either compute it out, or compose:

T ◦ (S ◦ S) ◦ T = T ◦ T = I and S ◦ (T ◦ T ) ◦ S = S ◦ S = I.

Since S and T are reflections, S ◦ S = T ◦ T = I.

1.3.13 The expressions a, e, f, and j are not well-defined compositions.
For the others:

b. C ◦B : Rm → Rn (domain Rm, codomain Rn) c. A ◦C : Rk → Rm

d. B ◦A ◦ C : Rk → Rk g. B ◦A : Rn → Rk

h. A ◦ C ◦B : Rm → Rm i. C ◦B ◦A : Rn → Rn

1.3.14 The transformation is given by T

(
x
y

)
=
(

x + 1
y + 1

)
. It is an affine

translation but not linear because T
(

0
0
)

=
(

1
1
)
; a linear transformation

must take the origin to the origin. To see why this requirement is necessary,
consider T (x) = T (x+0) = T (x) + T (0), so T (0) must be 0. For instance,
in this case,

T

(
1
0

)
+ T

(
0
0

)
=
(

2
1

)
+
(

1
1

)
=
(

3
2

)
, but T

((
0
0

)
+
(

1
0

))
= T

(
1
0

)
=
(

2
1

)
.
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1.3.15 We need to show that A(v⃗+w⃗) = Av⃗+Aw⃗ and that A(cv⃗) = cAv⃗.
By definition 1.2.4,

(Av⃗)i =
n∑

k=1

ai,kvk, (Aw⃗)i =
n∑

k=1

ai,kwk, and

(
A(v⃗ + w⃗)

)
i
=

n∑

k=1

ai,k(v + w)k =
n∑

k=1

ai,k(vk + wk)

=
n∑

k=1

ai,kvk +
n∑

k=1

ai,kwk = (Av⃗)i + (Aw⃗)i.

Solution 1.3.15: With the dot
product, introduced in the next
section, the solution is simpler:
Every entry in the vector Av⃗ is
the dot product of v⃗ with one of
the rows of A. The dot product is
linear with respect to both of its
arguments, so the mapping Av⃗ is
also linear with respect to v⃗.

Similarly,
(
A(cv⃗)

)
i
=

n∑

k=1

ai,k(cv)k =
n∑

k=1

ai,kcvk = c
n∑

k=1

ai,kvk = c(Av⃗)i.

1.3.16
[

cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]
=
[

cos(θ2) − sin(θ2)
sin(θ2) cos(θ2)

] [
cos(θ1) − sin(θ1)
sin(θ1) cos(θ1)

]

So:
[

cos(θ1 + θ2) − sin(θ1 + θ2)
sin(θ1 + θ2) cos(θ1 + θ2)

]

=
[

cos(θ1) cos(θ2)− sin(θ1) sin(θ2) − sin(θ1) cos(θ2)− sin(θ2) cos(θ1)
sin(θ1) cos(θ2) + sin(θ2) cos(θ1) cos(θ1) cos(θ2)− sin(θ1) sin(θ2)

]
.

Thus by identification we deduce:

cos(θ1 + θ2) = cos(θ1) cos(θ2)− sin(θ1) sin(θ2)

sin(θ1 + θ2) = sin(θ1) cos(θ2) + sin(θ2) cos(θ1).

1.3.17
[

cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]2
=
[

cos(2θ)2 + sin(2θ)2 cos(2θ) sin(2θ)− sin(2θ) cos(2θ)
sin(2θ) cos(2θ)− cos(2θ) sin(2θ) sin(2θ)2 + cos(2θ)2

]

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]2
=
[

1 0
0 1

]
= I

1.3.18

1.3.19 By commutativity of matrix addition: AB+BA
2 = BA+AB

2 so the
Jordan product is commutative. By non-commutativity of matrix multipli-
cation:

AB+BA
2 C + C AB+BA

2

2
=

ABC + BAC + CAB + CBA

4

̸= ABC + ACB + BCA + CBA

4
=

ABC+CB
2 + BC+CB

2 A

2
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so the Jordan product is not associative.

1.3.20 a. Re (tz1 + uz2) = Re (ta1 + ua2 + i(tb1 + ub2) = ta1 + ua2 =
tRe (z1) + uRe (z2) (t, u ∈ R).

b. Im (tz1 +uz2) = Im (ta1 +ua2 + i(tb1 +ub2) = tb1 +ub2 = t Im (z1)+
u Im (z2) (t, u ∈ R).

c. c(tz1 + uz2) = c(ta1 + ua2 + i(tb1 + ub2) = ta1 + ua2 − i(tb1 + ub2) =
t(a1 − ib1) + u(a2 − ib2) = tc(z1) + uc(z2) (t, u ∈ R).

d. mw(tz1+uz2) = w(tz1+uz2) = w×tz1+w×uz2 = tmw(z1)+tmw(z2)
(t, u ∈ R).

1.3.21 The number 0 is in the set, since Re (0) = 0. If a, b are in the set,
then a+b is also in the set, since Re (a+b) = Re (a)+Re (b) = 0. If a is in the
set and c is a real number, then ca is in the set, since Re (ca) = cRe (a) = 0.
So the set is a subspace of C. The subspace is a line in C with a polar angle
θ such that θ + ϕ = kπ/2, where ϕ is the polar angle of w and k is an odd
integer.

1.4.1 a. Numbers: v⃗ · w⃗, |v⃗|, |A|, and detA. (If A consists of a single
row, then Av⃗ is also a number.)

Vectors: v⃗ × w⃗ and Av⃗ (unless A consists of a single row).
So far we have defined only de-

terminants of 2× 2 and 3× 3 ma-
trices; in section 4.8 we will define
the determinant in general.

b. In the expression v⃗× w⃗, the vectors must each have three entries. In
the expression det A, the matrix A must be square.

1.4.2
a.

∣∣∣∣

[
1
2

]∣∣∣∣ =
√

12 + 22 =
√

5. b.
∣∣∣∣

[√
2√
7

]∣∣∣∣ =
√

2 + 7 = 3.

c.

∣∣∣∣∣∣

⎡

⎣
1
−1
1

⎤

⎦

∣∣∣∣∣∣
=
√

1 + 1 + 1 =
√

3. d.

∣∣∣∣∣∣

⎡

⎣
1
−2

2

⎤

⎦

∣∣∣∣∣∣
=
√

1 + 4 + 4 = 3.

1.4.3 To normalize a vector, divide it by its length. This gives:

a.
1√
17

⎡

⎣
0
1
4

⎤

⎦ b.
1√
58

[
−3

7

]
c.

1√
31

⎡

⎣

√
2
−2
−5

⎤

⎦

1.4.4 a. Let α be the required angle. Then

cosα =

[
1
2

]
·
[√

2√
7

]

∣∣∣∣

[
1
2

]∣∣∣∣

∣∣∣∣

[√
2√
7

]∣∣∣∣
=
√

2 + 2
√

7
3
√

5
≈ .9996291 . . . ,

and α ≈ arccos .9996291 · · · ≈ .027235 . . . radians ≈ 1.5606◦.
So those two vectors are remarkably close to collinear.
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b. Let β be the required angle. Then

cosβ =

⎡

⎣
1
−1

1

⎤

⎦ ·

⎡

⎣
1
−2

2

⎤

⎦

∣∣∣∣∣∣

⎡

⎣
1
−1

1

⎤

⎦

∣∣∣∣∣∣

∣∣∣∣∣∣

⎡

⎣
1
−2

2

⎤

⎦

∣∣∣∣∣∣

=
5

3
√

3
≈ .962250 . . . ,

and β = arccos .962250 · · · ≈ .27564 . . . rad ≈ 15.793◦.

1.4.5 a. cos(θ) = 1
1×
√

3

⎛

⎝

⎡

⎣
1
0
0

⎤

⎦ ·

⎡

⎣
1
1
1

⎤

⎦

⎞

⎠ = 1√
3
, so

θ = arccos
(

1√
3

)
≈ .95532.

b. cos(θ) = 0, so θ = π/2 .

1.4.6

a. det
[

3 1
0 2

]
= (3× 2)− (1× 0) = 6 b.(b) det

⎡

⎣
1 0 2
2 4 1
0 1 3

⎤

⎦ = 15

(c) det

⎡

⎣
−2 5 3
−1 3 4
−2 3 7

⎤

⎦ = −14 d. det

⎡

⎣
1 2 −6
0 1 −3
1 0 −2

⎤

⎦ = −2− 6 + 6 = −2

1.4.7 a. det = 1; the inverse is
[

0 1
−1 2

]

b. det = 0; no inverse

c. det = ad; if a, d ̸= 0, the inverse is
1
ad

[
d −b
0 a

]
.

d. det = 0; no inverse

1.4.8 a. det = −4 b. det = adf c. det = g(ad− bc)

1.4.9 a.

⎡

⎣
−6yz

3xz
5xy

⎤

⎦ b.

⎡

⎣
6
7
−4

⎤

⎦ c.

⎡

⎣
−2
−22

3

⎤

⎦

1.4.10 a. By proposition 1.4.11,

|Ak| ≤ |A||Ak−1| ≤ |A|2|Ak−2| ≤ · · · ≤ |A|k.

For A =
[

1 2
1 1

]
, we have |A3| =

√
223 ≈ 15 and |A|3 = 7

√
7 ≈ 18.55.

b. The first statement is true. Since v⃗ = −2u⃗, by theorem 1.4.5,

|u⃗ · v⃗| = |u⃗⊤v⃗| = |u⃗⊤||v⃗| = |u⃗||v⃗|.


