The diagonal entries of B^{3} correspond to the fact that there are exactly 10 loops of length 3 going from any given vertex back to itself.

1.2 .20

1.2.21 a. The proof is the same as with unoriented walks (proposition 1.2.23): first we state that if B_{n} is the $n \times n$ matrix whose i, j th entry is the number of walks of length n from V_{i} to V_{j}, then $B_{1}=A^{1}=A$ for the same reasons as in the proof of proposition 1.2.23. Here again if we assume the proposition true for n, we have:

$$
\left(B_{n+1}\right)_{i, j}=\sum_{k=1}^{n}\left(B_{n}\right)_{i, k}\left(B_{1}\right)_{k, j}=\sum_{k=1}^{n}\left(A^{n}\right)_{i, k} A_{k, j}=\left(A^{n+1}\right)_{i, j}
$$

So $A^{n}=B_{n}$ for all n .
b. If the adjacency matrix is upper triangular, then you can only go from a lower number vertex to a higher number vertex; if it is lower triangular, you can only go from a higher number vertex to a lower number vertex. If it is diagonal, you can never go from any vertex to any other.

1.2.22

1.2.23 a. Let $A=\left[\begin{array}{lll}a & 1 & 0 \\ b & 0 & 1\end{array}\right]$ and let $B=\left[\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 1\end{array}\right]$. Then $A B=I$.
b. Whatever matrix one multiplies B by on the right, the top left corner of the resultant matrix will always be 0 when we need it to be 1 . So the matrix B has no right inverse.
c. With A and B as in part a, write $I^{\top}=I=A B=(A B)^{\top}=B^{\top} A^{\top}$. So A^{\top} is a right inverse for B^{\top}, so B^{\top} has infinitely many right inverses.
1.3.1 a. Every linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$ is given by a 2×4 matrix. For example, $A=\left[\begin{array}{llll}1 & 0 & 1 & 2 \\ 3 & 2 & 1 & 7\end{array}\right]$ is a linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$.
b. Any row matrix 3 wide will do, for example, $[1,-1,2]$; such a matrix takes a vector in \mathbb{R}^{3} and gives a number.
1.3.2 a. 3×2 (3 high, 2 wide); b. 3×3; c. 2×4; d. 1×4 (a row matrix with four entries)
1.3.3 a. $\mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$
b. $\mathbb{R}^{2} \rightarrow \mathbb{R}^{5}$
c. $\mathbb{R}^{4} \rightarrow \mathbb{R}^{2}$
d. $\mathbb{R}^{4} \rightarrow \mathbb{R}$.
1.3.4 a. $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
b. $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 0 & 1\end{array}\right]$
$\mathbf{1 . 3 . 5}$ Multiply the original matrix by the vector $\overrightarrow{\mathbf{v}}=\left[\begin{array}{c}.25 \\ .025 \\ .025 \\ .025 \\ .025 \\ .025 \\ .025 \\ .025 \\ .025 \\ .025 \\ .025 \\ .5\end{array}\right]$, putting $\overrightarrow{\mathbf{v}}$ on the right.
1.3.6 The only one characterized by linearity is (b).
1.3.7 It is enough to know what T gives when evaluated on the three standard basis vectors $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$. The matrix of T is $\left[\begin{array}{rrr}3 & -1 & 0 \\ 1 & 1 & 2 \\ 2 & 3 & 1 \\ 1 & 0 & 1\end{array}\right]$.
1.3 .8 a. Five questions: what are $T \overrightarrow{\mathbf{e}}_{1}, T \overrightarrow{\mathbf{e}}_{2}, T \overrightarrow{\mathbf{e}}_{3}, T \overrightarrow{\mathbf{e}}_{4}, T \overrightarrow{\mathbf{e}}_{5}$, where the $\overrightarrow{\mathbf{e}}_{i}$ are the five standard basis vectors in \mathbb{R}^{5} ? The matrix is

$$
\left[T \overrightarrow{\mathbf{e}}_{1}, T \overrightarrow{\mathbf{e}}_{2}, T \overrightarrow{\mathbf{e}}_{3}, T \overrightarrow{\mathbf{e}}_{4}, T \overrightarrow{\mathbf{e}}_{5}\right]
$$

b. Six questions: what does T give when evaluated on the six standard basis vectors in \mathbb{R}^{6} ?
c. No. For example, you could evaluate T on $2 \overrightarrow{\mathbf{e}}_{i}$, for the appropriate $\overrightarrow{\mathbf{e}}_{i}$, and divide the answer by 2 , to get the i th column of the matrix.
1.3.9 No, T is not linear. If it were, the matrix would be $[T]=\left[\begin{array}{ccc}2 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 1 & 1\end{array}\right]$, but $[T]\left[\begin{array}{r}2 \\ -1 \\ 4\end{array}\right]=\left[\begin{array}{l}7 \\ 0 \\ 5\end{array}\right]$, which contradicts the definition of the transformation.
1.3.10 Yes there is; its matrix is $\left[\begin{array}{rrr}3 & 1 & -2 \\ 0 & 2 & 1 \\ 1 & 3 & -1\end{array}\right]$. Since by the definition of linearity $T(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=T(\overrightarrow{\mathbf{v}})+T(\overrightarrow{\mathbf{w}})$, we have

$$
\begin{gathered}
T\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=T\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]-T\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
4
\end{array}\right]-\left[\begin{array}{l}
3 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \\
T\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=T\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-T\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-2 \\
1 \\
-1
\end{array}\right] .
\end{gathered}
$$

1.3.11 The rotation matrix is $\left[\begin{array}{rr}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$. This transformation takes $\overrightarrow{\mathbf{e}}_{1}$ to $\left[\begin{array}{r}\cos \theta \\ -\sin \theta\end{array}\right]$, which is thus the first column of the matrix, by Theorem 1.3.4; it takes $\overrightarrow{\mathbf{e}}_{2}$ to $\left[\begin{array}{l}\cos \left(90^{\circ}-\theta\right)=\sin \theta \\ \sin \left(90^{\circ}-\theta\right)=\cos \theta\end{array}\right]$, which is the second column.

One could also write this transformation as the rotation matrix of Example 1.3.9, applied to $-\theta$:

$$
\left[\begin{array}{rr}
\cos (-\theta) & -\sin (-\theta) \\
\sin (-\theta) & \cos (-\theta)
\end{array}\right] .
$$

1.3.12 a. The matrices corresponding to S and T are

$$
[S]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { and } \quad[T]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]
$$

The matrix of the composition $S \circ T$ is given by matrix multiplication:

$$
[S \circ T]=[S][T]=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

b. The matrices $[S \circ T]$ and $[T \circ S]$ are inverses of each other: you can either compute it out, or compose:

$$
T \circ(S \circ S) \circ T=T \circ T=I \quad \text { and } \quad S \circ(T \circ T) \circ S=S \circ S=I
$$

Since S and T are reflections, $S \circ S=T \circ T=I$.
1.3.13 The expressions $\mathrm{a}, \mathrm{e}, \mathrm{f}$, and j are not well-defined compositions. For the others:
b. $C \circ B: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ (domain \mathbb{R}^{m}, codomain \mathbb{R}^{n}) c. $A \circ C: \mathbb{R}^{k} \rightarrow \mathbb{R}^{m}$
d. $B \circ A \circ C: \mathbb{R}^{k} \rightarrow \mathbb{R}^{k} \quad$ g. $B \circ A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$
h. $A \circ C \circ B: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \quad$ i. $C \circ B \circ A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$
1.3.14 The transformation is given by $T\binom{x}{y}=\binom{x+1}{y+1}$. It is an affine translation but not linear because $T\binom{0}{0}=\binom{1}{1}$; a linear transformation must take the origin to the origin. To see why this requirement is necessary, consider $T(\mathbf{x})=T(\mathbf{x}+\mathbf{0})=T(\mathbf{x})+T(\mathbf{0})$, so $T(\mathbf{0})$ must be 0 . For instance, in this case,

$$
T\binom{1}{0}+T\binom{0}{0}=\binom{2}{1}+\binom{1}{1}=\binom{3}{2}, \quad \text { but } \quad T\left(\binom{0}{0}+\binom{1}{0}\right)=T\binom{1}{0}=\binom{2}{1}
$$

Solution 1.3.15: With the dot product, introduced in the next section, the solution is simpler: Every entry in the vector $A \overrightarrow{\mathbf{v}}$ is the dot product of $\overrightarrow{\mathbf{v}}$ with one of the rows of A. The dot product is linear with respect to both of its arguments, so the mapping $A \overrightarrow{\mathbf{v}}$ is also linear with respect to $\overrightarrow{\mathbf{v}}$.
1.3.15 We need to show that $A(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}})=A \overrightarrow{\mathbf{v}}+A \overrightarrow{\mathbf{w}}$ and that $A(c \overrightarrow{\mathbf{v}})=c A \overrightarrow{\mathbf{v}}$. By definition 1.2.4,

$$
\begin{aligned}
(A \overrightarrow{\mathbf{v}})_{i} & =\sum_{k=1}^{n} a_{i, k} v_{k}, \quad(A \overrightarrow{\mathbf{w}})_{i}=\sum_{k=1}^{n} a_{i, k} w_{k}, \text { and } \\
(A(\overrightarrow{\mathbf{v}}+\overrightarrow{\mathbf{w}}))_{i} & =\sum_{k=1}^{n} a_{i, k}(v+w)_{k}=\sum_{k=1}^{n} a_{i, k}\left(v_{k}+w_{k}\right) \\
& =\sum_{k=1}^{n} a_{i, k} v_{k}+\sum_{k=1}^{n} a_{i, k} w_{k}=(A \overrightarrow{\mathbf{v}})_{i}+(A \overrightarrow{\mathbf{w}})_{i} .
\end{aligned}
$$

Similarly, $(A(c \overrightarrow{\mathbf{v}}))_{i}=\sum_{k=1}^{n} a_{i, k}(c v)_{k}=\sum_{k=1}^{n} a_{i, k} c v_{k}=c \sum_{k=1}^{n} a_{i, k} v_{k}=c(A \overrightarrow{\mathbf{v}})_{i}$.
1.3.16

$$
\left[\begin{array}{rr}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]=\left[\begin{array}{rr}
\cos \left(\theta_{2}\right) & -\sin \left(\theta_{2}\right) \\
\sin \left(\theta_{2}\right) & \cos \left(\theta_{2}\right)
\end{array}\right]\left[\begin{array}{rr}
\cos \left(\theta_{1}\right) & -\sin \left(\theta_{1}\right) \\
\sin \left(\theta_{1}\right) & \cos \left(\theta_{1}\right)
\end{array}\right]
$$

So:

$$
\begin{aligned}
& {\left[\begin{array}{rr}
\cos \left(\theta_{1}+\theta_{2}\right) & -\sin \left(\theta_{1}+\theta_{2}\right) \\
\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right)
\end{array}\right]} \\
& \quad=\left[\begin{array}{rr}
\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right) & -\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{2}\right) \cos \left(\theta_{1}\right) \\
\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+\sin \left(\theta_{2}\right) \cos \left(\theta_{1}\right) & \cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)
\end{array}\right] .
\end{aligned}
$$

Thus by identification we deduce:

$$
\begin{aligned}
& \cos \left(\theta_{1}+\theta_{2}\right)=\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)-\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right) \\
& \sin \left(\theta_{1}+\theta_{2}\right)=\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+\sin \left(\theta_{2}\right) \cos \left(\theta_{1}\right)
\end{aligned}
$$

1.3.17

$$
\begin{gathered}
{\left[\begin{array}{rr}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right]^{2}=\left[\begin{array}{cc}
\cos (2 \theta)^{2}+\sin (2 \theta)^{2} & \cos (2 \theta) \sin (2 \theta)-\sin (2 \theta) \cos (2 \theta) \\
\sin (2 \theta) \cos (2 \theta)-\cos (2 \theta) \sin (2 \theta) & \sin (2 \theta)^{2}+\cos (2 \theta)^{2}
\end{array}\right]} \\
{\left[\begin{array}{rr}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right]^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I}
\end{gathered}
$$

1.3.18

1.3.19 By commutativity of matrix addition: $\frac{A B+B A}{2}=\frac{B A+A B}{2}$ so the Jordan product is commutative. By non-commutativity of matrix multiplication:

$$
\begin{aligned}
\frac{\frac{A B+B A}{2} C+C \frac{A B+B A}{2}}{2} & =\frac{A B C+B A C+C A B+C B A}{4} \\
& \neq \frac{A B C+A C B+B C A+C B A}{4}=\frac{A \frac{B C+C B}{2}+\frac{B C+C B}{2} A}{2}
\end{aligned}
$$

so the Jordan product is not associative.
1.3.20 a. $\operatorname{Re}\left(t z_{1}+u z_{2}\right)=\operatorname{Re}\left(t a_{1}+u a_{2}+i\left(t b_{1}+u b_{2}\right)=t a_{1}+u a_{2}=\right.$ $t \operatorname{Re}\left(z_{1}\right)+u \operatorname{Re}\left(z_{2}\right)(t, u \in \mathbb{R})$.
b. $\operatorname{Im}\left(t z_{1}+u z_{2}\right)=\operatorname{Im}\left(t a_{1}+u a_{2}+i\left(t b_{1}+u b_{2}\right)=t b_{1}+u b_{2}=t \operatorname{Im}\left(z_{1}\right)+\right.$ $u \operatorname{Im}\left(z_{2}\right)(t, u \in \mathbb{R})$.
c. $c\left(t z_{1}+u z_{2}\right)=c\left(t a_{1}+u a_{2}+i\left(t b_{1}+u b_{2}\right)=t a_{1}+u a_{2}-i\left(t b_{1}+u b_{2}\right)=\right.$ $t\left(a_{1}-i b_{1}\right)+u\left(a_{2}-i b_{2}\right)=t c\left(z_{1}\right)+u c\left(z_{2}\right)(t, u \in \mathbb{R})$.
d. $m_{w}\left(t z_{1}+u z_{2}\right)=w\left(t z_{1}+u z_{2}\right)=w \times t z_{1}+w \times u z_{2}=t m_{w}\left(z_{1}\right)+t m_{w}\left(z_{2}\right)$ $(t, u \in \mathbb{R})$.
1.3.21 The number 0 is in the set, since $\operatorname{Re}(0)=0$. If a, b are in the set, then $a+b$ is also in the set, since $\operatorname{Re}(a+b)=\operatorname{Re}(a)+\operatorname{Re}(b)=0$. If a is in the set and c is a real number, then $c a$ is in the set, since $\operatorname{Re}(c a)=c \operatorname{Re}(a)=0$. So the set is a subspace of \mathbb{C}. The subspace is a line in \mathbb{C} with a polar angle θ such that $\theta+\varphi=k \pi / 2$, where φ is the polar angle of w and k is an odd integer.
1.4.1 a. Numbers: $\overrightarrow{\mathbf{v}} \cdot \overrightarrow{\mathbf{w}},|\overrightarrow{\mathbf{v}}|,|A|$, and $\operatorname{det} A$. (If A consists of a single row, then $A \overrightarrow{\mathbf{v}}$ is also a number.)

Vectors: $\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}$ and $A \overrightarrow{\mathbf{v}}$ (unless A consists of a single row).
b. In the expression $\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}$, the vectors must each have three entries. In the expression $\operatorname{det} A$, the matrix A must be square.

1.4.2

a. $\left|\left[\begin{array}{l}1 \\ 2\end{array}\right]\right|=\sqrt{1^{2}+2^{2}}=\sqrt{5}$.
b. $\quad\left|\left[\begin{array}{c}\sqrt{2} \\ \sqrt{7}\end{array}\right]\right|=\sqrt{2+7}=3$.
c. $\quad\left|\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]\right|=\sqrt{1+1+1}=\sqrt{3}$.
d. $\quad\left|\left[\begin{array}{r}1 \\ -2 \\ 2\end{array}\right]\right|=\sqrt{1+4+4}=3$.
1.4.3 To normalize a vector, divide it by its length. This gives:
a. $\frac{1}{\sqrt{17}}\left[\begin{array}{l}0 \\ 1 \\ 4\end{array}\right]$
b. $\frac{1}{\sqrt{58}}\left[\begin{array}{r}-3 \\ 7\end{array}\right]$
c. $\frac{1}{\sqrt{31}}\left[\begin{array}{l}\sqrt{2} \\ -2 \\ -5\end{array}\right]$
1.4.4 a. Let α be the required angle. Then

$$
\cos \alpha=\frac{\left[\begin{array}{l}
1 \\
2
\end{array}\right] \cdot\left[\begin{array}{l}
\sqrt{2} \\
\sqrt{7}
\end{array}\right]}{\left|\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right|\left|\left[\begin{array}{l}
\sqrt{2} \\
\sqrt{7}
\end{array}\right]\right|}=\frac{\sqrt{2}+2 \sqrt{7}}{3 \sqrt{5}} \approx .9996291 \ldots,
$$

and $\alpha \approx \arccos .9996291 \ldots \approx .027235 \ldots$ radians $\approx 1.5606^{\circ}$.
So those two vectors are remarkably close to collinear.
b. Let β be the required angle. Then

$$
\cos \beta=\frac{\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right] \cdot\left[\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right]}{\left|\left[\begin{array}{r}
1 \\
-1 \\
1
\end{array}\right]\right|\left|\left[\begin{array}{r}
1 \\
-2 \\
2
\end{array}\right]\right|}=\frac{5}{3 \sqrt{3}} \approx .962250 \ldots
$$

and $\beta=\arccos .962250 \cdots \approx .27564 \ldots \operatorname{rad} \approx 15.793^{\circ}$.
1.4 .5 a. $\cos (\theta)=\frac{1}{1 \times \sqrt{3}}\left(\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \cdot\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right)=\frac{1}{\sqrt{3}}$, so

$$
\theta=\arccos \left(\frac{1}{\sqrt{3}}\right) \approx .95532
$$

b. $\cos (\theta)=0$, so $\theta=\pi / 2$.

1.4.6

a. $\operatorname{det}\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]=(3 \times 2)-(1 \times 0)=6 \quad$ b. $(\mathrm{b}) \operatorname{det}\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 4 & 1 \\ 0 & 1 & 3\end{array}\right]=15$
(c) $\operatorname{det}\left[\begin{array}{lll}-2 & 5 & 3 \\ -1 & 3 & 4 \\ -2 & 3 & 7\end{array}\right]=-14 \quad$ d. $\operatorname{det}\left[\begin{array}{lll}1 & 2 & -6 \\ 0 & 1 & -3 \\ 1 & 0 & -2\end{array}\right]=-2-6+6=-2$
1.4 .7 a. det $=1$; the inverse is $\left[\begin{array}{rr}0 & 1 \\ -1 & 2\end{array}\right]$
b. det $=0$; no inverse
c. det $=a d$; if $a, d \neq 0$, the inverse is $\frac{1}{a d}\left[\begin{array}{rr}d & -b \\ 0 & a\end{array}\right]$.
d. det $=0$; no inverse
1.4.8 a. $\operatorname{det}=-4$
b. $\operatorname{det}=a d f$
c. $\operatorname{det}=g(a d-b c)$
1.4.9 a. $\left[\begin{array}{r}-6 y z \\ 3 x z \\ 5 x y\end{array}\right]$
b. $\left[\begin{array}{r}6 \\ 7 \\ -4\end{array}\right]$
c. $\left[\begin{array}{c}-2 \\ -22 \\ 3\end{array}\right]$
1.4.10 a. By proposition 1.4.11,

$$
\left|A^{k}\right| \leq|A|\left|A^{k-1}\right| \leq|A|^{2}\left|A^{k-2}\right| \leq \cdots \leq|A|^{k}
$$

For $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 1\end{array}\right]$, we have $\left|A^{3}\right|=\sqrt{223} \approx 15$ and $|A|^{3}=7 \sqrt{7} \approx 18.55$.
b. The first statement is true. Since $\overrightarrow{\mathbf{v}}=-2 \overrightarrow{\mathbf{u}}$, by theorem 1.4.5,

$$
|\overrightarrow{\mathbf{u}} \cdot \overrightarrow{\mathbf{v}}|=\left|\overrightarrow{\mathbf{u}}^{\top} \overrightarrow{\mathbf{v}}\right|=\left|\overrightarrow{\mathbf{u}}^{\top} \| \overrightarrow{\mathbf{v}}\right|=|\overrightarrow{\mathbf{u}}||\overrightarrow{\mathbf{v}}| .
$$

