0.7.1 "Modulus of z," "absolute value of z," and $|z|$ are synonyms. "Real part of z " is the same as $\operatorname{Re} z=a$. "Imaginary part of z " is the same as $\operatorname{Im} z=b$. The "complex conjugate of z " is the same as \bar{z}.

0.7.2

0.7.3 a. The absolute value of $2+4 i$ is $|2+4 i|=2 \sqrt{5}$. The argument (polar angle) of $2+4 i$ is $\arccos 1 / \sqrt{5}$, which you could also write as arctan 2 .
b. The absolute value of $(3+4 i)^{-1}$ is $1 / 5$. The argument (polar angle) is $-\arccos (3 / 5)$.
c. The absolute value of $(1+i)^{5}$ is $4 \sqrt{2}$. The argument is $5 \pi / 4$. (The complex number $1+i$ has absolute value $\sqrt{2}$ and polar angle $\pi / 4$. De Moivre's formula says how to compute these for $(1+i)^{5}$.)
d. The absolute value of $1+4 i$ is $\sqrt{17}$; the argument is $\arccos 1 / \sqrt{17}$.

0.7.4 a.

$$
|3+2 i|=\sqrt{3^{2}+2^{2}}=\sqrt{13} ; \quad \arctan \frac{2}{3} \approx .588003
$$

Remark. The angle is in radians; all angles will be in radians unless explicitly stated otherwise.
b.

$$
\left|(1-i)^{4}\right|=|1-i|^{4}=(\sqrt{2})^{4}=4 ; \quad \arg \left((1-i)^{4}\right)=4 \arg (1-i)=4\left(-\frac{\pi}{4}\right)=-\pi
$$

One could also just observe that $(1-i)^{4}=\left((1-i)^{2}\right)^{2}=(-i)^{2}=-4$.
c.

$$
|2+i|=\sqrt{5} ; \quad \arg (2+i)=\arctan 1 / 2 \approx .463648
$$

d.

$$
|\sqrt[7]{3+4 i}|=\sqrt[7]{\sqrt{25}} \approx 1.2585 ; \quad \arg \sqrt[7]{3+4 i}=\frac{1}{7}\left(\arctan \frac{4}{3}+\frac{2 k \pi}{7}\right)
$$

These numbers are

$$
\approx .132471,1.03007,1.92767,2.82526,3.72286,4.62046,5.51806
$$

Remark. In this case, we have to be careful about the argument. A complex number doesn't have just one 7th root, it has seven of them, all with the same modulus but different arguments, differing by integer multiples of $2 \pi / 7$.
0.7.5 Parts $1-4$ are immediate. For part 5 , we find

$$
\begin{aligned}
\left(z_{1} z_{2}\right) z_{3}= & \left(\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(y_{1} x_{2}+x_{1} y_{2}\right)\right)\left(x_{3}+i y_{3}\right) \\
= & \left(x_{1} x_{2} x_{3}-y_{1} y_{2} x_{3}-y_{1} x_{2} y_{3}-x_{1} y_{2} y_{3}\right) \\
& \quad+i\left(x_{1} x_{2} y_{3}-y_{1} y_{2} y_{3}+y_{1} x_{2} x_{3}+x_{1} y_{2} x_{3}\right)
\end{aligned}
$$

which is equal to

$$
\begin{aligned}
z_{1}\left(z_{2} z_{3}\right)= & \left(x_{1}+i y_{1}\right)\left(\left(x_{2} x_{3}-y_{2} y_{3}\right)+i\left(y_{2} x_{3}+x_{2} y_{3}\right)\right) \\
= & \left(x_{1} x_{2} x_{3}-x_{1} y_{2} y_{3}-y_{1} y_{2} x_{3}-y_{1} x_{2} y_{3}\right) \\
& \quad+i\left(y_{1} x_{2} x_{3}-y_{1} y_{2} y_{3}+x_{1} y_{2} x_{3}+x_{1} x_{2} y_{3}\right)
\end{aligned}
$$

Parts 6 and 7 are immediate. For part 8, multiply out:

$$
\begin{aligned}
(a+i b)\left(\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}}\right) & =\frac{a^{2}}{a^{2}+b^{2}}+\frac{b^{2}}{a^{2}+b^{2}}+i\left(\frac{a b}{a^{2}+b^{2}}-\frac{a b}{a^{2}+b^{2}}\right) \\
& =1+i 0=1
\end{aligned}
$$

Part 9 is also a matter of multiplying out:

$$
\begin{aligned}
& z_{1}\left(z_{2}+z_{3}\right)=\left(x_{1}+i y_{1}\right)\left(\left(x_{2}+i y_{2}\right)+\left(x_{3}+i y_{3}\right)\right) \\
& \quad=\left(x_{1}+i y_{1}\right)\left(\left(x_{2}+x_{3}\right)+i\left(y_{2}+y_{3}\right)\right) \\
& \quad=x_{1}\left(x_{2}+x_{3}\right)-y_{1}\left(y_{2}+y_{3}\right)+i\left(y_{1}\left(x_{2}+x_{3}\right)+x_{1}\left(y_{2}+y_{3}\right)\right) \\
& \quad=x_{1} x_{2}-y_{1} y_{2}+i\left(y_{1} x_{2}+x_{1} y_{2}\right)+x_{1} x_{3}-y_{1} y_{3}+i\left(y_{1} x_{3}+x_{1} y_{3}\right) \\
& \quad=z_{1} z_{2}+z_{1} z_{3} .
\end{aligned}
$$

0.7.6 a. The quadratic formula gives

$$
x=\frac{-i \pm \sqrt{i^{2}-4}}{2}=\frac{-i \pm \sqrt{-5}}{2}=-\frac{i}{2}(-1 \pm \sqrt{5})
$$

b. The quadratic formula gives

$$
x^{2}=\frac{-1 \pm \sqrt{1-4}}{2}=\frac{1}{2}(-1 \pm i \sqrt{3}) .
$$

These aren't any old complex numbers: they are the non-real cubic roots of 1 , and their square roots are the non-real sixth roots of 1 :

$$
\frac{1}{2}(\pm 1 \pm i \sqrt{3})
$$

Remark. You didn't have to "notice" that $(-1+i \sqrt{3}) / 2$ is a cubic root of 1 , the square root could have been computed in the standard way anyway. Why are the solutions 6th roots of 1 ? Because

$$
x^{6}-1=\left(x^{2}-1\right)\left(x^{4}+x^{2}+1\right)
$$

so all roots of $x^{4}+x^{2}+1$ will also be roots of $x^{6}-1$.

Solution 0.7.7: Remember that the set of points such that the sum of their distances to two points is constant, is an ellipse, with foci at those points.
0.7.7 a. The equation $|z-u|+|z-v|=c$ represents an ellipse with foci at u and v, at least if $c>|u-v|$. If $c=|u-v|$ it is the degenerate ellipse consisting of just the segment $[u, v]$, and if $c<|u-v|$ it is empty, by the triangle inequality, which asserts that if there is a z satisfying the equality, then

$$
c<|u-v| \leq|u-z|+|z-v|=c
$$

b. Set $z=x+i y$; the inequality $|z|<1-\operatorname{Re} z$ becomes

$$
\sqrt{x^{2}+y^{2}}<1-x
$$

corresponding to a region bounded by the curve of equation

$$
\sqrt{x^{2}+y^{2}}=1-x
$$

We should worry whether the squaring introduced parasitic points, where $-\sqrt{x^{2}+y^{2}}<1-x$, but this is not the case, since $1-x$ is positive throughout the region.

If we square this equation, we will get the curve of equation

$$
x^{2}+y^{2}=1-2 x+x^{2}, \quad \text { i.e., } \quad x=\frac{1}{2}\left(1-y^{2}\right)
$$

which is a parabola lying on its side. The original inequality corresponds to the inside of the parabola.

0.7 .8

0.7.9 a. The quadratic formula gives $x=\frac{-i \pm \sqrt{-1-8}}{2}$, so the solutions are $x=i$ and $x=-2 i$.
b. In this case, the quadratic formula gives

$$
x^{2}=\frac{-1 \pm \sqrt{1-8}}{2}=\frac{-1 \pm i \sqrt{7}}{2} .
$$

Each of these numbers has two square roots, which we still need to find.
One way, probably the best, is to use the polar form; this gives

$$
x^{2}=r(\cos \theta \pm i \sin \theta)
$$

where

$$
r=\frac{\sqrt{1+7}}{2}=\sqrt{2}, \quad \theta= \pm \arccos -\frac{1}{2 \sqrt{2}} \approx 1.2094 \ldots \text { radians }
$$

Thus the four roots are

$$
\pm \sqrt[4]{2}(\cos \theta / 2+i \sin \theta / 2) \quad \text { and } \quad \pm \sqrt[4]{2}(\cos \theta / 2-i \sin \theta / 2)
$$

c. Multiplying the first equation through by $(1+i)$ and the second by i gives

$$
\begin{aligned}
i(1+i) x-(2+i)(1+i) y & =3(1+i) \\
i(1+i) x-\quad y & =4 i
\end{aligned}
$$

which gives

$$
-(2+i)(1+i) y+y=3-i, \quad \text { i.e., } \quad y=i+\frac{1}{3}
$$

Substituting this value for y then gives $x=\frac{7}{3}-\frac{8}{3} i$.

0.7 .10

0.7.11 a. These are the vertical line $x=1$ and the circle centered at the origin of radius 3 .
b. Use $Z=X+i Y$ as the variable in the codomain. Then

$$
(1+i y)^{2}=1-y^{2}+2 i y=X+i Y
$$

gives $1-X=y^{2}=Y^{2} / 4$. Thus the image of the line is the curve of equation $X=1-Y^{2} / 4$, which is a parabola with horizontal axis.

The image of the circle is another circle, centered at the origin, of radius 9, i.e., the curve of equation $X^{2}+Y^{2}=81$.
c. This time use $Z=X+i Y$ as the variable in the domain. Then the inverse image of the line $=\operatorname{Re} z=1$ is the curve of equation

$$
\operatorname{Re}(X+i Y)^{2}=X^{2}-Y^{2}=1
$$

which is a hyperbola. The inverse image of the curve of equation $|z|=3$ is the curve of equation $\left|Z^{2}\right|=|Z|^{2}=3$, i.e., $|Z|=\sqrt{3}$, the circle of radius $\sqrt{3}$ centered at the origin.

0.7.12

0.7.13 a. The cube roots of 1 are
$1, \cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}=-\frac{1}{2}+\frac{i \sqrt{3}}{2}, \cos \frac{4 \pi}{3}+i \sin \frac{4 \pi}{3}=-\frac{1}{2}-\frac{i \sqrt{3}}{2}$.
b. The fourth roots of 1 are $1, i,-1,-i$.
c. The sixth roots of 1 are

$$
1, \quad-1, \quad \frac{1}{2}+i \frac{\sqrt{3}}{2}, \quad \frac{1}{2}-i \frac{\sqrt{3}}{2}, \quad-\frac{1}{2}+i \frac{\sqrt{3}}{2}, \quad-\frac{1}{2}-i \frac{\sqrt{3}}{2}
$$

0.7.14

0.7.15 a. The fifth roots of 1 are

$$
\cos 2 \pi k / 5+i \sin 2 \pi k / 5, \quad \text { for } k=0,1,2,3,4
$$

The point of the question is to find these numbers in some more manageable form. One possible approach is to set $\theta=2 \pi / 5$, and to observe that $\cos 4 \theta=\cos \theta$. If you set $x=\cos \theta$, this leads to the equation

$$
2\left(2 x^{2}-1\right)^{2}-1=x \quad \text { i.e., } \quad 8 x^{4}-8 x^{2}-x+1=0
$$

This still isn't too manageable, until you start asking what other angles satisfy $\cos 4 \theta=\cos \theta$. Of course $\theta=0$ does, meaning that $x=1$ is one root of our equation. But $\theta=2 \pi / 3$ does also, meaning that $-1 / 2$ is also a root. Thus we can divide:

$$
\frac{8 x^{4}-8 x^{2}-x+1}{(x-1)(2 x+1)}=4 x^{2}+2 x-1
$$

and $\cos 2 \pi / 5$ is the positive root of that quadratic equation, i.e.,

$$
\cos \frac{2 \pi}{5}=\frac{\sqrt{5}-1}{4}, \text { which gives } \sin \frac{2 \pi}{5}=\frac{\sqrt{10+2 \sqrt{5}}}{4}
$$

The fifth roots of 1 are now

$$
1, \frac{\sqrt{5}-1}{4} \pm i \frac{\sqrt{10+2 \sqrt{5}}}{4},-\frac{\sqrt{5}+1}{4} \pm i \frac{\sqrt{10-2 \sqrt{5}}}{4}
$$

b. It is straightforward to draw a line segment of length $(\sqrt{5}-1) / 4$: construct a rectangle with sides 1 and 2 , so the diagonal has length $\sqrt{5}$. Then subtract 1 and divide twice by 2 , as shown in the figure below.

Figure for solution 0.7 .15

So if you set $\delta=\epsilon$, and $|H| \leq \delta$, then equation (2) is satisfied.
c. We will show that the limit does not exist. In this case, we find

$$
\begin{aligned}
(A+H-A)^{-1}(A+H)^{2}-A^{2} & =H^{-1}\left(I^{2}+A H+H A+H^{2}-I^{2}\right) \\
& =H^{-1}\left(A H+H A+H^{2}\right)=A+H^{-1} A H+H^{2}
\end{aligned}
$$

If the limit exists, it must be $2 A$: choose $H=\epsilon I$ so that $H^{-1}=\epsilon^{-1} I$; then

$$
A+H^{-1} A H+H^{2}=2 A+\epsilon I
$$

is close to $2 A$.
But if you choose $H=\epsilon\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, you will find that

$$
H^{-1} A H=\left[\begin{array}{cc}
1 / \epsilon & 0 \\
0 & -1 / \epsilon
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
\epsilon & 0 \\
0 & \epsilon
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]=-A
$$

So with this H we have

$$
A+H^{-1} A H+H^{2}=A-A+\epsilon H
$$

which is close to the zero matrix.

1.5.24

1.6.1 Let B be a set contained in a ball of radius R centered at a point a. Then it is also contained in a ball of radius $R+|\mathbf{a}|$ centered at the origin; thus it is bounded.
1.6.2 First, remember that compact is equivalent to closed and bounded so if A is not compact then A is unbounded and/or not closed. If A is unbounded then the hint is sufficient. If A is not closed then A has a limit point a not in A : i.e., there exists a sequence in A that converges in \mathbb{R}^{n} to a point $\mathbf{a} \notin A$. Use this \mathbf{a} as the \mathbf{a} in the hint.
1.6.3 The polynomial $p(z)=1+x^{2} y^{2}$ has no roots because 1 plus something positive cannot be 0 . This does not contradict the fundamental theorem of algebra because although p is a polynomial in the real variables x and y, it is not a polynomial in the complex variable z : it is a polynomial in z and \bar{z}. It is possible to write $p(z)=1+x^{2} y^{2}$ in terms of z and \bar{z}. You can use

$$
x=\frac{z+\bar{z}}{2} \quad \text { and } \quad y=\frac{z-\bar{z}}{2 i}
$$

and find

$$
\begin{equation*}
p(z)=1+\frac{z^{4}-2|z|^{4}+\bar{z}^{4}}{-16} \tag{1}
\end{equation*}
$$

but you simply cannot get rid of the \bar{z}.
1.6.4 If $|z| \geq 4$, then

$$
|p(z)| \geq|z|^{5}-4|z|^{3}-3|z|-3>|z|^{5}-4|z|^{3}-3|z|^{3}-3|z|^{3}=|z|^{3}\left(|z|^{2}-10\right) \geq 6 \cdot 4^{3}
$$

