0.7.1 "Modulus of z," "absolute value of z," and |z| are synonyms. "Real part of z" is the same as $\operatorname{Re} z = a$. "Imaginary part of z" is the same as $\operatorname{Im} z = b$. The "complex conjugate of z" is the same as \overline{z} .

0.7.2

0.7.3 a. The absolute value of 2 + 4i is $|2 + 4i| = 2\sqrt{5}$. The argument (polar angle) of 2+4i is $\arccos 1/\sqrt{5}$, which you could also write as $\arctan 2$.

b. The absolute value of $(3+4i)^{-1}$ is 1/5. The argument (polar angle) is $-\arccos(3/5)$.

c. The absolute value of $(1+i)^5$ is $4\sqrt{2}$. The argument is $5\pi/4$. (The complex number 1 + i has absolute value $\sqrt{2}$ and polar angle $\pi/4$. De Moivre's formula says how to compute these for $(1+i)^5$.)

d. The absolute value of 1 + 4i is $\sqrt{17}$; the argument is $\arccos 1/\sqrt{17}$.

0.7.4 a.

$$|3+2i| = \sqrt{3^2+2^2} = \sqrt{13}; \quad \arctan\frac{2}{3} \approx .588003.$$

Remark. The angle is in radians; all angles will be in radians unless explicitly stated otherwise.

b.
$$|(1-i)^4| = |1-i|^4 = (\sqrt{2})^4 = 4; \quad \arg((1-i)^4) = 4\arg(1-i) = 4\left(-\frac{\pi}{4}\right) = -\pi.$$
One could also just observe that $(1-i)^4 = ((1-i)^2)^2 = (-i)^2 = -4.$

 $\mathbf{c}.$

$$|2+i| = \sqrt{5}; \quad \arg(2+i) = \arctan 1/2 \approx .463648.$$

 $\mathrm{d}.$

$$|\sqrt[7]{3+4i}| = \sqrt[7]{\sqrt{25}} \approx 1.2585; \quad \arg\sqrt[7]{3+4i} = \frac{1}{7} \left(\arctan\frac{4}{3} + \frac{2k\pi}{7} \right).$$

These numbers are

 $\approx .132471, 1.03007, 1.92767, 2.82526, 3.72286, 4.62046, 5.51806.$

Remark. In this case, we have to be careful about the argument. A complex number doesn't have just one 7th root, it has seven of them, all with the same modulus but different arguments, differing by integer multiples of $2\pi/7$.

0.7.5 Parts 1–4 are immediate. For part 5, we find

$$(z_1z_2)z_3 = ((x_1x_2 - y_1y_2) + i(y_1x_2 + x_1y_2))(x_3 + iy_3)$$

= $(x_1x_2x_3 - y_1y_2x_3 - y_1x_2y_3 - x_1y_2y_3)$
+ $i(x_1x_2y_3 - y_1y_2y_3 + y_1x_2x_3 + x_1y_2x_3),$

which is equal to

$$z_1(z_2z_3) = (x_1 + iy_1)((x_2x_3 - y_2y_3) + i(y_2x_3 + x_2y_3))$$

= $(x_1x_2x_3 - x_1y_2y_3 - y_1y_2x_3 - y_1x_2y_3)$
+ $i(y_1x_2x_3 - y_1y_2y_3 + x_1y_2x_3 + x_1x_2y_3).$

Parts 6 and 7 are immediate. For part 8, multiply out:

$$(a+ib)\left(\frac{a}{a^2+b^2}-i\frac{b}{a^2+b^2}\right) = \frac{a^2}{a^2+b^2} + \frac{b^2}{a^2+b^2} + i\left(\frac{ab}{a^2+b^2}-\frac{ab}{a^2+b^2}\right)$$
$$= 1+i0 = 1.$$

Part 9 is also a matter of multiplying out:

$$z_1(z_2 + z_3) = (x_1 + iy_1)((x_2 + iy_2) + (x_3 + iy_3))$$

= $(x_1 + iy_1)((x_2 + x_3) + i(y_2 + y_3))$
= $x_1(x_2 + x_3) - y_1(y_2 + y_3) + i(y_1(x_2 + x_3) + x_1(y_2 + y_3)))$
= $x_1x_2 - y_1y_2 + i(y_1x_2 + x_1y_2) + x_1x_3 - y_1y_3 + i(y_1x_3 + x_1y_3)$
= $z_1z_2 + z_1z_3$.

0.7.6 a. The quadratic formula gives

$$x = \frac{-i \pm \sqrt{i^2 - 4}}{2} = \frac{-i \pm \sqrt{-5}}{2} = -\frac{i}{2}(-1 \pm \sqrt{5}).$$

b. The quadratic formula gives

$$x^{2} = \frac{-1 \pm \sqrt{1-4}}{2} = \frac{1}{2}(-1 \pm i\sqrt{3}).$$

These aren't any old complex numbers: they are the non-real cubic roots of 1, and their square roots are the non-real sixth roots of 1:

$$\frac{1}{2}(\pm 1 \pm i\sqrt{3}).$$

Remark. You didn't have to "notice" that $(-1+i\sqrt{3})/2$ is a cubic root of 1, the square root could have been computed in the standard way anyway. Why are the solutions 6th roots of 1? Because

$$x^{6} - 1 = (x^{2} - 1)(x^{4} + x^{2} + 1),$$

so all roots of $x^4 + x^2 + 1$ will also be roots of $x^6 - 1$.

0.7.7 a. The equation |z - u| + |z - v| = c represents an ellipse with foci at u and v, at least if c > |u - v|. If c = |u - v| it is the degenerate ellipse consisting of just the segment [u, v], and if c < |u - v| it is empty, by the triangle inequality, which asserts that if there is a z satisfying the equality, then

$$c < |u - v| \le |u - z| + |z - v| = c.$$

Solution 0.7.7: Remember that the set of points such that the sum of their distances to two points is constant, is an ellipse, with foci at those points.

b. Set z = x + iy; the inequality $|z| < 1 - \operatorname{Re} z$ becomes

$$\sqrt{x^2 + y^2} < 1 - x,$$

corresponding to a region bounded by the curve of equation

$$\sqrt{x^2 + y^2} = 1 - x$$

If we square this equation, we will get the curve of equation

$$x^{2} + y^{2} = 1 - 2x + x^{2}$$
, i.e., $x = \frac{1}{2}(1 - y^{2})$,

which is a parabola lying on its side. The original inequality corresponds to the inside of the parabola.

0.7.8

0.7.9 a. The quadratic formula gives $x = \frac{-i \pm \sqrt{-1-8}}{2}$, so the solutions are x = i and x = -2i.

b. In this case, the quadratic formula gives

$$x^{2} = \frac{-1 \pm \sqrt{1-8}}{2} = \frac{-1 \pm i\sqrt{7}}{2}.$$

Each of these numbers has two square roots, which we still need to find. One way, probably the best, is to use the polar form; this gives

$$x^2 = r(\cos\theta \pm i\sin\theta),$$

where

$$r = \frac{\sqrt{1+7}}{2} = \sqrt{2}, \quad \theta = \pm \arccos -\frac{1}{2\sqrt{2}} \approx 1.2094... \text{ radians.}$$

Thus the four roots are

$$\pm \sqrt[4]{2}(\cos\theta/2 + i\sin\theta/2)$$
 and $\pm \sqrt[4]{2}(\cos\theta/2 - i\sin\theta/2).$

c. Multiplying the first equation through by $\left(1+i\right)$ and the second by i gives

$$\begin{split} &i(1+i)x - (2+i)(1+i)y = 3(1+i) \\ &i(1+i)x - y = 4i, \end{split}$$

which gives

$$-(2+i)(1+i)y + y = 3-i$$
, i.e., $y = i + \frac{1}{3}$.

Substituting this value for y then gives $x = \frac{7}{3} - \frac{8}{3}i$.

0.7.10

0.7.11 a. These are the vertical line x = 1 and the circle centered at the origin of radius 3.

We should worry whether the squaring introduced parasitic points, where $-\sqrt{x^2 + y^2} < 1 - x$, but this is not the case, since 1 - x is positive throughout the region.

- 12 Solutions for Chapter 0
 - b. Use Z = X + iY as the variable in the codomain. Then

$$(1+iy)^2 = 1 - y^2 + 2iy = X + iY$$

gives $1 - X = y^2 = Y^2/4$. Thus the image of the line is the curve of equation $X = 1 - Y^2/4$, which is a parabola with horizontal axis.

The image of the circle is another circle, centered at the origin, of radius 9, i.e., the curve of equation $X^2 + Y^2 = 81$.

c. This time use Z = X + iY as the variable in the domain. Then the inverse image of the line = Re z = 1 is the curve of equation

$$\operatorname{Re}(X + iY)^2 = X^2 - Y^2 = 1.$$

which is a hyperbola. The inverse image of the curve of equation |z| = 3 is the curve of equation $|Z^2| = |Z|^2 = 3$, i.e., $|Z| = \sqrt{3}$, the circle of radius $\sqrt{3}$ centered at the origin.

0.7.12

0.7.13 a. The cube roots of 1 are

1,
$$\cos\frac{2\pi}{3} + i\sin\frac{2\pi}{3} = -\frac{1}{2} + \frac{i\sqrt{3}}{2}, \ \cos\frac{4\pi}{3} + i\sin\frac{4\pi}{3} = -\frac{1}{2} - \frac{i\sqrt{3}}{2}.$$

b. The fourth roots of 1 are 1, i, -1, -i.

c. The sixth roots of 1 are

1, -1,
$$\frac{1}{2} + i\frac{\sqrt{3}}{2}$$
, $\frac{1}{2} - i\frac{\sqrt{3}}{2}$, $-\frac{1}{2} + i\frac{\sqrt{3}}{2}$, $-\frac{1}{2} - i\frac{\sqrt{3}}{2}$

0.7.14

0.7.15 a. The fifth roots of 1 are

$$\cos 2\pi k/5 + i \sin 2\pi k/5$$
, for $k = 0, 1, 2, 3, 4$.

The point of the question is to find these numbers in some more manageable form. One possible approach is to set $\theta = 2\pi/5$, and to observe that $\cos 4\theta = \cos \theta$. If you set $x = \cos \theta$, this leads to the equation

$$2(2x^2 - 1)^2 - 1 = x$$
 i.e., $8x^4 - 8x^2 - x + 1 = 0$

This still isn't too manageable, until you start asking what other angles satisfy $\cos 4\theta = \cos \theta$. Of course $\theta = 0$ does, meaning that x = 1 is one root of our equation. But $\theta = 2\pi/3$ does also, meaning that -1/2 is also a root. Thus we can divide:

$$\frac{8x^4 - 8x^2 - x + 1}{(x-1)(2x+1)} = 4x^2 + 2x - 1,$$

and $\cos 2\pi/5$ is the positive root of that quadratic equation, i.e.,

$$\cos\frac{2\pi}{5} = \frac{\sqrt{5}-1}{4}$$
, which gives $\sin\frac{2\pi}{5} = \frac{\sqrt{10+2\sqrt{5}}}{4}$.

The fifth roots of 1 are now

$$1, \frac{\sqrt{5}-1}{4} \pm i\frac{\sqrt{10+2\sqrt{5}}}{4}, -\frac{\sqrt{5}+1}{4} \pm i\frac{\sqrt{10-2\sqrt{5}}}{4}.$$

b. It is straightforward to draw a line segment of length $(\sqrt{5} - 1)/4$: construct a rectangle with sides 1 and 2, so the diagonal has length $\sqrt{5}$. Then subtract 1 and divide twice by 2, as shown in the figure below.

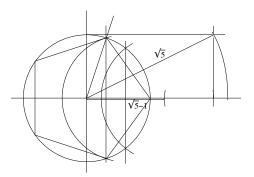


Figure for solution 0.7.15.

So if you set $\delta = \epsilon$, and $|H| \leq \delta$, then equation (2) is satisfied.

c. We will show that the limit does not exist. In this case, we find

$$(A + H - A)^{-1}(A + H)^{2} - A^{2} = H^{-1}(I^{2} + AH + HA + H^{2} - I^{2})$$

= $H^{-1}(AH + HA + H^{2}) = A + H^{-1}AH + H^{2}.$

If the limit exists, it must be 2A: choose $H = \epsilon I$ so that $H^{-1} = \epsilon^{-1}I$; then

$$A + H^{-1}AH + H^2 = 2A + \epsilon I$$

is close to 2A.

But if you choose
$$H = \epsilon \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
, you will find that
$$H^{-1}AH = \begin{bmatrix} 1/\epsilon & 0 \\ 0 & -1/\epsilon \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} \epsilon & 0 \\ 0 & \epsilon \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} = -A.$$

So with this H we have

$$A + H^{-1}AH + H^2 = A - A + \epsilon H$$

which is close to the zero matrix.

1.5.24

1.6.1 Let *B* be a set contained in a ball of radius *R* centered at a point **a**. Then it is also contained in a ball of radius $R + |\mathbf{a}|$ centered at the origin; thus it is bounded.

1.6.2 First, remember that compact is equivalent to closed and bounded so if A is not compact then A is unbounded and/or not closed. If A is unbounded then the hint is sufficient. If A is not closed then A has a limit point **a** not in A: i.e., there exists a sequence in A that converges in \mathbb{R}^n to a point $\mathbf{a} \notin A$. Use this **a** as the **a** in the hint.

1.6.3 The polynomial $p(z) = 1 + x^2y^2$ has no roots because 1 plus something positive cannot be 0. This does not contradict the fundamental theorem of algebra because although p is a polynomial in the real variables x and y, it is not a polynomial in the complex variable z: it is a polynomial in z and \bar{z} . It is possible to write $p(z) = 1 + x^2y^2$ in terms of z and \bar{z} . You can use

$$x = \frac{z + \overline{z}}{2}$$
 and $y = \frac{z - \overline{z}}{2i}$,

and find

$$p(z) = 1 + \frac{z^4 - 2|z|^4 + \overline{z}^4}{-16} \tag{1}$$

but you simply cannot get rid of the \overline{z} .

1.6.4 If
$$|z| \ge 4$$
, then
 $|p(z)| \ge |z|^5 - 4|z|^3 - 3|z| - 3 > |z|^5 - 4|z|^3 - 3|z|^3 - 3|z|^3 = |z|^3(|z|^2 - 10) \ge 6 \cdot 4^3.$