Date due: October 30, 2017.
Hand in only the starred questions.
Section $4.32,4,5,6^{*}, 9,10,11,13,25,29,30,31,32,34$ (I list a lot of questions, and I expect that it will be appropriate for you to skim over many of them, simply looking to make sure you can do them.)
W. Let G be an infinite group containing an element $x \neq 1$ having only finitely many conjugates. Prove that G is not simple.
X. Let $a=(1,2,3,4) \in S_{4}=G$. Describe the centralizer $C_{S_{4}}(a)$. (Determine its structure and its order.)
Y. Show that when $a=(4,5) \in S_{5}$, the subgroup $C_{S_{5}}(a)$ consists of $S_{3} \cup S_{3} a$, where S_{3} denotes the symmetric group on three symbols as a subgroup of S_{5} permuting the symbols $\{1,2,3\}$.
Z. (related to qn. 10) Consider the permutation $a=(1,2,3,4,5)$.
(a) Show that a has 24 conjugates in S_{5}.
(b) Show that a has only 12 conjugates in A_{5}. (Hint: compute the index of $C_{A_{5}}(a)$ in A_{5}.)
(c) Show that $(1,2,3,4,5)$ is conjugate in A_{5} to $(5,4,3,2,1)$.
(d) Show that $(1,2,3,4,5)$ is not conjugate in A_{5} to $(1,3,5,2,4)$.

AA. Let $a=(1,2,3,4)(5,6,7) \in S_{7}$.
(a) Find a permutation g of the symbols $\{1,2,3,4,5,6,7,8\}$ so that

$$
g(1,2,3,4)(5,6,7) g^{-1}=(2,1,6,5)(3,8,7)
$$

Express g as a product of disjoint cycles.
(b) Calculate the number of conjugates of a in S_{7}. Calculate the number of conjugates of a in S_{8}.
(c) Show that the only elements of S_{7} which commute with a are the powers of a.

2*. (Graduate Algebra Exam, Fall 2002) (18\%)
(a) (4%) Calculate the numbers of conjugates of each of the elements $(1,2,3,4,5)$ and $(1,2,3)(4,5,6)$ in the symmetric group S_{6}.
[We use cycle notation for permutations, writing them as a disjoint union of cycles.]
(b) (7%) Calculate the numbers of conjugates of each of the elements $(1,2,3,4,5)$ and $(1,2,3)(4,5,6)$ in the alternating group A_{6}.
(c) (7%) Show that $(1,2,3,4,5)$ and $(1,3,5,2,4)$ are not conjugate in A_{6}.

Section $4.44,5^{*}, 8,11^{*}, 12,13^{*}$.

