Math 8201Homework 7Date due: October 30, 2017.

Hand in only the starred questions.

Section 4.3 2, 4, 5, 6^{*}, 9, 10, 11, 13, 25, 29, 30, 31, 32, 34 (I list a lot of questions, and I expect that it will be appropriate for you to skim over many of them, simply looking to make sure you can do them.)

- W. Let G be an infinite group containing an element $x \neq 1$ having only finitely many conjugates. Prove that G is not simple.
- X. Let $a = (1, 2, 3, 4) \in S_4 = G$. Describe the centralizer $C_{S_4}(a)$. (Determine its structure and its order.)
- Y. Show that when $a = (4,5) \in S_5$, the subgroup $C_{S_5}(a)$ consists of $S_3 \cup S_3 a$, where S_3 denotes the symmetric group on three symbols as a subgroup of S_5 permuting the symbols $\{1, 2, 3\}$.
- Z. (related to qn. 10) Consider the permutation a = (1, 2, 3, 4, 5).
 - (a) Show that a has 24 conjugates in S_5 .
 - (b) Show that a has only 12 conjugates in A_5 . (Hint: compute the index of $C_{A_5}(a)$ in A_5 .)
 - (c) Show that (1, 2, 3, 4, 5) is conjugate in A_5 to (5, 4, 3, 2, 1).
 - (d) Show that (1, 2, 3, 4, 5) is not conjugate in A_5 to (1, 3, 5, 2, 4).

AA. Let
$$a = (1, 2, 3, 4)(5, 6, 7) \in S_7$$
.

(a) Find a permutation g of the symbols $\{1, 2, 3, 4, 5, 6, 7, 8\}$ so that

 $g(1, 2, 3, 4)(5, 6, 7)g^{-1} = (2, 1, 6, 5)(3, 8, 7).$

Express g as a product of disjoint cycles.

- (b) Calculate the number of conjugates of a in S_7 . Calculate the number of conjugates of a in S_8 .
- (c) Show that the only elements of S_7 which commute with a are the powers of a.
- 2*. (Graduate Algebra Exam, Fall 2002) (18%)
 - (a) (4%) Calculate the numbers of conjugates of each of the elements (1, 2, 3, 4, 5) and (1, 2, 3)(4, 5, 6) in the symmetric group S₆.
 [We use cycle notation for permutations, writing them as a disjoint union of cycles.]
 - (b) (7%) Calculate the numbers of conjugates of each of the elements (1, 2, 3, 4, 5)and (1, 2, 3)(4, 5, 6) in the alternating group A_6 .
 - (c) (7%) Show that (1, 2, 3, 4, 5) and (1, 3, 5, 2, 4) are not conjugate in A_6 .

Section 4.4 $4, 5^*, 8, 11^*, 12, 13^*$.

 \mathbf{PJW}