Date due: November 13, 2017.

Hand in only the starred questions.

Section 5.1 1, 2, 4*, 5, 6, 18.

Section 5.4 2, 4, 7*, 10, 11*, 13*, 15, 17, 19.

- GG. Let G be the group of all isometries of the cube, and let H be the subgroup consisting of rotations which preserve the cube. Let -1 denote the element of G which is the transformation of \mathbb{R}^3 given by multiplication by -1.
 - (a) Show that $G = H \times \langle -1 \rangle$.
 - (b) Show that if $g \in G$ is any element other than -1 then $G \neq H \times \langle g \rangle$.
 - (To do this you may need to prove that the center of H is $\{e\}$. Either use the isomorphism with S_4 or note that if you conjugate one rotation by another rotation you get rotation about an axis obtained by applying the second rotation to the axis of the first.)
- HH*. (a) Let G be the group of all isometries of the tetrahedron, and let H be the subgroup consisting of rotations which preserve the tetrahedron. Determine whether or not $G = H \times K$ for some subgroup K of G.
 - (b) Let G be the group of all isometries of the icosahedron, and let H be the subgroup consisting of rotations which preserve the icosahedron. Determine whether or not $G = H \times K$ for some subgroup K of G.