Math 8202
Homework 9
PJW
Date due: April 2, 2018. There will NOT be a quiz on this date. The next quiz will be on April 9.

Hand in only the starred questions.
Section 13.4, page 5453^{*}, 4 .
Section 13.5, page $5515^{*}, 6^{*}, 7,8,10^{*}$.
F*. (Fall 2002 qn. 5, part (a)) Let k be a field of characteristic $p>0$, and $K=k(t)$ where t is an element transcendental over k. Show that $X^{p}-t$ is irreducible in $K[X]$.

G*. (Fall 2001, qn. 6) (10\%) Let $\mathbb{F}_{p^{k}}$ be the field with p^{k} elements, where p is prime.
(a) Show that $x^{4}+1 \in \mathbb{F}_{p}[x]$ has a root in $\mathbb{F}_{p^{2}}$.
(b) Deduce that $x^{4}+1$ is reducible in $\mathbb{F}_{p}[x]$. For which values of p does a linear factor exist in $\mathbb{F}_{p}[x]$?
[You may assume standard facts about finite fields.]
H. (Fall 2000 , qn. 5$)(12 \%)$ Let $K \supseteq k$ be a field extension and $f \in k[X]$ an irreducible polynomial of degree relatively prime to the degree of the field extension $[K: k]$. Show that f is irreducible in $K[X]$.
I. (Fall 2000 , qn. 6$)(15 \%)$ a) (8) Let $K \supseteq k$ be a field extension of prime degree, and let $a \in K$ be an element which does not lie in k. Considering K as a vector space over k, let $m_{a}: K \rightarrow K$ be the k-linear mapping specified by $m_{a}(x)=a x$. Prove that the characteristic polynomial of m_{a} is irreducible.
b) (7) Let α be a root of $X^{3}-X+1$ in \mathbb{F}_{27}. Find the minimal polynomial of α^{4} over \mathbb{F}_{3}.
[Here \mathbb{F}_{27} and \mathbb{F}_{3} denote fields with 27 and 3 elements, respectively. You may assume that $X^{3}-X+1$ is irreducible in $\mathbb{F}_{3}[X]$.]

