Assignment 10 - Due Thursday 11/18/2010
Read: Hubbard and Hubbard Section 2.4 and 2.5. I am not sure how far we will get with 2.5 and we may not finish it.

## Exercises:

Hand in only the exercises which have stars by them.
Section 2.4 (pages 193-194): 2, 2b*, $4^{*}, 7,8^{*}, 10,12^{*}$
Section 2.5 (pages 207-211): 1, 2, 3, 4, 6, 6b*, 7 .
Extra questions:

1. Construct a matrix with no zero entries whose echelon form is
$\left(\begin{array}{lll}1 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right)$.
2. Extend each of the following lists of vectors to a basis of the whole space (I write row vectors instead of column vectors because they fit on lines better):
(i) $(1,1,1)$. (ii) $(1,2,3),(0,2,3)$. (iii)* $(1,2,3,4),(1,1,1,1),(0,0,1,2)$.
3. Consider the vectors $(1,2,3),(3,2,1),(1,0,-1),(-1,2,5)$.
(i) Find a subset of these vectors which is a basis for the space which they span, and which contains the first vector.
(ii)* Find a subset of these vectors which is a basis for the space which they span, and which contains the last vector.

4*. Let U be the subspace of 4-dimensional space which consists of the vectors ( $\mathrm{w}, \mathrm{x}, \mathrm{y}, \mathrm{z}$ ) for which $\mathrm{w}+\mathrm{x}+\mathrm{y}+\mathrm{z}=0$. Extend the vector $(1,-1,1,-1)$ to a basis of U .

5*. Let U and V be linear subspaces of 10 -dimensional real space. Suppose that U is a subset of $V$ and that $\operatorname{dim} U=\operatorname{dim} V=5$. Prove that $U=V$.

## Comments on some exercises:

Some of the exercises in Section 2.4 seem too easy, like questions 3, 5 and 6 for example, and I have left them out of the recommended list. Others seem to require the reader to understand some very specific things which do not seem to me to be that instructive. I include question 11 from Section 2.4 in this category. Have a look, and form your own opinion.

## ... and some more comments:

In the exam on November 11 the material will be taken from Sections 1.5-1.10, starting in Section 1.5 at page 89 where limits, continuity etc. of sequences of vectors and vector-valued functions are introduced, plus the extra questions on the assignment sheets. You may not use books or notes on the exam, but you may use a calculator.

There is a question on the exam in which you are asked to choose between a pair of statements (both are true statements) and prove one of them. If you can answer questions like 1.7.14 (on page 139 ) or 1.6 .7 (on page 119) adequately you should be able to do this question. The difficulty may be that you do not have much experience answering this kind of question.

