Assignment 12 - Due Tuesday $12 / 7 / 2010$. There will be no quiz on this day. The third midterm exam is on December 9. You will be tested on the material in Sections 2.1-2.6 which we have studied.

Read: Hubbard and Hubbard Section 2.7 and the following parts of Section 2.8: only pages 232-237, the beginning of Example 2.8.6, the beginning of Example 2.8.14 and the beginning of Example 2.8.15. We will not do Kantorovich's theorem in Section 2.8.

Exercises (Due Tuesday 12/7/2010):
2.7 (page 231-2): $1^{*}, 2,3,5,6$
2.8 (pages 251-253): 2, 4, 6b*, 7a, 10, 12a
2.11 (page 281): 22b, 23

The following exercises are not relevant for the material we do this week. I list them because they may be useful practice for the mid-term exam. 2.11 (pages 278-282); 8, 11, $12,13,14,15,16,17,18,20,21$

Extra questions:

1. For each of the following matrices, representing a linear map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, either find a basis consisting of eigenvectors or else show that such a basis cannot exist.

$$
(a) *\left(\begin{array}{cc}
3 & -1 \\
2 & 0
\end{array}\right) ; \quad(b) *\left(\begin{array}{cc}
22 & -9 \\
49 & -20
\end{array}\right) ; \quad(c)\left(\begin{array}{cc}
4 & -1 \\
2 & 1
\end{array}\right) ; \quad(d)\left(\begin{array}{cc}
13 & -6 \\
0 & -13
\end{array}\right)
$$

2. (a)* Regarding each of the matrices in question 1 as the matrix of a linear map expressed with respect to the standard basis of \mathbb{R}^{2}, find the matrix of this linear map when expressed with respect to the basis $\binom{1}{2},\binom{-1}{-1}$.
3.* Find a matrix P so that $P A P^{-1}$ is diagonal, where $A=\left(\begin{array}{cc}3 & -1 \\ 2 & 0\end{array}\right)$.
3. Find a basis for \mathbb{R}^{3} consisting of eigenvectors of the following matrix, or else show that such a basis does not exist:

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 3 & -1 \\
0 & 2 & 0
\end{array}\right)
$$

