Date due: November 29, 2010. Either hand it to me in class or put it in my mailbox by $3: 30$.

1. (i) Show that $C_{2} * C_{2}$ is isomorphic to the group of distance-preserving mappings $\mathbb{R} \rightarrow$ \mathbb{R} generated by the two mappings α and β defined by $\alpha(x)=-x$ and $\beta(x)=-x+2$. (ii) Show that $C_{2} * C_{2}$ is isomorphic to the group of 2 by 2 integer matrices generated by $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ and $\left(\begin{array}{cc}-1 & 1 \\ 0 & 1\end{array}\right)$.
(iii) Show that $C_{2} * C_{2}$ has an infinite cyclic subgroup of index 2 and that every other element has order 2.
(iv) Show that every subgroup of $C_{2} * C_{2}$ is isomorphic to $1, C_{2}, C_{\infty}$ or $C_{2} * C_{2}$.
[You may use any techniques you wish to do this. You could use Bass-Serre theory to deduce the free product decomposition, or not!]
2. Let N be kernel of the homomorphism $S L(2, \mathbb{Z}) \rightarrow C_{12}=\langle x\rangle$ which sends $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ to x^{3} and $\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$ to x^{2}. You may assume without proof that N is a free group. Find a set of matrices which are free generators for N.
3. Let Y be a connected graph with maximal subtree Y_{0} and suppose that A is a group with subgroups $A(v)$ and $A(e) \leq A$ for each vertex $v \in Y$ and edge $e \in Y$. Suppose that $A(e) \leq A(\iota e)$ always, and for each edge $e \in Y$ there is an element a_{e} so that $a_{e}^{-1} A(e) a_{e} \subseteq A(\tau e)$. Suppose that $a_{e}=1$ for all $e \in Y_{0}$. Let Γ be the coset graph determined by this information, so that the vertices of Γ are the cosets $g A(v)$ of the various groups $A(v)$, the edges are the cosets $g A(e)$ of the various groups $A(e)$ and we have $\iota g A(e)=g A(\iota e)$ and $\tau g A(e)=g a_{e} A(\tau e)$. Show that Γ is connected if and only if the subgroups $A(v)$ and elements a_{e} taken together generate A.
[It is completely acceptable to reduce this question to a result proven in class and quote that result. If you do use a result from class you should state that result, complete with the conditions under which it holds. You should assume that in case some of the groups $A(v)$ or $A(e)$ happen to be the same, for different v and e, then we take the vertices and edges of Γ to be distinct sets in bijection with the sets of cosets $g A(v)$ and $g A(e)$, not the actual sets of cosets.]
4. With the set-up of question 3 , suppose that Y has a single vertex with a number of edges which all start and finish at that vertex. Suppose that $A(v)=1$. Show that each connected component of Γ is isomorphic to the Cayley graph of the subgroup of A generated by the elements a_{e}.
5. Let $\left(G(-), Y, Y_{0}\right)$ be a graph of groups in which Y is a single edge e with its end vertices, so there is an injective group homomorphism $t_{e}: G(e) \rightarrow G(\tau e)$. Let α : $G(\tau e) \rightarrow G(\tau e)$ be a group automorphism and consider the graph of groups with
exactly the same specification except that t_{e} is replaced by $\alpha \circ t_{e}$. Show that the fundamental groups of these two graphs of groups are isomorphic.
6. Let

$$
B=\mathbb{Z}\left[\frac{1}{3}\right]=\left\{\left.\frac{a}{3^{n}} \right\rvert\, a, n \in \mathbb{Z}\right\} \subseteq \mathbb{Q} .
$$

Let $\theta: B \rightarrow B$ be the group automorphism $\theta(x)=x / 3$ and define $A=B \rtimes\langle\theta\rangle$. Let Y be a graph with a single vertex v and a single edge e, which is a loop. Put $A(v)=A(e)=\mathbb{Z} \subseteq B$ and let $a_{e}=\theta$.
(i) Consider the coset graph defined in question 3 and show that it is a tree.
(ii) Find the cycle type of the action of a generator of $A(v)$ on the set of vertices of Γ which are distance 2 from the vertex $A(v)$.
(iii) Prove that A can be expressed as an HNN extension with vertex and edge group \mathbb{Z}.

Extra Questions

7. With the set-up of question 3 , let the group A be $S L(2, \mathbb{Z})$, let Y be a single edge with its two vertices, and let $A(\iota e)=\left\langle\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\right\rangle, A(\tau e)=\left\langle\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)\right\rangle$ and $A(e)=$ $\left\langle\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\right.$ with $A_{e}=1$. Prove that the coset graph Γ of the last question is a tree. [It is completely acceptable to reduce this question to a result proven in class and quote that result. You may assume anything you want about the geometry of the action of $S L(2, \mathbb{Z})$ on the upper half plane.]
8. Is $C_{2} * C_{2}$ isomorphic to a subgroup of $S L(2, \mathbb{Z})$? Is $C_{2} * C_{2}$ isomorphic to a subgroup of $\operatorname{PSL}(2, \mathbb{Z})$?
9. Express the matrices $\left(\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right)$ and $\left(\begin{array}{ll}0 & -1 \\ 1 & -2\end{array}\right)$ as products of the generators $A=$ $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $B=\left(\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right)$ of $S L(2, \mathbb{Z})$.
