The blocks of the Steiner system S(5, 8, 24) are called *octads*.

PROPOSITION (The Leech triangle). In the Steiner system S(5, 8, 24) let $O = \{x_1, \ldots, x_8\}$ be an octad, and put $O_i = \{x_1, \ldots, x_i\}$ if $i \leq 8$. Let a_{ij} be the number of octads which intersect O_i in exactly O_j with $j \leq i$. Then $a_{ii} = \lambda_i$ and $a_{ij} = a_{i+1,j} + a_{i+1,j+1}$. These numbers form a triangle in which each term is the sum of the two below it.

								759								
							506		253							
						330		176		77						
					210		120		56		21					
				130		80		40		16		5				
			78		52		28		12		4		1			
		46		32		20		8		4		0		1		
	30		16		16		4		4		0		0		1	
30		0		16		0		4		0		0		0		1

COROLLARY. If O_1 and O_2 are octaded then $|O_1 \cap O_2| = 0, 2$ or 4.

We define a vector space \mathcal{C} over \mathbb{F}_2 . For each finite set X we denote by $\mathcal{P}(X)$ the set of subsets of X. There is a bijection

 $\mathcal{P}(X) \leftrightarrow \text{elements of } \mathbb{F}_2^{|X|}$ $A \leftrightarrow \chi_A, \text{ the characteristic function.}$

Under this bijection $\chi_A + \chi_B = \chi_{A+B}$ where $A + B = (A \cup B) - (A \cap B)$ is the symmetric difference of A and B. We now define C to be the subspace of $\mathcal{P}(X)$ spanned by the octads, where now X is the set of 24 points of S(5, 8, 24). This subspace is called the *extended* binary Golay code.

PROPOSITION. $X \in \mathcal{C}$.

Proof. $\lambda_1 = 253$ is odd, so the sum of all octads is X since $\chi_{A_1 + \dots + A_t}(x) = 1$ if and only if x lies in an odd number of the A_i .

PROPOSITION. if $Y \in \mathcal{C}$ and O is an octad then $|O \cap Y|$ is even.

Proof. We use induction on the number of terms in an expression for Y as a sum of octads. When Y is an octad the result is true from the Leech triangle, so the induction starts. If Y_1 and Y_2 lie in \mathcal{C} and have even intersections with O then $|O \cap (Y_1 + Y_2)| = |O \cap Y_1| + |O \cap Y_2| - 2|O \cap Y_1 \cap Y_2|$ and this is even.

PROPOSITION. Every 8-element set in C is an octad.

Proof. Let $Y \in \mathcal{C}$ have size 8. Any 5-element subset of Y is contained in a unique octad O, and if Y is not an octad then $|Y \cap O| = 6$. It follows that sets of the form $O \cap Y$ of size 6 where O is an octad form a Steiner system with parameters S(5, 6, 8). The number of blocks in such a Steiner system is $(8 \cdot 7 \cdot 6 \cdot 5 \cdot 4)/(6 \cdot 5 \cdot 4 \cdot 3 \cdot 2) = 28/3$ which is not an integer, so no such Steiner system can exist. Hence Y is an octad.

COROLLARY. If O_1 and O_2 are octads with $|O_1 \cap O_2| = 4$ then $O_1 + O_2$ is an octad.

COROLLARY. If O_1 and O_2 are octads with $|O_1 \cap O_2| = \emptyset$ then $X - (O_1 \cup O_2)$ is an octad.

PROPOSITION. Let S_1 be any 4-element subset of X. The five octads containing S_1 have the form $S_1 \cup S_2$, $S_1 \cup S_3, \ldots, S_1 \cup S_6$ where the S_i are 4-element subsets. These subsets have the properties that $S_1 \cup \cdots \cup S_6 = X$, and for each pair $i \neq j$, $S_i \cup S_j$ is an octad.

Such a configuration of six 4-element subsets is called a *sextet*.

Proof. The fact that there are five octads containing a four element set follows from the Leech triangle. Their union is the whole of X since any point of X may be adjoined to the four to give a five element sets which is contained in an octad. The union of any pair of the S_i is an octad since it lies in \mathcal{C} and has size 8.

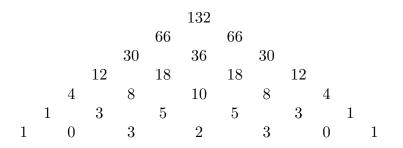
Suppose two octades O_1 and O_2 have $|O_1 \cap O_2| = 2$. The 12-element set $O_1 + O_2$ is called a *dodecad* (or sometimes an *umbral dodecad*).

PROPOSITION. A dodecad does not contain any octad.

Proof. Suppose we have octads $O_3 \subset O_1 + O_2$ where $|O_1 \cap O_2| = 2$. Then O_3 is distinct from O_1 and O_2 so $|O_1 \cap O_3| \leq 4$ and $|O_2 \cap O_3| \leq 4$ (since if an intersection had size 5 or larger the octads would be the same). Thus $|O_1 \cap O_3| = |O_2 \cap O_3| = 4$ and so $O_1 + O_3$ is an octad, and it contains 2 points which do not lie in O_2 . Now $|(O_1 + O_3) \cap O_2| = 6$, which is a contradiction.

COROLLARY. Let D be a dodecad. The subsets $O \cap D$ of size 6 with O an octad form a Steiner system S(5, 6, 12).

The special sets $O \cap D$ of size 6 are called *hexads*.



COROLLARY. The complement of a hexad in D is a hexad.

Proof. This is indicated by the 1 at the bottom left corner.

LEMMA. The complement X - D of a dodecad D is a dodecad.

Proof. Let $D = O_1 + O_2$ with $|O_1 \cap O_2| = 2$, and let O_3 be any octad disjoint from O_1 . Let O_4 be the complement $X - (O_1 \cup O_3)$. Then $O_2 \cap O_3 \subseteq O_2 - O_1$ which has size 6, so $|O_2 \cap O_3| = 0, 2$ or 4. Similarly for $O_2 \cap O_4$ and without loss of generality $|O_2 \cap O_3| = 2$ and $|O_2 \cap O_4| = 4$. Now $O_2 + O_4$ is an octad and $X - D = (O_2 + O_4) + O_3$.

LEMMA. Let D be a dodecad and O_1 an octad so that $|O_1 \cap D| = 6$. Then $O_2 = O_1 + D$ is an octad such that $D = O_1 + O_2$. The sets $O_1 \cap D$ and $O_2 \cap D$ are complementary hexads.

Proof. The set $O_2 = O_1 + D$ has size 8 and lies in C, so is an octad. Hence $O_2 + O_1 = O_1 + D + O_1 = D$.

LEMMA. The number of dodecads is 2576.

Proof. Suppose that D is a dodecad and suppose that $D = H_1 \cup H_2$ is a decomposition into complementary hexads, where $H_i = D \cap O_i$. The pair of points $O_1 \cap O_2$ completely determine this decomposition, because if also $D = O'_1 + O'_2$ is a different decomposition with $O_1 \cap O_2 = O'_1 \cap O'_2$ then both $O'_1 \cap O_1$ and $O'_1 \cap O_2$ have size at most 4, and hence $|O'_1 \cap D| \leq 4$, a contradiction.

Now D contains 66 pairs of complementary hexads. X - D contains $\binom{12}{2} = 66$ pairs of points. Each pair in X - D is associated with at most one pair of hexads. Therefore pairs of complementary hexads in D biject with pairs of points in X - D.

The number of unordered pairs of octade O_1, O_2 such that $|O_1 \cap O_2| = 2$ is

$$\frac{759 \times \binom{8}{2} \times 16}{2}$$

the 16 coming from the Leech triangle. The number of decompositions of $O_1 + O_2$ into such a pair is 66. Therefore the number of dodecads is

$$\frac{759 \times \binom{8}{2} \times 16}{2 \times 66} = 2576.$$

PROPOSITION. The sets in C are the empty set, octads, dodecads, complements of octads and X.

Proof. We show that these sets are preserved under symmetric difference with octads. We have already seen that the symmetric difference of two octads is of the specified form.

Consider now O + D were O is an octad and D is a dodecad. In this case $|O \cap D|$ is even and less than 8, and similarly with $|O \cap (X - D)|$, so $|O \cap D| = 2, 4, 6$ and $|O \cap (X - D)| = 6, 4, 2$, respectively. The case of intersections of size 6 has just been considered.

Suppose that $|D \cap O| = 4$, so |D + O| = 12. Let $H_1 = D \cap O_1$ be a hexad containing $O \cap D$, and let $H_2 = O_2 \cap D$ be the complementary hexad. Now $D = O_1 + O_2$ and $D + O = O_1 + O_2 + O = (O + O_1) + O_2$. Here $O + O_1$ is an octad, and so D + O is of the specified form.

Finally the complement of any octad may be written as a union of octads $O_1 + O_2$, and now the symmetric difference with an octad O reduces to the previous cases on considering $(O + O_1) + O_2$.

COROLLARY. $\dim_{\mathbb{F}_2} \mathcal{C} = 12.$

Proof. The number of vectors in C is $1 + 759 + 2576 + 759 + 1 = 4096 = 2^{12}$.

The rows of the following matrix form a basis for a subspace of \mathbb{F}_2^{24} which after relabeling the columns is \mathcal{C} :

0 0 0 0 $0 \ 1$ $0 \ 1$ $1 \ 0$ $1 \ 0$ $1 \ 1 \ 0$ $0 \ 0$