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Preface

These notes were written over an ten year period in conjunction with the devel-
opment of a mathematics course aimed at elementary education majors. The
course had its inception in an ad hoc committee formed to address the Mathe-
matical Association of America’s document A Call for Change, which itself was
a response to the National Council of Teachers of Mathematics’ Curriculum and
Evaluation Standards. A Call for Change calls for a restructuring of how we
teach and what we teach elementary education students.

Certain fundamental principles guided the content and pedagogy of these
notes.

i. The mathematical content is nontrivial and nonremedial. We assume the
students have basic manipulative skills. We do not teach remedial skills.
We do not teach many topics in a superficial way. The problems are, for
the most part, nontrivial. Some topics are explored to a depth often found
in junior and senior level courses. There is little emphasis placed on drill
exercises or memorization.

ii. The general topics should conform to those described in A Call for Change.
Topics include geometry, number theory, algebraic structures, analysis,
probability and statistics.

iii. As also mentioned in A Call for Change, special emphasis is given to
the interconnection of ideas, to the communication of mathematics and
to problem solving skills. Material in these notes interconnect in various
ways. Many problems emphasize communicating mathematical ideas both
orally and in writing. Many of the problems are open-ended. Some can
be solved using a variety of techniques.

iv. The course should be given in a non-threatening environment. It is in-
tended that these notes be used in a cooperative learning environment.
It is also intended that there would be less emphasis on tests and bench-
marks. The experience the students using these notes have will be taken
back to their own classrooms.

To the Students

These notes are substantially different from the mathematics textbooks you
may be familiar with. There are no large bodies of exercises at the end of each
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section. There are few “drill” exercises. There is little repetition. The text is
densely written and requires close and careful reading. Later chapters frequently
refer to results, exercises, and ideas from earlier chapters.

However, these notes are meant to give you a greater understanding of (and
maybe appreciation for) how mathematical problems are really solved. You will
often be led through a series of exercises to an understanding of some fairly
deep mathematical results. It is my belief that most students, with proper
mathematical skills, can learn some fairly sophisticated mathematics.

These notes will probably require more effort on your part than perhaps you
have put into other mathematics courses. This is on purpose. I believe that
learning mathematics takes active participation, including testing hypotheses,
constructing examples, forming strategies, and organizing ideas. All these things
you must do. The notes can’t do them for you; your instructor can’t do them
for you.

Learning mathematics is an active process. It is not possible to learn math-
ematics by reading a textbook like a novel. Good mathematics students, from
elementary school to graduate school, read a math book with pencil and paper
in hand.

Mathematics is not a collection of independent topics. It is not “Algebra I,”
“Algebra II,” “Trigonometry,” “Plane Geometry,” etc. All of mathematics is
interconnected in a fundamental way. In these notes, you will find some prob-
lems which require methods from several different mathematical “areas.” Other
problems have more than one solution, each solution coming from a different
mathematical “area.” Ideas learned in Chapter 2 will reappear in Chapter 7,
Chapter 11 and Chapter 12. Chapter 12 uses ideas from Chapter 2, Chapter 5,
Chapter 6, and Chapter 10.

The topics were chosen because they are related to material that is widely
found in elementary school curricula. However, these topics are taught at a
substantially deeper level. It is not the purpose of these notes to teach you
elementary school mathematics.

As I mentioned above, it is my belief that most students, with proper mathe-
matical skills, can learn the material in these notes. However, students without
those prerequisite skills have great difficulty. Those skills include facility at
handling fractions, powers, exponents and radicals in both numeric and alge-
braic contexts. Students should also understand the basics of analytic geometry:
graphing functions, linear and quadratic equations, the quadratic formula, etc.
They should also be somewhat familiar with logarithms and with techniques of
counting.

Let me conclude with a word about calculators. For the most part, I have
not discouraged the use of a calculator. Some exercises explicitly call for a
calculator. However, besides the mathematical skills described in the preceding
paragraph, another prerequisite is an understanding of “appropriate” calculator
use. A calculator is not a substitute for mathematical common sense. It should
not be used to divide 24 by 6, or to decide if 1

2 is larger or smaller than 1
3 .
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To the Instructors

These notes were designed to be used in a problem-solving environment. I
feel they work best in a cooperative group setting. They are not designed to
be lectured from, and I don’t think they work particularly well in that role.
Nevertheless, lectures do have a place in this course, if they are short and
appropriate.

You will surely notice the paucity of drill exercises. While some mathe-
matical topics do require drill exercises, my concentration in these notes is on
problem-solving skills. If you feel your class needs extra drill exercises in a
particular area, you are welcome to design your own.

Because there are few exercises, I expect that most classes will do a sizable
percentage of them. I leave it to your judgment which to omit.

Many of the exercises are not routine. Many have more than one solution
method. Consequently, your classroom role is much expanded over a typical
lecture-style course.

A few of the exercises have been starred. The star means two things. First,
the exercise is difficult. Second, the exercise is not in the main flow of ideas,
and can be omitted.

The last chapter, Chapter 13, is an alternative to Chapter 8.
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Chapter 1

Number Sequences

In this chapter, we will describe various kinds of sequences of numbers. We
will concentrate on the two most important kinds of sequences: arithmetic and
geometric. From these, we will learn the two fundamental ways of describing
sequences: explicit formulas and recursions. We will also learn how to sum
the terms in these sequences. Finally, we will describe some other common
sequences, including the Fibonacci numbers. Many other sequences will appear
in subsequent chapters.

1.1 Recursions for Arithmetic and Geometric
Sequences

One of the first things we learn about in mathematics is sequences of numbers.
These sequences can be very simple, for instance, the counting numbers:

{1, 2, 3, . . . }

or the even numbers:
{2, 4, 6, 8, . . . } .

Some are more complex, such as the powers of 10:

{1, 10, 100, 1000, 10000, . . . } ,

the perfect squares:
{1, 4, 9, 16, 25, . . . }

or the prime numbers:

{2, 3, 5, 7, 11, 13, . . . } .

Some include negative numbers:

{−1, −2, 3, 4, −5, −6, 7, 8, . . . }

1
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and some include fractions:

{1, 1/2, 1/3, 1/4, 1/5, . . . } .

Some can be quite difficult to understand. For instance, the digits of π:

{3, 1, 4, 1, 5, 9, . . . } .

At this point, we should issue a warning about our notation. We have given
only the first few numbers in the sequence and have left it for you to guess the
pattern. In our examples thus far, this pattern has been obvious. Sometimes
this is not the case. And even if the pattern seems obvious, we may not have the
obvious sequence in mind. For instance, we all assume that the next number in
the sequence

{1, 2, 3, . . . } (1.1)

is 4. However, suppose this sequence is really

{1, 2, 3, 1, 2, 3, 1, 2, 3, . . . }

or
{1, 2, 3, 3, 2, 1, 1, 2, 3, 3, 2, 1, . . . }

or even
{1, 2, 3, 5, 8, 13, 21, . . . }

For now, we will assume that the sequence 1.1 means the “obvious” sequence of
counting numbers.

In this and the following sections, we will concentrate on a special kind of
sequence and will only occasionally look at other, more general, sequences. You
are already familiar with many sequences of this kind—the counting numbers:

{1, 2, 3, . . . } ,

the even numbers:
{2, 4, 6, 8, . . . } ,

multiples of 5:
{5, 10, 15, 20, . . . } ,

multiples of 10:
{10, 20, 30, . . . } ,

powers of 10:
{1, 10, 100, 1000, 10000, . . . }

and powers of 2:
{1, 2, 4, 8, 16, 32, . . . } .
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We are going to consider these and other such sequences in a very general way.
The key observation is that each of these sequences is created either by successive
addition (counting numbers, even numbers, multiples of 5 or multiples of 10) or
by successive multiplication (powers of 10, powers of 2).

Successive additions can give us number sequences other than just multiples
of a given number. For example, the odd numbers

{1, 3, 5, . . . }

are constructed by successively adding 2. Similarly, successive multiplications
can give us number sequences other than powers of a given number. For exam-
ple,

{3, 6, 12, 24, 48, . . . }

is constructed by successively multiplying by 2.
Number sequences which are formed by successive additions of the same

amount are called arithmetic sequences. Those which are formed by successive
multiplication by the same amount are called geometric sequences. That is,
the difference between successive numbers in an arithmetic sequence is always
the same, while the quotient of successive numbers in a geometric sequence is
always the same. The even numbers, the odd numbers, and the multiples of 5
are examples of arithmetic sequences, while the powers of 2, the powers of 10
and the sequence

{3, 6, 12, 24, 48, . . . }

are examples of geometric sequences.

Exercise 1.1.1. Is the sequence

{2, 10, 50, 250, . . . }

arithmetic or geometric?

Exercise 1.1.2. Is the sequence

{10, 13, 16, 19, . . . }

arithmetic or geometric?

Exercise 1.1.3. For each of the following sequences, determine if the sequence
is arithmetic, geometric, both arithmetic and geometric, or neither arithmetic
nor geometric. Also, what is the next number in the sequence?

i. {0, −1, −2, −3, −4, . . . };

ii. {3, 3, 3, 3, . . . };

iii. {1, 1/2, 1/4, 1/8, . . . };

iv. {+1, −1, +1, −1, . . . };
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v. {1, 1/2, 1/3, 1/4, . . . };

vi. { 1
2 , 2, 3 1

2 , 5, 6 1
2 , . . . };

vii. {4/5, 2/15, −8/15, −6/5, −28/15, . . . };

viii. {
√

3, 3, 3
√

3, 9, 9
√

3, . . . };

ix. {+1, −2, +3, −4, +5, . . . }.

We can display number sequences in a symbolic way. We will let the letter
a with subscripts represent a sequence. That is, a1 represents the first number
in the sequence, a2 the second number, etc. (The use of a is not special. We
could have chosen b or c or α.) This gives us a convenient shorthand for number
sequences. We may now refer to the entire sequence by writing {an}. The an
here is a “generic” member of the sequence. It refers to the nth number (called
term) in the sequence. The letter n is called an index. It is also sometimes
called a subscript or a parameter. There is nothing special about the use of n
as the index. The sequence {ak} is the same as the sequence {an}.

Here is an example. Let a1 = 3, a2 = 6, a3 = 12, a4 = 24, etc. Then

{a1, a2, a3, . . . }

is the sequence
{3, 6, 12, 24, 48, . . . } .

Instead of writing
{3, 6, 12, 24, 48, . . . }

every time we wish to refer to this sequence, we now simply write {an}. This
notation also gives us a handy way to refer to individual terms in the sequence.
In {an} just described, a1 = 3, a5 = 48 and a11 = 3072.

Exercise 1.1.4. Let {an} be the sequence

{2, 10, 50, 250, . . . } .

What is a2? a5?

Exercise 1.1.5. Let {bn} be the sequence

{3, 8, 13, 18, . . . } .

What is b3? b6?

Exercise 1.1.6. Let {cn} be the sequence

{
√

3, 3, 3
√

3, 9, 9
√

3, . . . } .

What is c3? c7?
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Every arithmetic sequence can be described as follows: the nth term is
computed by adding some fixed constant (called the common difference) to the
preceding (or (n− 1)st) term. For example, if

{wn} = {1, 4, 7, 10, . . . } ,

then w7 is w6 + 3 (and w6 is w5 + 3, w5 is w4 + 3, etc.) and, more generally,

wn = wn−1 + 3 . (1.2)

This description is called a recursion. A recursion is a formula for computing
a term in a sequence from earlier terms in the sequence. In this example, the
only earlier term we need is the preceding term.

Exercise 1.1.7. Use the recursion in Equation 1.2 to compute w5, w6 and w7.

Notice that the choice of n and n − 1 as the subscripts in the recursion is
somewhat arbitrary. We are simply trying to say, using symbols, that the next
term in the sequence is gotten from the previous term by adding three. We
might also have written

wn+1 = wn + 3

to mean the same thing.
Similarly, the nth term of a geometric sequence can be described as some

fixed multiple (called the common ratio) of the (n− 1)st term. For example, if

{tn} = {3, 6, 12, 24, 48, . . . } ,

then t5 = 2t4 (and t4 = 2t3, t3 = 2t2, etc.) and, more generally,

tn = 2tn−1 . (1.3)

As above, we might also have written

tn+1 = 2tn .

Exercise 1.1.8. Use the recursion in Equation 1.3 to compute t6, t7 and t8.

Our goal is to find a recursion for a general arithmetic sequence and for a
general geometric sequence.

Exercise 1.1.9. For each of the sequences below, determine if the sequence
is arithmetic or geometric, find the common difference or ratio, and find a
recursion.

i. {un} = {2, 4, 6, 8, . . . };

ii. {vn} = {1, 3, 5, 7, . . . };

iii. {sn} = {1, 2, 4, 8, 16, . . . };
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iv. {αn} = {1/2, 2, 7/2, 5, 13/2, . . . };

v. {βn} = { 3
√

2, 2, 2 3
√

4, 4 3
√

2, 8, . . . };

vi. {γn} = {4/3, −1/4, −11/6, −41/12, −5, . . . };

vii. {An} = {π, 3π, 5π, 7π, . . . }.

Exercise 1.1.10. Find a recursion for a general arithmetic sequence {an} with
common difference d.

Exercise 1.1.11. Find a recursion for a general geometric sequence {gn} with
common ratio r.

Note that the sequences

{un} = {2, 4, 6, 8, . . . } ,

and
{vn} = {1, 3, 5, 7, . . . }

have the same recursions, although they are different sequences. More infor-
mation, besides the recursion, is needed to define the sequence unambiguously.
For arithmetic and geometric sequences, that information is the value of a single
term, called an initial condition. In most cases, that single term is the first term
of the sequence. Thus the sequence {wn} is completely defined by the recursion

wn = wn−1 + 3

and the initial condition
w1 = 1 .

Similarly, the sequence {tn} is completely defined by

tn = 2tn−1

and the initial condition
t1 = 3 .

Exercise 1.1.12. Write recursions and initial conditions for the sequences be-
low

i. {2, 7, 12, 17, 22, . . . };

ii. {2, 6, 18, 54, 162, . . . };

iii. {3, 30, 300, 3000, . . . }.

Sequences which are both arithmetic and geometric are very special. The
next two exercises classify them.



1.1. RECURSIONS 7

Exercise 1.1.13. Find some sequences which are both arithmetic and geomet-
ric.

Exercise 1.1.14. Describe all sequences which are both arithmetic and geo-
metric. Give an argument justifying your description.

Arithmetic and geometric sequences can be used as building blocks for other
arithmetic and geometric sequences. The next few exercises show one such kind
of construction.

Exercise 1.1.15. For the sequence

{vn} = {1, 3, 5, 7, . . . } ,

write down the sequence

{v1, v3, v5, v7, . . . }

and the sequence

{v5, v8, v11, v14, . . . } .

Are these sequences arithmetic? Do the same for the sequence

{wn} = {1, 4, 7, 10, . . . } .

Exercise 1.1.16. Suppose {an} is an arithmetic sequence. Show that the
sequence

{a1, a3, a5, a7, . . . }

is also an arithmetic sequence. Show that the sequence

{a5, a8, a11, a14, . . . }

is an arithmetic sequence. State and show as general a result of this type as
you can.

Exercise 1.1.17. Repeat Exercise 1.1.16, replacing the word “arithmetic” with
“geometric” everywhere.

Exercise 1.1.18. In Exercise 1.1.16 we saw that by selecting some of the terms
in an arithmetic sequence we get a new arithmetic sequence. Is it possible to
select terms from an arithmetic sequence to get a geometric sequence? Try to
do this using the even numbers as your arithmetic sequence. Find as many (if
any) geometric sequences as you can. Describe all of the geometric sequences
that you get.

Exercise 1.1.19. Can you select terms from a geometric sequence that produce
an arithmetic sequence? Try to do this using the powers of 2 as your geometric
sequence. Are there any? Why or why not? What can you say in general?
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It is possible to describe many sequences, not just arithmetic and geometric,
with recursions. For example, if

ρn = 2ρn−2 − ρn−1, ρ1 = 1, ρ2 = 2 ,

then

ρ3 = 2ρ1 − ρ2 = 2 · 1− 2 = 0

ρ4 = 2ρ2 − ρ3 = 2 · 2− 0 = 4

ρ5 = 2ρ3 − ρ4 = 2 · 0− 4 = −4 .

Exercise 1.1.20. Find ρ6 and ρ7.

Exercise 1.1.21. Write the first six terms of the sequences defined by the
following recursions and initial conditions.

i. an = an−1an−2 − 1 with a1 = 1 and a2 = 2.

ii. bn = bn−1bn−2 − 1 with b1 = 1 and b2 = 3.

iii. cn = cn−1 + n2 − n with c1 = 1.

1.2 Explicit Formulas for Arithmetic and Geo-
metric Sequences

While a recursion is a useful description of a sequence, it will not be much help
in computing, say, the 100th term in a sequence. However, we already have an
intuitive idea of how to do this for arithmetic and geometric sequences.

Exercise 1.2.1. If 2 is the first even number, what is the 12th even number?
If 5 is the first multiple of 5, what is the 112th multiple of 5? If 2 is the first
power of 2, what is the 13th power of 2? If 3 is the first multiple of 3, what is
the nth multiple of 3?

Exercise 1.2.2. If 1 is the first odd number, what is the 17th odd number?
What is the 97th number in the sequence which begins

{2, 7, 12, 17, 22, . . . } ?

What is the 16th number in the sequence

{2, 6, 18, 54, 162, . . . } ?

What is the nth number in the sequence

{2, 5, 8, 11, . . . } ?
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The last part of these two exercises should have convinced you that there is a
formula, involving n, for the nth term in an arithmetic (or geometric) sequence.
Such a formula is called an explicit formula. Our goal in this section is to find
the explicit formulas for general arithmetic and geometric sequences.

For example, if the sequence is

{wn} = {1, 4, 7, 10, . . . } ,

then the explicit formula is
wn = 3n− 2 .

To check this, note that w1 = 3 · 1− 2 = 1, w2 = 3 · 2− 2 = 4, etc.
If the sequence is

{tn} = {3, 6, 12, 24, 48, . . . } ,

then the explicit formula is
tn = 3 · 2n−1 .

To check this, note that t1 = 3 · 20 = 3, w2 = 3 · 21 = 6, etc.

Exercise 1.2.3. Find explicit formulas for each of the following sequences.
Arithmetically verify your formulas for n = 1, 2 and 3.

i. {un} = {2, 4, 6, 8, . . . };

ii. {vn} = {1, 3, 5, 7, . . . };

iii. {sn} = {1, 2, 4, 8, 16, . . . }.

Exercise 1.2.4. Find explicit formulas for each of the following sequences.

i. {2, 7, 12, 17, 22, . . . };

ii. {2, 6, 18, 54, 162, . . . };

iii. {3, 30, 300, 3000, . . . }.

Exercise 1.2.5. Write down an explicit formula for a general arithmetic se-
quence with common difference d.

Exercise 1.2.6. Write down an explicit formula for a general geometric se-
quence with a common ratio r.

Exercise 1.2.7. If a sequence has an explicit formula which follows your rule
for arithmetic/geometric sequences, is it arithmetic/geometric? Why?

Exercise 1.2.8. For each of the following sequences, find an explicit formula.

i. {un} = {2, 4, 6, 8, . . . };

ii. {vn} = {1, 3, 5, 7, . . . };



10 CHAPTER 1. NUMBER SEQUENCES

iii. {sn} = {1, 2, 4, 8, 16, . . . };

iv. {αn} = {1/2, 2, 7/2, 5, 13/2, . . . };

v. {βn} = { 3
√

2, 2, 2 3
√

4, 4 3
√

2, 8, . . . };

vi. {γn} = {4/3, −1/4, −11/6, −41/12, −5, . . . };

vii. {An} = {π, 3π, 5π, 7π, . . . }.

Recursions and explicit formulas are the two most common ways to define
precisely a number sequence.

Exercise 1.2.9. Explain the difference between a recursion and an explicit
formula.

Exercise 1.2.10. Which of the following formulas is an explicit formula and
which is a recursion?

an = n2 + a1 + a10, for n > 10,

bk = k + b1 + b2 + · · ·+ bk−1, for k > 1,

cn = 1 + 2 + 3 + · · ·+ n2, for n ≥ 1.

The explicit formulas can be used in several ways to solve problems involving
arithmetic and geometric sequences.

Exercise 1.2.11. If the sixth term in an arithmetic sequence is 100 and the
first term is 3, what is the 20th term?

Exercise 1.2.12. If the nth term in an arithmetic sequence is 570, the first
term is 3, and that the fifth term is 31, what is n?

Exercise 1.2.13. If second term in a geometric sequence is 9 and the fifth term
is 3, what is the tenth term?

Arithmetic and geometric are only two kinds of sequences. We can think of
many other number sequences. Some of these also have explicit formulas. For
example, the explicit formula

tn =
n2 − 1

n2 + 1

yields the sequence

{tn} = {0, 3/5, 4/5, 15/17, 12/13, . . . } .
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Exercise 1.2.14. Find an explicit formula for each of these sequences:

{0

1
,

1

2
,

2

3
,

3

4
, . . . } ,

{0, 3, 8, 15, 24, 35, 48, 63, . . . } .

*Exercise 1.2.15. Find an explicit formula for this sequence:

{0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, . . . }

(Hint: use base 2 logarithms).

We can now summarize the recursions and explicit formulas for arithmetic
and geometric sequences.

For an arithmetic sequence {an} with common difference d, the recursion
is

an = an−1 + d

while the explicit formula is

an = a1 + d(n− 1) .

For a geometric sequence {gn} with common ratio r, the recursion is

gn = rgn−1

while the explicit formula is

gn = g1r
n−1 .

The term a1 in the sequence {an} refers to the first term in the sequence.
That is, the sequence is

{a1, a2, a3, . . . } .
However, sometimes, as a matter of convenience, we want the first term to be
indexed by 0, so that the sequence is

{b0, b1, b2, . . . } .

For example, we might describe the sequence

{3, 6, 12, 24, 48, . . . }

as
{a1, a2, a3, . . . } ,

so that a1 = 3, a2 = 6, etc. But we could also describe it as

{b0, b1, b2, . . . }

with b0 = 3, b1 = 6, etc. When there could be confusion about what index is
used for the first term in the sequence {an}, we write {an}n=1,2,....
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Exercise 1.2.16. If the sequence is

{bk}k=0,1,2,... = {4, 7, 10, . . . } ,

find b4, b6 and bn.

Exercise 1.2.17. If the sequence is

{cl}l=0,1,2,... = {4, 6, 9, 27/2, . . . } ,

find c4, c6 and cn.

Exercise 1.2.18. What happens to the recursion for an arithmetic sequence if
the indexing begins at 0 instead of 1?

Exercise 1.2.19. What happens to the explicit formula for an arithmetic se-
quence if the indexing begins at 0 instead of 1?

1.3 Summing Arithmetic Sequences

Arithmetic and geometric sequences form the building blocks for other interest-
ing sequences. For example, we can create a new sequence by adding the terms
in an arithmetic sequence. Suppose {an} is an arithmetic sequence. What can
we say about the sequences {sn} where

s1 = a1,

s2 = a1 + a2,

s3 = a1 + a2 + a3,

s4 = a1 + a2 + a3 + a4,

... ?

In the special case that

{an} = {1, 2, 3, 4, . . . } ,

there is a simple formula for the corresponding sn and a nice proof. In this case,

s1 = 1,

s2 = 1 + 2 = 3,

s3 = 1 + 2 + 3 = 6,

s4 = 1 + 2 + 3 + 4 = 10

and s5 = 1 + 2 + 3 + 4 + 5 = 15 .

The formula for the sum of the first n counting numbers is

sn = 1 + 2 + 3 + · · ·+ n = n(n+ 1)/2 . (1.4)
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Exercise 1.3.1. Check that Equation (1.4) is correct for the five values s1, s2,
s3, s4, and s5 above.

Figure 1.1 describes s1, s2, s3 and s4. The black dots in each row represent
the counting numbers. The first diagram represents s1 = 1. The second diagram
represents s2 = 1 + 2. The third diagram represents s3 = 1 + 2 + 3, etc.

◦
•

◦ ◦
• ◦
• •

◦ ◦ ◦
• ◦ ◦
• • ◦
• • •

◦ ◦ ◦ ◦
• ◦ ◦ ◦
• • ◦ ◦
• • • ◦
• • • •

Figure 1.1: Triangular numbers

Exercise 1.3.2. Use Figure 1.1 to give a proof of Equation (1.4).

Because of the diagrams in Figure 1.1, the sequence {sn} is called the se-
quence of triangular numbers.

The sequence of sums can be computed for every arithmetic sequence. Here
are two approaches:

i. Write the sum forwards and backwards and add corresponding terms.

ii. Use the formula for the counting sequence given above.

For example, suppose we want to sum the first twenty terms of the arithmetic
sequence

{9, 13, 17, . . . } .

The twentieth term is 9 + 4(20− 1) = 85, so the sum is

9 + 13 + 17 + · · ·+ 85 .

Now write this sum forwards and backwards and add corresponding terms:

9 + 13 + 17+ · · ·+ 77 + 81 + 85

+85 + 81 + 77+ · · ·+ 17 + 13 + 9

= 94 + 94 + 94+ · · ·+ 94 + 94 + 94 = 94 · 20 = 1880 .

So
2(9 + 13 + 17 + · · ·+ 85) = 1880

or
9 + 13 + 17 + · · ·+ 85 = 940 .
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For the second method, we will manipulate the sum so as to be able to use
Equation (1.4):

9 + 13 + · · ·+ 85 = (9 + 0) + (9 + 4) + (9 + 8) + · · ·+ (9 + 19 · 4)

= 9 · 20 + (4 + 8 + · · ·+ 19 · 4)

= 180 + 4(1 + 2 + · · ·+ 19)

= 180 + 4
19 · 20

2
= 180 + 760

= 940 .

Notice that Equation (1.4) was used for n = 19, even though the problem
was to find the sum of the first twenty terms of the sequence. This is because
the counting sequence which emerged in the calculation began at 0, not 1.

Exercise 1.3.3. Find the sum of the first 100 terms of the arithmetic sequence

{3, 4, 5, 6, . . . }

using both methods.

Exercise 1.3.4. Find the sum of the first 75 terms of the arithmetic sequence

{3, 6, 9, 12, . . . }

using both methods.

Exercise 1.3.5. Find the sum of the first 50 terms of the arithmetic sequence

{5, 8, 11, 14, . . . }

using both methods.

Exercise 1.3.6. Using the first method, derive the following formula:

The formula for the sum of the first n terms of the arithmetic sequence
{an} is

sn =
n

2
(a1 + an) .

Exercise 1.3.7. From the previous exercise and the explicit formula for an
arithmetic sequence, derive the following alternate formula:

Another formula for the sum of the first n terms of the arithmetic sequence
{an} with common difference d is

sn = na1 + d
n(n− 1)

2
.
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The formula for the sum of an arithmetic sequence can be combined with
the explicit formula in the previous section to solve the following problems.

Exercise 1.3.8. If you were told that the nth term in an arithmetic sequence
is 570, that the first term is 3, and that the fifth term is 31, what would you
say is the sum of these n terms?

Exercise 1.3.9. Suppose the sum of the first 16 terms of an arithmetic sequence
is 440, while the sum of the first 8 terms is 124. What is the 16th term?

Exercise 1.3.10. What is the sum of the last 100 terms in the arithmetic
sequence {1, 5, . . . , 2001}?

Exercise 1.3.11. What is the sum of the odd numbers between 101 and 999,
including 101 and 999?

Exercise 1.3.12. Sum the even numbers from −48 to 98.

*Exercise 1.3.13. Suppose the second term in an arithmetic sequence is 2 and
the nth term is 32, while the sum of the first n terms is 715/2. Find n.

Triangular numbers are depicted in the first picture in Figure 1.2 below. For
each of the following triangles we are going to count the number of dots on a side
and the number of dots “enclosed” (that is, on the perimeter or in the interior)
by the triangle. For the triangle ABC, these numbers are 2 on a side and 3
enclosed. For the triangle ADE, they are 3 and 6. For the triangle AFG, they
are 4 and 10. Finally, for the triangle AHI, they are 5 and 15. Let’s include the
“triangle” A, which has 1 and 1 as its numbers. The sequence of the number of
circles enclosed then begins {1, 3, 6, 10, 15, . . . } and is evidently the sequence
of triangular numbers (since each interior number includes the previous interior
number plus the number of dots on the new side).

In a similar manner, the second picture in Figure 1.2 depicts the square
numbers. The numbers of dots on each side again are 1, 2, 3, 4 and 5, while the
numbers of enclosed dots are the perfect squares 1, 4, 9, 16, and 25.

The third picture in Figure 1.2 depicts pentagonal numbers. They are

{1, 5, 12, 22, 35, . . . } .

The first is 1, the second is 1+4, the third is 1+4+7, the fourth is 1+4+7+10,
etc.

Exercise 1.3.14. Use the fact that the pentagonal numbers are the sequence of
sums of an arithmetic sequence to find a formula for the nth pentagonal number.

*Exercise 1.3.15. Write down a sequence of pictures which describes hexag-
onal numbers. Find a formula for them. Compute the formula for the nth
k-polygonal number.
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A
B

C

D

E

F

G

H

I

Figure 1.2: Triangular, square and pentagonal numbers
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1.4 Summing Geometric Sequences

With a little bit of algebra, we can also compute the sum sequence for geometric
sequences. Notice that

(r + 1)(r − 1) = r2 − 1,

(r2 + r + 1)(r − 1) = r3 − 1,

(r3 + r2 + r + 1)(r − 1) = r4 − 1 .

Exercise 1.4.1. Check the algebra in the above equations by doing the poly-
nomial arithmetic.

In general,

(rn−1 + rn−2 + · · ·+ r2 + r + 1)(r − 1) = rn − 1 , (1.5)

or, equivalently,

rn−1 + rn−2 + · · ·+ r2 + r + 1 =
rn − 1

r − 1
, r 6= 1 . (1.6)

Exercise 1.4.2. Explain why Equation (1.5) is true.

Exercise 1.4.3. Explain why Equation (1.6) follows from Equation (1.5).

Let’s use Equation (1.6) to find the sum of the first 10 terms of the geometric
sequence

{2, 10, 50, 250, . . . } .

Write
2 + 10 + 50 + · · ·+ 2 · 59 = 2(1 + 5 + 52 + · · ·+ 59)

by factoring out the first term 2. Next, use Equation (1.6) with r = 5 to get

2(1 + 5 + 52 + · · ·+ 59) =
2(510 − 1)

5− 1
.

Finally, simplify this last expression:

2(510 − 1)

5− 1
=

510 − 1

2
.

Exercise 1.4.4. Do a similar calculation to compute the sum of the first 20
terms of this sequence.

Exercise 1.4.5. Based on the preceding discussion and the previous exercise,
find a formula for the sum of the first n terms of this sequence.

Exercise 1.4.6. Derive a formula for the sum of the first 20 terms of a geometric
sequence whose first term is g1 and whose common ratio is r.
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Exercise 1.4.7. Derive a formula for the sum of the first n terms of a geometric
sequence whose first term is g1 and whose common ratio is r.

If the absolute value of the common ratio is less than 1, then all the terms of
the geometric sequence can be added up. The next set of exercises shows how
this works.

Exercise 1.4.8. Find the sum of the first 10 terms of the geometric sequence
{1, 1/2, 1/4, . . . }. Find the sum of the first 100 terms of the same sequence.
Do the same things for the geometric sequence {1, 1/3, 1/9, . . . }.

Exercise 1.4.9. Find the sum of the first n terms of the geometric sequence
{1, 1/2, 1/4, . . . }. Find the sum of the first n terms of the geometric sequence
{1, 1/3, 1/9, . . . }.

Exercise 1.4.10. What happens to (1/2)n as n grows large? What happens
to the sum of the first n terms of the geometric sequence {1, 1/2, 1/4, . . . } as
n grows large?

Exercise 1.4.11. What happens to the sum of the first n terms of the geometric
sequence {1, 1/3, 1/9, . . . } as n grows large?

From Exercise 1.4.7 we have the following.

The formula for the sum of the first n terms of the geometric sequence
{gn} is

sn = g1 ·
rn − 1

r − 1
. (1.7)

Exercise 1.4.12. Use Equation 1.7 to prove

sn = g1 ·
1− rn

1− r
.

Exercise 1.4.13. In the equation in Exercise 1.4.12, what happens to rn as n
grows large, when |r| < 1? Show that the sequence of sums, {s1, s2, s3, . . . },
for a geometric sequence {gn} gets close to a certain value as n gets large, if
|r| < 1.

The previous exercise shows that if {gn} is a geometric sequence with com-
mon ration r and if |r| < 1, then

g1 + g2 + g3 + . . .

gets close to a certain value which we will call s∞. In fact, a consequence of
this exercise is the following:

The formula for “all” the terms in a geometric sequence is

s∞ = g1 ·
1

1− r
.
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Exercise 1.4.14. Find the “infinite” sums

1 + 1/2 + 1/4 + 1/8 + · · ·

and
1 + 1/3 + 1/9 + 1/27 + · · · .

Exercise 1.4.15. Find the “infinite” sums

3 + 2 + 4/3 + 8/9 + 16/27 + · · ·

and
1− 1/2 + 1/4− 1/8 + 1/16− 1/32 + · · · .

Exercise 1.4.16. Find the “infinite” sum

4− 4√
3

+
4

3
− 4

3
√

3
+ · · · .

1.5 Examples of Arithmetic and Geometric Se-
quences

Arithmetic and geometric sequences have many applications. Here are several
examples. In each example, you will have to determine whether an arithmetic
or a geometric sequence is appropriate. Sometimes you will have to sum the
sequence.

Exercise 1.5.1. A ladder with 15 rungs is tapered so that the top rung is 12
inches wide while the bottom rung is 18 inches wide. Find the total length of
all the rungs.

Exercise 1.5.2. Puff pastry is made as follows. The dough is rolled into a
rectangle. Then two-thirds of the rectangle is buttered. The unbuttered third
is folded over, followed by the other buttered third (like a letter), to get a stack
of two butter layers sandwiched between three dough layers. See Figure 1.3.
Now this new rectangle of dough is rolled out and the process is repeated. If
this buttering, folding and rolling is done six times, how many layers of dough
are there in the final pastry?

Exercise 1.5.3. If a clock chimes the hour on the hour (e.g., it chimes five
times at 5 o’clock), and it also chimes once on the half-hour, how many times
does it chime from 12:15 p.m. to 12:15 p.m. the next day?

An important application of geometric sequences is compound interest. Sup-
pose we invest $2 at 5% per year. In the first year, our two dollars earns 10
cents interest. If that dime is invested along with the two dollars for the second
year, the original two dollars earns another dime and the dime interest from
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fold 1 fold 2

butterbutter

Figure 1.3: Puff pastry

the first year earns .10 · .05. This interest on the interest is called compound
interest. So after the second year, we have our original two dollars, two dimes
of interest on those two dollars, and $.005 interest on interest. This is the same
as 2 · 1.05 · 1.05 since

2 · (1 + .05) · (1 + .05) = 2 · (1 + 2 · .05 + .052)

= 2 · 1 + 2 · .10 + 2 · .0025

= 2 + .20 + .005 .

For the third year, we now have 2 · 1.052 invested, which earns 5%. So we
have $2 · 1.053 = $2.31525 after three years.

If our interest is compounded every six months, then our $2 earns 2.5% in
the first six months, and the $2 plus this interest earns another 2.5% in the next
six months. Thus, after one year, we have $2 · 1.025 · 1.025 = $2.10125. After
two years, we will have $2 · 1.0254 ≈ $2.20763. And after three years, we will
have $2 · 1.0256 ≈ $2.31939.

Exercise 1.5.4. Suppose in 1787 George Washington invested $25 at 4% in-
terest, compounded yearly. What would his descendants have today? What if
the compounding was done quarterly instead of yearly? Daily? Every second?

At 6 p.m., the minute hand of a standard clock points straight up and the
hour hand points straight down. Thirty minutes later, the minute hand “catches
up” to where the hour hand was at 6 p.m. However, the hour hand has moved
halfway between the 6 and the 7. Two and one-half minutes later, the minute
hand reaches that position, but the hour hand has moved again.

Exercise 1.5.5. What time is it when the minute hand “catches” the hour
hand? That is, at what time between 6 p.m. and 7 p.m. are the minute hand
and the hour hand pointing in exactly the same direction? Solve this problem
using an appropriate sequence. Can you find other ways to solve it?
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Recall that to solve equations of the form 3n = 10 or 2y = 5 requires the use
of logarithms.

Exercise 1.5.6. Solve for n: 3n = 10. Solve for y: 2y = 5.

Also note that sometimes the logarithms are particularly easy to calculate.

Exercise 1.5.7. Without using a calculator, solve 9z = 27 for z.

You will need to use logarithms in parts of the following exercise.

Exercise 1.5.8. A biologist is culturing a certain bacteria. Every three days
the culture doubles in size. If five grams are present initially, how many grams
will be present in six days? In nine days? In 3k days? In two days? How many
days (or fraction thereof) will it take for the culture to quadruple in size? To
triple in size?

Exercise 1.5.9. A pile of logs is made by stacking 40 logs in the bottom layer,
39 in the next layer (in the gaps between the 40 logs on the bottom), 38 in the
next and so on. How many logs are there in all if there are ten layers in the
stack?

Exercise 1.5.10. Before he can marry the princess, a potential suitor must
pay a small sum to the king. On the first square of a checkerboard he must put
a penny; on the second square, two pennies; on the third, four pennies; on the
fourth, eight pennies; and so on. How many pennies must he pay the king? (A
checkerboard is 8× 8.)

Another application of geometric sequences is analyzing chain letters. Sup-
pose you receive a chain letter which contains a list of six names. Suppose this
letter instructs you to (1) send $10 to the person at the top of the list, (2)
make five copies of the letter, removing the top person’s name from the list, and
adding your name to the bottom of the list, and (3) send the five copies to five
of your friends. The letter claims that the chain has been unbroken for dozens
of years. And it warns that terrible things will happen to you if you “break the
chain”.

Exercise 1.5.11. Suppose one person starts the process by creating such a
letter with six fictitious names and sending it to twenty-five people at random.
If it takes about one month to perform the above steps, how long would it be
before a letter has been sent to every person on the planet? (You will have to
estimate the number of people on the planet. Assume that if a person is sent a
letter, that person will not be sent another. Finally, you may use logs to find
your answer, although it is not necessary.)

Exercise 1.5.12. Obviously, not everyone on the planet receives such letters.
What do you think happens? What about the claim that the chain has been
unbroken for dozens of years? Who makes money on such schemes? Who loses
money? How do you think a chain letter like this starts?
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Certain fractals lead to geometric sequences. A fractal snowflake pattern is
produced step by step as shown in Figure 1.4. Start with an equilateral triangle
whose area is one square inch. At each stage, a new equilateral triangle is pasted
onto each edge of the figure. The edges of the new triangles are 1/3 the size of
the edge that it is pasted on.

Figure 1.4: Three fractal snowflakes

*Exercise 1.5.13. How many triangles are added at the nth stage? What
is the total area of the snowflake at the nth stage? (Note: if one equilateral
triangle has an edge 1/3 the size of another, its area is 1/9 the area of the other.)

*Exercise 1.5.14. Suppose a is the length of the perimeter of the triangle in
the first picture in Figure 1.4. What is the length of the perimeter in the second
picture? In the third picture? At the nth stage?

These last two problems describe a fractal “path” with the property that
the area enclosed is finite, while the length of the path is infinite! Figure 1.5
shows this fractal path after five steps.

1.6 Fibonacci Numbers

Of course there are many sequences of numbers other than arithmetic and ge-
ometric. Some are easily described by an explicit formula. For example, the
sequence of squares is {1, 4, 9, 16, . . . }. The nth term in this sequence is n2.
Another example is the triangular numbers, {1, 3, 6, 10, 15, . . . }. The nth
term in this sequence is n(n+ 1)/2.

Other sequences are more easily described by recursions. An example of
such a sequence is the Fibonacci sequence.

In Figure 1.6, we have drawn all possible “tilings” of 2× 1, 2× 2, 2× 3 and
2 × 4 rectangles, using only 2 × 1 dominoes. The first rectangle (on the left)
has dimensions 2× 1, so there is only one possible tiling. The second rectangle
has dimensions 2 × 2, and there are two possible tilings, shown in the second
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Figure 1.5: Fractal snowflake



24 CHAPTER 1. NUMBER SEQUENCES

column. The third rectangle is 2×3, and there are three possible tilings, shown
in the third column. Finally, the last rectangle (on the right) has dimensions
2× 4, and there are five tilings, shown in the last column.

Figure 1.6: Domino tilings of 2× 1, 2× 2, 2× 3 and 2× 4 rectangles

Exercise 1.6.1. Draw all possible tilings for 2× 5 and 2× 6 rectangles.

Exercise 1.6.2. Let fn denote the number of tilings for a 2 × n grid. Thus,
f1 = 1, f2 = 2, f3 = 3, and f4 = 5. Using Figures 1.7 and 1.8 as a guide,
explain why f3 = f2 + f1 and f4 = f3 + f2.

Exercise 1.6.3. Generalize your arguments in the previous exercise to show
that

fn = fn−1 + fn−2

for all n ≥ 3, not just n = 3 and n = 4. Thus, for example, your argument
should show why f200 = f199 + f198, even though you do not know any of the
values f200, f199 and f198.

Exercise 1.6.4. The sequence {fn} is called the Fibonacci sequence and the
terms fn are called Fibonacci numbers. We usually let f0 = 1 and start the
sequence at index 0. Why is this o.k.? What initial conditions must we have to
define the sequence?

There are dozens of formulas involving the Fibonacci numbers. Here are two
examples.
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Figure 1.7: Construction of f3
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Figure 1.8: Construction of f4
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Exercise 1.6.5. Explain each step in the following calculations:

f6 = f5 + f4

= f4 + f4 + f3

= f4 + f3 + f3 + f2

= f4 + f3 + f2 + f2 + f1

= f4 + f3 + f2 + f1 + f1 + f0

= f4 + f3 + f2 + f1 + f0 + 1 .

Now prove:
f0 + f1 + f2 + · · ·+ fn = fn+2 − 1 .

Exercise 1.6.6. Explain each step in the following calculations:

f5 · f4 = (f4 + f3) · f4 = f2
4 + f4 · f3

= f2
4 + (f3 + f2) · f3 = f2

4 + f2
3 + f3 · f2

= f2
4 + f2

3 + (f2 + f1) · f2 = f2
4 + f2

3 + f2
2 + f2 · f1

= f2
4 + f2

3 + f2
2 + (f1 + f0) · f1 = f2

4 + f2
3 + f2

2 + f2
1 + f1 · f0

= f2
4 + f2

3 + f2
2 + f2

1 + f2
0 .

Now prove:
f2

0 + f2
1 + f2

2 + · · ·+ f2
n = fn · fn+1

One of the most beautiful properties of the Fibonacci numbers is that the
ratio of successive numbers tends to the golden mean, (1 +

√
5)/2. We begin by

dividing the recursion
fn = fn−1 + fn−2

by fn−1, to get

fn
fn−1

= 1 +
fn−2

fn−1

= 1 +
1

fn−1

fn−2

.

Now replace fn/fn−1 by an. That is, an is the ratio of two successive terms in
the Fibonacci sequence. We would like to show that an gets close to the golden
mean if n grows large.

If an replaces fn/fn−1, then an−1 replaces fn−1/fn−2. So we now have

an = 1 +
1

an−1
. (1.8)

Now suppose an gets close to some real number a as n gets large. If an gets
close to a, then Equation 1.8 becomes

a = 1 +
1

a
. (1.9)



1.7. TOWER OF HANOI 27

Exercise 1.6.7. Solve Equation (1.9) for a.

There is also a beautiful explicit formula for the Fibonacci numbers. It is
outside the scope of this chapter to derive it, but we can state it. First, let a
and b be the roots of the quadratic equation x2 − x− 1 = 0, with a > b. (Note
that a is exactly the golden mean described Exercise 1.6.7.) Then

fn =
an+1 − bn+1

√
5

. (1.10)

Exercise 1.6.8. Find a and b. Use Equation (1.10) to compute f0, f1, f2

and f3 and compare with the values for these numbers computed earlier in this
section.

1.7 Tower of Hanoi

The Tower of Hanoi game is a puzzle which consists of three pegs and several
circular disks, all of different sizes, which fit on the pegs like wheels on an axle.
You are allowed to move the disks one at a time from one peg to another peg,
always requiring that smaller disks be placed on top of larger ones. The puzzle
is to move all the disks from one peg to a second peg in as few moves as possible.

Figure 1.9 shows the seven moves required to move three disks.

Exercise 1.7.1. How many moves are required to move four disks. Note that
one way to do it is to move the top three disks to the third peg, then move the
bottom disk to the second peg, and then move the top three disks to the second
peg.

Exercise 1.7.2. Let Tn be the number of moves required to move n disks.
Write down T1, T2, T3 and T4. Use the method outlined in Exercise 1.7.1 to
show

Tn = 2Tn−1 + 1 . (1.11)

Use this recursion to compute Tn for n = 5, 6, . . . , 10.

To find an explicit formula for Tn, we construct a new sequence from the
sequence {Tn}. Notice that Equation 1.11 can be rewritten as

Tn + 1 = 2Tn−1 + 2 (1.12)

= 2(Tn−1 + 1) . (1.13)

This motivates us to let An = Tn + 1.

Exercise 1.7.3. Use Equation (1.12) to show An = 2An−1. What kind of a
sequence is {An}? What is A1 (the initial condition)? Find the explicit formula
for An.
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Figure 1.9: Tower of Hanoi
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Exercise 1.7.4. Use the explicit formula for An you found in the previous
exercise together with the definition of An above to give an explicit formula for
Tn.

1.8 Divisions of a plane

If we draw a line across a plane, the plane is divided into two regions (see the
first picture in Figure 1.10). If we draw a second, nonparallel, line, the plane is
divided into four regions (see the second picture in Figure 1.10). If we draw a
third line, not parallel to either of the first two, and not intersecting them at
their intersection point, the plane is divided into seven regions (see the third
picture in Figure 1.10). ���������������yyyyyyyyyyyyyyy������������yyyyyyyyyyyy
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Figure 1.10: Dividing a plane

Exercise 1.8.1. Into how many regions will the plane be divided by four “gen-
eral” lines? (“General” means no three intersecting at a common point and
no two parallel.) Can you do five lines—don’t try to draw them; instead, how
many new regions are created by the fifth line?

Exercise 1.8.2. Suppose Rn is the number of regions created by n general
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lines. Write down R0, R1, R2, R3, R4 and R5. Note that

R1 = R0 + 1

R2 = R1 + 2

R3 = R2 + 3

R4 = R3 + 4

R5 = R4 + 5 .

Exercise 1.8.3. Write down a recursion for Rn. Compute Rn for n = 6, 7, . . . ,
10.

Exercise 1.8.4. From your data in Exercises 1.8.2 and 1.8.3, guess an explicit
formula (try subtracting one from each number).

Exercise 1.8.5. Explain each step in the following sequence of calculations:

R6 = R5 + 6

= R4 + 5 + 6

= R3 + 4 + 5 + 6

= R2 + 3 + 4 + 5 + 6

= R1 + 2 + 3 + 4 + 5 + 6

= R0 + 1 + 2 + 3 + 4 + 5 + 6

= 1 + 1 + 2 + 3 + 4 + 5 + 6

= 1 +
7 · 6

2
.

Use these calculations to prove your guess in the previous exercise.



Chapter 2

Counting

In this chapter, we will describe a variety of counting techniques and principles.
These include the fundamental addition and multiplication principles. We will
then learn how to count ordered and unordered collections of objects, and how
to count collections where some or all elements are repeated. We will also learn
how to use counting arguments to show two sets have the same size.

2.1 When to Add and When to Multiply

Three fundamental principles govern almost all of the counting techniques and
formulas described in this chapter. These are the Addition Principle, the Mul-
tiplication Principle, and the Principle of One-to-One Correspondences.

The Addition Principle is especially easy. It states that the number of ele-
ments in the union of two sets which do not intersect is the sum of the number
of elements in each set. That is, if A is one set and B is another, and A ∩B is
empty, then n(A∪B) = n(A) + n(B), where n(A) is the number of elements in
the set A.

This extends to unions of sets which do intersect as follows. The number
of elements in the union of two sets is the sum of the number of elements in
each set minus the number of elements in the intersection of the two sets. Using
the set language above, n(A ∪ B) = n(A) + n(B) − n(A ∩ B). This is because
elements in the intersection set are counted in both n(A) and n(B). Since they
have been counted twice, we must subtract them.

For example, if 13 children are blue-eyed, 6 are left-handed, and 2 are blue-
eyed and left-handed, then the number of children who are either blue-eyed or
left-handed is 13 + 6− 2 = 17.

The Multiplication Principle is harder to state, but usually easier to apply.
It states that to count objects which are constructed in several steps, count the
number of ways to perform each step and take the product.

For example, Minnesota license plates have three letters followed by three
numbers. Therefore, by the multiplication principle, the number of possible

31
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license plates is 26 × 26 × 26 × 10 × 10 × 10. This is because we construct a
license plate by choosing a letter for the first position, then choosing a letter for
the second position, etc. There are 26 ways to perform the first step, then 26
ways to perform the second step, etc.

It is useful to remember that certain phrases or words naturally imply the
use of the addition principle or the multiplication principle. The word “or”
frequently means the addition principle is involved (“the number of children
who are either blue-eyed or left-handed”). The phrases “for each” and “and
then” usually mean the multiplication principle is involved. For instance, for
each choice of 26 letters in the first position on the license plate there are 26
possible letters for the second position.

These two principles are often used together, sometimes in rather compli-
cated ways. For example, let’s count license plates which begin with T or TT
(but not TTT). Note the connector “or.” Our plan is first to count the plates
that begin with T (but not TT) and then add the number of the plates that
begin with TT (but not TTT). We add these numbers since we have divided
the set we wish to count into these two disjoint cases.

To count each case, we apply the multiplication principle. In the first case,
a T must be placed in the first position. There are 25 possible letters for the
second position (T is not allowed), and for each of these choices, there are 26
possible letters for the third position. Using the multiplication principle again
to put together the numbers and letters, we have 25× 26× 10× 10× 10 plates
in this case.

In the second case, TT must be in the first two positions. There are then
25 possible letters for the third position. By the multiplication principle, there
are 25× 10× 10× 10 plates in this case.

Adding the two cases gives 25× 27× 10× 10× 10.

Alternatively, we could count all the plates which begin with T and subtract
the ones with TTT. The number in the former case is 26× 26× 10× 10× 10.
The number in the latter case is 10× 10× 10. The difference is

26× 26× 10× 10× 10− 10× 10× 10 = (26× 26− 1)× 10× 10× 10

= 25× 27× 10× 10× 10 .

Exercise 2.1.1. Actually in Minnesota, the license plates have three letters
followed by three numbers or three numbers followed by three letters. How
many possible license plates are there?

In the following exercises, we will assume that the license plates are three
letters followed by three numbers.

Exercise 2.1.2. How many license plates have all distinct numbers and letters?

Exercise 2.1.3. How many license plates have a “double letter”, that is, two
adjacent equal letters? A “double number”? (Note: triple letters are also double
letters and triple numbers are also double numbers.)
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Exercise 2.1.4. How many license plates have a double letter and a double
number? A double letter or a double number?

Suppose there are 15 different apples and 10 different pears. How many ways
are there for Jack to pick an apple or a pear and then for Jill to pick an apple
or a pear? The “or” connectors tell us that an addition is involved. The “and
then” connector tells us a multiplication is involved. Jack has 25 different fruit
to choose from (15 + 10). Jill then has 24 different fruit to choose from (since
Jack has already taken one). So the number of ways is 25× 24.

In Exercises 2.1.5 to 2.1.7, pay particular attention to the conjunctions “and”
and “or.”

Exercise 2.1.5. How many ways are there for Jack to pick an apple and a pear
and then for Jill to pick an apple and a pear?

Exercise 2.1.6. How many ways are there for Jack to pick an apple or a pear
and then for Jill to pick an apple and a pear?

Exercise 2.1.7. How many ways are there for Jack to pick an apple and a pear
and then for Jill to pick an apple or a pear?

How many subsets of a set of size 3 are there? For instance, if the set
is {A,B,C}, the subsets are ∅, {A}, {B}, {C}, {A,B}, {A,C}, {B,C}, and
{A,B,C}. Picking such a subset can be thought of as a three-step process.
First decide whether A is going to be in the subset. Then decide whether B is
going to be in the subset. Finally, decide whether C is going to be in the subset.
There are two choices for each decision (either A is in the subset or it is not).
By the multiplication principle, there are 2× 2× 2 = 8 subsets of {A,B,C}.

Exercise 2.1.8. How many subsets of a set of size 4 are there? Of a set of size
5? Of a set of size n?

The Principle of One-to-One Correspondences states that if the elements of
two sets can be placed into one-to-one correspondence, then they have the same
number of elements. We will frequently use this principle when we want to show
two sets are counted by the same number, even though we may not know what
that number is.

As an example, Exercise 2.1.8 may be rephrased as a license plate problem.
Suppose we wish to count “license plates” with only three positions and only the
digits 0 and 1 are allowed. Using our previous methods, there are 2× 2× 2 = 8
such “license plates.” Now let’s establish a one-to-one correspondence between
these license plates and the subsets of {A,B,C}. Starting with a license plate,
we construct a subset as follows. If the license plate has a 1 in the first position,
put A in the subset. If the plate has a 0 in the first position, then A is not
in the subset. Similarly, if the plate has a 1 in the second position, place B in
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the subset. If the plate has a 0 in the second position, then B is not in the
subset. Finally, the third position determines whether C is in the subset. For
example, the license plate 011 corresponds to the subset {B,C}. Therefore, by
the principle of one-to-one correspondences, the number of subsets of a set with
three elements is the same as the number of such license plates.

Exercise 2.1.9. In a similar fashion, the subsets of {A,B,C,D,E} correspond
to license plates made up of five digits, all 0’s or 1’s. What subset corresponds
to 10011? What license plate corresponds to {B,C,E}?

This particular one-to-one correspondence will play an important role in
Section 2.3

We conclude this section with a very practical “license plate” problem.

Exercise 2.1.10. At one time, every telephone area code had the properties
that the first digit was any number except 0 or 1, the middle digit was always 0
or 1 and the last digit could never be the same as the middle digit. How many
possible area codes were there? Recently, the restrictions on the middle digit
have been removed. Now how many area codes are there?

2.2 Permutations and Ordered Selections

Permutations are ordered collections of objects. Here are some examples.

Exercise 2.2.1. How many different 5-letter words can be formed from the
letters in the word SNACK, using each letter exactly once? How many 4-letter
words, using each letter no more than once? How many 3-letter words, using
each letter no more than once?

Exercise 2.2.2. How many different “decks” of 52 distinct playing cards are
there?

Exercise 2.2.3. How many ways can five children be chosen from a group of
15, and arranged in a row?

Several different notations are generally used to represent the number of
permutations of n objects k at a time. You may have seen P (n, k), Pn,k or

nPk. Regrettably, none of these notations conform to what is used by most
mathematicians, which is (n)k.

Exercise 2.2.4. Give the answers to Exercise 2.2.1 in this notation.

Exercise 2.2.5. Explain why the number of permutations of 15 objects 5 at a
time, (15)5, is 15 · 14 · 13 · 12 · 11.

Notice that the last term in the above product (11) is 15− 5 + 1.
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Exercise 2.2.6. Explain why the number of permutations of n objects k at a
time is n · (n− 1) · (n− 2) · · · (n− k + 1). In particular, explain the (n− k + 1)
final factor in the product.

While there may be disagreement about notation for permutations of n
things k at a time, there is none when k = n. In this special case, (n)n =
n! = n · (n− 1) · (n− 2) · · · 1, which is read n factorial.

Exercise 2.2.7. Compute n! for all values of n ≤ 10.

Notice that

(8)3 = 8 · 7 · 6

=
8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

5 · 4 · 3 · 2 · 1

=
8!

5!

=
8!

(8− 3)!
.

Exercise 2.2.8. Find a formula for (n)k as a quotient of factorials.

Notice that 5! = 5 · 4! and 6! = 6 · 5!.

Exercise 2.2.9. Prove that n! = n · (n− 1)!. Explain why this is a recursion.

Exercise 2.2.10. How many ways can 10 children be arranged in a circle?
(Two arrangements are different if some child has a different child either on the
right or on the left.)

If objects are allowed to be repeated, then a somewhat different formula
holds, whose derivation will be the subject of the next few exercises.

Exercise 2.2.11. How many different 5-letter words can be formed using the
letters C, A and T, where the letters may be used more than once?

Exercise 2.2.12. A certain alarm company lets you determine your own alarm
code. You choose any sequence of four digits, where the allowed digits are 0
through 9. How many different 4-digit alarm codes are there?

Exercise 2.2.13. How many different k-letter words can be formed using letters
from a list of n letters, where the letters may be used more than once?
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In summary, the number of k letter words formed from a list of n letters,
no letter to be used more than once, (which is the same as the number of
permutations of n things k at a time) is

(n)k = n · (n− 1) · · · · · (n− k + 1) =
n!

(n− k)!
.

The number of k letter words formed from a list of n letters, where letters
may be used more than once (called “permutations with repetitions”) is

nk .

2.3 Combinations, Subsets and Unordered Se-
lections

Up to now, we have considered selecting objects with some order implied. Now
we will simply select objects. For example, if we wish to form all the two-letter
words using the letters A, B, C, or D no more than once, we know that there
are 4× 3 = 12 ways of doing this. These twelve two-letter words are

AB BA CA DA
AC BC CB DB
AD BD CD DC

.

However, if we want to select two letters from the letters A, B, C, D, then there
are only six ways of doing this: A and B, A and C, A and D, B and C, B and
D, and C and D. Notice that the words AB and BA are both represented by
the single selection, A and B.

Selections are sometimes called combinations, and combinations are just
another name for subsets. Since many counting problems can be rephrased
in terms of combinations, it is important to recognize combinations in their
various guises. We saw above that the number of ways of choosing two things
out of four is six. We will see this number now in several other contexts.

In each of the following problems, construct or list the objects described.
Your list should have six objects in it for each problem. Then explain why
the number of objects in each problem is the same as the number of ways of
choosing two things out of four. Your explanation should use the Principle of
One-to-One Correspondences.

For example, here are the six different words made up of the letters of the
word NOON, i.e., using two N’s and two O’s: OONN, ONON, NOON, ONNO,
NONO, NNOO. These correspond to the subsets above in the manner described
in Section 2.1. That is, the location of the N’s determine which of the four
letters, A, B, C, and D, are in the subset. For example, ONON corresponds to
the subset B and D.

Exercise 2.3.1. List the distributions of two identical balls into four differ-
ent boxes, no more than one ball per box. Give a one-to-one correspondence
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between these distributions and the selections of two things from four. Which
distribution corresponds to the selection {B,D}?

Exercise 2.3.2. List the different routes Bill can take to work, if Bill lives two
blocks south and two blocks west from where he works and he always travels
either north or east. Give a one-to-one correspondence between these block-
walks and the selections of two things from four. Which block-walk corresponds
to the selection {B,D}?

As in the previous problems, construct or list the objects described. Then
give a one-to-one correspondence between the objects in each problem and the
three-element subsets of {A,B,C,D,E}.

Exercise 2.3.3. List the words from the letters of the word COOCO, i. e., using
two C’s and three O’s. Give a one-to-one correspondence between such words
and the three-element subsets of {A,B,C,D,E}. Which word corresponds to
{B,C,E}?

Exercise 2.3.4. Distribute three identical balls into five different boxes, no
more than one ball per box. Give a one-to-one correspondence between such
distributions and the three-element subsets of {A,B,C,D,E}. Which distribu-
tion corresponds to {B,C,E}?

Exercise 2.3.5. List the different routes Bill can take to work, if Bill lives two
blocks south and three blocks west from where he works and he always travels
either north or east. Give a one-to-one correspondence between such block-walks
and the three-element subsets of {A,B,C,D,E}. Which block-walk corresponds
to {B,C,E}?

Exercise 2.3.6. Let {A,E, F,H} be a selection of four from a set of size ten
given by {A,B,C,D,E, F,G,H, I, J}. Construct a word with 10 letters, 4 C’s
and 6 O’s, which corresponds to this selection according to the one-to-one cor-
respondence you have discovered in the previous exercises.

Exercise 2.3.7. Find the distribution of balls into boxes which corresponds to
the selection of four from ten in Exercise 2.3.6. How many balls and how many
boxes are there?

Exercise 2.3.8. Find the route Bill would take to work which corresponds to
the selection of four from ten in Exercise 2.3.6. How many blocks south from
where he works does he live? How many blocks west?

Exercise 2.3.9. Explain why the number of objects in each of the following
three sets is the same as the number of ways of choosing k things out of n.
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i. The number of different words made out of n letters, where there are k of
one kind of letter and n− k of another kind.

ii. The number of ways of placing k identical balls into n different boxes, no
more than one ball per box.

iii. The number of ways Bill can walk to work if he lives k blocks west and
n− k blocks south from where he works.

Each of these counting problems has as its answer the number of combi-
nations of n things k at a time. As with permutations, there is disagreement
about notation. Elementary books use C(n, k), Cn,k or nCk for this number.
However, the binomial coefficient notation is generally well-known, so it is what
we will use.

Let’s let (
n

k

)
denote the number of combinations of n things k at a time, or the number of
ways of choosing k things from n things. For now we won’t worry about a
formula for

(
n
k

)
. The number

(
n
k

)
is read “n choose k” and is called a binomial

coefficient (for reasons given below). Notice that the previous exercises have
asked you to calculate

(
4
2

)
and

(
5
3

)
.

We will eventually derive an explicit formula for
(
n
k

)
involving factorials (a

formula some of you may be familiar with). However, at this point we wish to
emphasize the enumerative aspects of

(
n
k

)
. Our knowledge of

(
n
k

)
is therefore

restricted to our observation that it counts the number of selections of k things
out of n things.

Exercise 2.3.10. Explain why(
n

k

)
=

(
n

n− k

)
.

(As mentioned in the previous paragraph, is not necessary to know a formula for(
n
k

)
to show this! Simply establish a one-to-one correspondence between objects

counted by the left-hand side and objects counted by the right-hand side.)

Exercise 2.3.11. Explain why

2n =

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n− 1

)
+

(
n

n

)
.

Hint: Show that both sides of the equation count all the subsets of a set of size
n. Use Exercise 2.1.8.

Exercise 2.3.12. Write down the value of
(
n
1

)
,
(

n
n−1

)
,
(

4
2

)
,
(

5
2

)
, and

(
5
3

)
.
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Exercise 2.3.13. Write down the value of
(
n
0

)
and

(
n
n

)
. Give a reason for your

answer.

The reason
(
n
k

)
is called the binomial coefficient is that it is the coefficient

of a term in the expansion of a binomial raised to a power. For instance, if we
expand (x+ y)4, we get

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4 .

Notice that the coefficient of x2y2 is 6, which is
(

4
2

)
, the number we encountered

in the first set of exercises of this section. To see this, first rewrite

(x+ y)4 = (x+ y)(x+ y)(x+ y)(x+ y) . (2.1)

Now let’s keep track of which (x + y) each x and y comes from when the four
(x + y)’s are multiplied. That is, rewrite Equation (2.1) with the four factors
labeled:

(x+ y) (x+ y) (x+ y) (x+ y)
1 2 3 4

(2.2)

When Expression (2.2) is expanded, we will get terms like xyyx, indicating
that the two x’s come from the first and fourth factors in Expression (2.2).
Notice that this term is simply x2y2 in Equation (2.1).

Exercise 2.3.14. Five other terms in Expression (2.2) will have two x’s and
two y’s. List them. Explain why the number of terms in Expression (2.2) with
two x’s and two y’s is

(
4
2

)
.

Exercise 2.3.15. In a similar manner, explain why the coefficient of x3y2 in
(x+ y)5 is

(
5
3

)
.

Exercise 2.3.16. Finally, explain why the coefficient of xkyn−k in (x+ y)n is(
n
k

)
.

Exercise 2.3.16 completes the proof of the binomial theorem.

Theorem 1 (The Binomial Theorem).

(x+ y)n =

(
n

n

)
xny0 +

(
n

n− 1

)
xn−1y1 +

(
n

n− 2

)
xn−2y2 + · · ·

+

(
n

2

)
x2yn−2 +

(
n

1

)
x1yn−1 +

(
n

0

)
x0yn

.
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For example, let’s expand (3x/2− x2)3. Then

(3x/2− x2)3 =

(
3

3

)
(3x/2)3(−x2)0 +

(
3

2

)
(3x/2)2(−x2)1

+

(
3

1

)
(3x/2)1(−x2)2 +

(
3

0

)
(3x/2)0(−x2)3

= 1 · 27x3

8
· 1 + 3 · 9x2

4
· (−x2) + 3 · 3x

2
· (x4) + 1 · 1 · (−x6)

=
27x3

8
− 27x4

4
+

9x5

2
− x6 .

For another example, let’s find the coefficient of a9 in the expansion of (2a3−b)7.
We have to cube a3 to get a9, so the term containing a9 will be(

7

3

)
· (2a3)3 · (−b)4 = 35 · (8a9) · (b4) = 280a9b4 .

The coefficient of a9 is then 280b4.

Exercise 2.3.17. Expand (2x+ 5y)7.

Exercise 2.3.18. Find the coefficient of x6 in (2x2 + 3)5.

Exercise 2.3.19. Find the coefficient of s3t8 in (s− 3t2)7.

Exercise 2.3.20. What is the coefficient of x11y9 in the expansion of (x+y)20?
What is the coefficient of y5 in the expansion of (2 + y)10?

Exercise 2.3.21. Expand (
a2/3 +

√
b

2

)4

.

An approximation technique used by many scientists is based on the binomial
theorem.

Exercise 2.3.22. Use the binomial theorem to calculate 1.0013 by expanding
(1 + .001)3.

Exercise 2.3.23. Use the binomial theorem to calculate 20074 by expanding
(2000 + 7)4.

These exercises illustrated the following point. If B is much larger than z,
then (B + z)n can be approximated by using only the first two terms from the
binomial theorem: Bn+nBn−1z. The higher powers of z make the contribution
of the other terms insignificant.

Exercise 2.3.24. Use this technique to approximate 1.0013 and 20074.
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The binomial theorem is the source of many identities involving binomial
coefficients. For example, if we let x = 1 and y = 1 in the binomial theorem,
we get the identity in Exercise 2.3.11.

Exercise 2.3.25. By another choice of x and y in Theorem 1, show why(
n

0

)
−
(
n

1

)
+

(
n

2

)
− · · · ±

(
n

n− 1

)
∓
(
n

n

)
= 0 .

The binomial coefficients satisfy an important recursion called Pascal’s iden-
tity. The next four exercises lead us to this recursion.

Exercise 2.3.26. Suppose we want to choose 4 students from a group of 10
students. How many ways are there to do this if we know that one of the students
(Bill) is among the four (keep your answer in terms of binomial coefficients)?

Exercise 2.3.27. Suppose we want to choose 4 students from a group of 10
students. How many ways are there to do this if we know that Bill is not among
the four?

Exercise 2.3.28. Use Exercises 2.3.26 and 2.3.27 to explain why(
10

4

)
=

(
9

4

)
+

(
9

3

)
.

Exercise 2.3.29. More generally, explain why the following holds:

Pascal’s Identity:

(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
. (2.3)

If we know all the binomial coefficients for a certain value of n, we may
use them in Pascal’s identity to compute all the binomial coefficients for the
next value of n. For example, if we know that

(
4
2

)
= 6 and

(
4
3

)
= 4, then(

5
3

)
=
(

4
3

)
+
(

4
2

)
= 4 + 6 = 10. Doing this kind of calculation we can compute a

table of the binomial coefficients, where the rows of the table are the different
n ≥ 0 and the columns are the different k, 0 ≤ k ≤ n. The entries of the table
are the

(
n
k

)
.

For example, here is the table for n ≤ 5:

k
0 1 2 3 4 5

0 1
1 1 1
2 1 2 1

n 3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
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Such a table is called Pascal’s triangle.

Exercise 2.3.30. Complete the above table for n ≤ 10.

There is also a simple explicit formula for binomial coefficients. In the next
four exercises, we establish this formula.

Exercise 2.3.31. Suppose we want to choose 4 students from a group of 10
students, and then from these four we want to pick a chairperson, vice chair-
person, secretary and treasurer. How many ways are there to do this? (Your
answer should involve a binomial coefficient.)

Exercise 2.3.32. Suppose we choose a chairperson, vice chairperson, secretary
and treasurer from among the 10 students. How many ways are there to do
this? Is this the same as Exercise 2.3.31?

Exercise 2.3.33. Use Exercises 2.3.31 and 2.3.32 to give a formula for
(

10
4

)
.

Verify your formula from the table computed in Exercise 2.3.30.

Exercise 2.3.34. Use Exercises 2.3.31, 2.3.32 and 2.3.33 as a model to give a
formula for

(
n
k

)
. Use your formula to prove(

n

k

)
=

n!

k!(n− k)!
.

There are hundreds of formulas involving binomial coefficients. Here are a
couple.

Exercise 2.3.35. Prove

k

(
n

k

)
= n

(
n− 1

k − 1

)
.

Exercise 2.3.36. More generally, prove(
n

k

)(
k

j

)
=

(
n

j

)(
n− j
k − j

)
.

Exercise 2.3.37. Explain the phrase “more generally” in the previous exercise.
That is, show that the formula in Exercise 2.3.35 is a special case of the formula
in Exercise 2.3.36.

Exercise 2.3.38. By specializing the formula in Exercise 2.3.35, prove

1

n+ 1

(
2n

n

)
=

1

2n+ 1

(
2n+ 1

n+ 1

)
.

Many counting problems require binomial coefficients. Here are a few.
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Exercise 2.3.39. How many ways are there to pick a 5-person basketball
team from 10 possible players? How many teams if the weakest player and
the strongest player must be on the team?

Exercise 2.3.40. In how many ways can the 10 basketball players split into
two teams to play each other?

Exercise 2.3.41. How many ways can a committee be formed from four men
and six women with at least two men and at least twice as many women as
men? With four members, at least two of which are women, and Jennifer and
Richard will not serve together?

Exercise 2.3.42. How many triangles can be formed by joining different sets
of three corners of a regular octagon? How many triangles if no pair of adjacent
corners are permitted?

Exercise 2.3.43. Suppose that in a certain northern Minnesota lake, there are
N walleyes. Suppose that 100 of these have been marked. How many ways
of picking a sample of 200 walleyes are there such that exactly 5 of them are
marked?

Exercise 2.3.44. How many ways can Bill walk to work if he lives 10 blocks
south and 8 blocks west of where he works if the east-west block which is 4 blocks
north of his house and between 2 and 3 blocks east of his house is flooded by the
creek? See Figure 2.1 below. (Hint: First count all block-walks, then subtract
the ones which use the flooded street.)

Wr

H
r

....................................

....................................

Figure 2.1: Bill’s block walk

2.4 Selections with Repetitions

Sometimes we want to count permutations where some objects may be repeated
a prescribed number of times. For instance, while there are six rearrangements
of the letters of the word CAT (CAT, CTA, ACT, ATC, TAC, TCA), there are
only three rearrangements of the letters of the word BEE (BEE, EBE, EEB).
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We can compute this number as follows: first pick the position for the B. There
are

(
3
1

)
= 3 ways to pick this position. Then pick positions for the two E’s.

There is
(

2
2

)
= 1 way to do this. So the number of such rearrangements is

3 · 1 = 3.

Exercise 2.4.1. How many rearrangements of the letters of the word MISSIS-
SIPPI are there? Hint: Proceed as in the example above. Imagine eleven empty
spaces for the letters of the word you are forming. Pick four of them and place
I’s. Then pick four out of the remaining seven and place S’s, and so on.

Exercise 2.4.2. Use the techniques you discovered in Exercise 2.4.1 to find the
number of rearrangements of the letters in the words SNACK and SYZYGY.

Exercise 2.4.3. A box contains 16 crayons, no two of the same color. In how
many different ways can they be given to four children so that each child receives
4 crayons? How is this exercise similar to Exercises 2.4.1 and 2.4.2?

Exercise 2.4.4. How many ways can 12 students be divided into four groups
of three? Into three groups of four? Into 2 groups of four and 2 groups of two?
Be very careful in this exercise. There is an important difference between it and
Exercise 2.4.3. What is that difference?

Now let’s count selections where objects may be repeated. Suppose we wish
to count selections of two letters from the letters A, B and C, but we can pick
a letter more than once. There are six such selections: {A,A}, {A, B}, {A, C},
{B, B}, {B, C}, and {C, C}. The exercises below ask you to find one-to-one
correspondences to show that other counting problems are the same as counting
selections with repetitions.

Exercise 2.4.5. List the six distributions of two identical candy bars to three
children, where a child may receive more than one candy bar. Give a one-to-one
correspondence between these distributions and the selections of two letters from
three, with repetitions allowed. What distribution corresponds to the selection
{B,C}? To the selection {B,B}?

Exercise 2.4.6. List the six distributions of two identical balls into three dif-
ferent boxes. Give a one-to-one correspondence between these distributions and
the selections of two letters from three, with repetitions allowed. What distri-
bution corresponds to the selection {B,C}? To the selection {B,B}?

Exercise 2.4.7. List the six different solutions to the equation x + y + z = 2
where x, y and z are all integers ≥ 0. Give a one-to-one correspondence between
these solutions and the selections of two letters from three, with repetitions
allowed. What solution corresponds to the selection {B,C}? To the selection
{B,B}?

Exercise 2.4.8. List all the distributions of three identical candy bars to two
children, where a child may receive more than one candy bar. Give a one-to-one
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correspondence between these distributions and the selections of three letters
from {A,B}, with repetitions allowed. What distribution corresponds to the
selection {A,B,B}?

Exercise 2.4.9. List all the distributions of three identical balls into two dif-
ferent boxes. Give a one-to-one correspondence between these distributions
and the selections of three letters from {A,B}, with repetitions allowed. What
distribution corresponds to the selection {A,B,B}?

Exercise 2.4.10. List all the different solutions to the equation x + y = 3
where x and y are integers ≥ 0. Give a one-to-one correspondence between
these solutions and the selections of three letters from {A,B}, with repetitions
allowed. What solution corresponds to the selection {A,B,B}?

Exercise 2.4.11. Explain why the following numbers are the same

i. The number of ways of choosing k letters from a list of n letters, with
repetition allowed.

ii. The number of distributions of k identical candy bars to n children, where
a child may receive more than one candy bar.

iii. The number of distributions of k identical balls into n distinct boxes.

iv. The number of solutions to the equation

x1 + · · ·+ xn = k

where x1, x2, . . . , xn are all integers ≥ 0.

Let’s look at an example of Exercise 2.4.11, part iv, in more detail. Suppose
n = 3 and k = 5, so we want the number of solutions to x1 + x2 + x3 = 5 in
non-negative integers. An example of such a solution is x1 = 2, x2 = 1 and
x3 = 2. Let’s create a “word”, using 5 O’s and 2 I’s which “corresponds” to
this solution, by first writing 2 O’s, then an I, then 1 O, then an I, and finally
2 O’s: OOIOIOO. The I’s act as “separators” between the O’s, and the blocks
of consecutive O’s have sizes 2, 1, and 2, the values of x1, x2 and x3.

On the other hand, we could take any word with 5 O’s and 2 I’s (for example,
OIIOOOO) and turn it into a solution to our equation x1 + x2 + x3 = 5: x1 is
the number of O’s before the first I; x2 is the number of O’s between the two I’s;
and x3 is the number of O’s after the last I. In the example OIIOOOO, x1 = 1,
x2 = 0, and x3 = 4.

Exercise 2.4.12. To what solution to the equation x1 + x2 + x3 = 5 does the
word OOIOOOI correspond?

Exercise 2.4.13. Let w be the word of O’s and I’s which corresponds to a
solution to the equation

x1 + · · ·+ xn = k
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as described above. What is the relationship between the number of letters in
w and n and k? What is the relationship between the number of O’s in w and
k?

Exercise 2.4.13 and the discussion above establishes a one-to-one correspon-
dence between non-negative integer solutions to

x1 + · · ·+ xn = k

and words of O’s and I’s.

Exercise 2.4.14. Using the Principle of One-to-One Correspondences, the dis-
cussion above, and Exercise 2.4.13, show the following:

The number of ways of choosing k letters from n distinct letters, with
repetitions allowed, and the number of solutions to the other counting
problems listed in Exercise 2.4.11, is(

n+ k − 1

k

)
.

Here are some problems whose solutions require counting selections with
repetitions.

Exercise 2.4.15. How many different fruit baskets containing 8 pieces of fruit
can be formed using only apples, oranges and pears? How many if at least one
piece of each kind of fruit is used?

Exercise 2.4.16. In how many ways can 10 identical quarters be distributed
to five people?

Exercise 2.4.17. Find the number of integer solutions to the equation

x+ y + z = 13, where x ≥ 1, y ≥ 0 and z ≥ 6 .

Exercise 2.4.18. How many ways can each of seven identical wine glasses be
filled with one of four kinds of wine: burgundy, chablis, pinot noir and merlot.
How many ways if at least one glass contains chablis? How many ways if at
least one glass contains chablis and no more than two glasses contain merlot?

A pizza company is offering a special on two pizzas. Each pizza is to be made
using some of the following five extra toppings: olives, pepperoni, mushrooms,
onions, and sausage. The company’s television advertisement claims that there
are over one million possibilities. The following exercises ask you to count the
number of possibilities, making various assumptions about how the toppings
can be used.
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Exercise 2.4.19. Suppose each pizza can have any subset of the extra toppings
(so double pepperoni is not allowed, while no topping at all is allowed). How
many possible pairs of pizzas are there? Hint: use the formula for the number
of subsets of a set of size n you obtained in Exercise 2.1.8 to find the number
of possible pizzas. Then use the formula in Exercise 2.4.14 above to count the
number of pairs of pizzas.

Exercise 2.4.20. Suppose each pizza can have any five toppings (so triple
pepperoni, onion and sausage would be an example, but just pepperoni would
not be). Now how many pairs of pizzas are there? Hint: count pizzas by
selecting five toppings from the five toppings, allowing repetitions.

Exercise 2.4.21. Suppose each pizza can have any five or fewer toppings (triple
pepperoni and sausage, for example). Now how many pairs of pizzas are there?
Hint: introduce a sixth “blank” topping and use the idea in the previous exercise.

2.5 Card Games

Here are some problems involving card games.
A standard deck of cards has 52 cards, broken up into four suits: hearts (♥),

diamonds (♦), clubs (♣), and spades (♠). Each suit has 13 cards each. These
are 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack (J), Queen (Q), King (K) and Ace (A). These
thirteen cards are given an order, called rank. The rank order of the thirteen
is specified in the list above. In particular, for our purposes, the ace has the
highest rank.

Bridge is a game played by four players, each player receiving 13 cards. A
bridge hand consists of a selection of 13 cards.

Exercise 2.5.1. How many bridge hands are there?

Exercise 2.5.2. How many “perfect” hands are there (all one suit)?

Exercise 2.5.3. How bridge hands have exactly 4 cards of one (unspecified)
suit and exactly 3 cards in each of the other three suits? (Such a hand is said
to have 4-3-3-3 distribution.)

Exercise 2.5.4. How many bridge hands are there that contain 4 diamonds
and 3 of each of the other three suits?

A poker hand has five cards. The following exercises ask you to count the
number of each kind of poker hand.

Exercise 2.5.5. How many total poker hands are there?

Exercise 2.5.6. A flush has all five cards of the same suit. How many flushes
are there?
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Exercise 2.5.7. A straight has all five cards in sequence (e.g., 3-4-5-6-7 or
8-9-10-J-Q). How many straights are there?

Exercise 2.5.8. A straight flush is both a straight and a flush. How many
straight flushes are there?

Exercise 2.5.9. A full house has three of one kind and two of another kind
(e.g., 5-5-5-A-A). How many full houses are there?

Exercise 2.5.10. Four of a kind has four of one kind (e.g., J-J-J-J-9). How
many four-of-a-kinds are there?

Exercise 2.5.11. Three of a kind has three of one kind (but not four of a kind
and not a full house). How many three-of-a-kinds are there?

Exercise 2.5.12. Two pair has two of one kind, two of another kind, and the
fifth card of a third kind (e.g., 5-5-8-8-K). How many two pairs are there?

Exercise 2.5.13. A pair has two of one kind (and nothing more) (e.g., 7-7-2-
K-A). How many pairs are there?



Chapter 3

Catalan Numbers

This chapter is about the Catalan numbers, a number sequence almost as famous
as the Fibonacci numbers. We will give a number of problems whose solution
is the Catalan numbers. We will describe the sequence of Catalan numbers by
a recursion and by an explicit formula.

3.1 Several Counting Problems

In this section we will describe several different sequences of numbers. We de-
scribe these sequences as solutions to counting problems. In subsequent sections,
we show that these problems are all solved by the same sequence of numbers.

The first problem is how many ways are there to triangulate a polygon. There
are two ways to “triangulate” a quadrilateral. These are shown in Figure 3.1.
There are five ways to “triangulate” a pentagon. These are shown in Figure 3.2.

Figure 3.1: Triangulations of a quadrilateral

By “triangulate”, we mean draw non-intersecting diagonals so that the in-
terior of the polygon is partitioned into triangles. A triangulation of a hexagon
is shown in Figure 3.3.

Exercise 3.1.1. Find all the ways to “triangulate” a hexagon.

49
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Figure 3.2: Triangulations of a pentagon

Figure 3.3: Triangulation of a hexagon
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Exercise 3.1.2. Bill lives three blocks south and three blocks west from where
he works. A railroad track runs diagonally from southwest to northeast, from
just southeast of his house to just northeast of his work. Bill can take any of
five different routes from home to work without crossing the tracks: NNNEEE,
NNENEE, NNEENE, NENNEE, NENENE (see Figure 3.4). Find all the
different routes he could take, without crossing tracks, if he lived four blocks
south and four blocks west from where he works.

Figure 3.4: Blockwalking

Exercise 3.1.3. A sequence of parentheses is well-formed if every open paren-
thesis “(” can be paired with a closed parenthesis “)” to its right in such a way
so that the parentheses pairs are “nested.” There are five such sequences of 3
pairs. Here they are with the nestings indicated by braces:

(

︷ ︸︸ ︷
(

︷ ︸︸ ︷
(
︷︸︸︷

) ) )

(

︷ ︸︸ ︷
(
︷︸︸︷

)(
︷︸︸︷

) )

(

︷ ︸︸ ︷
(
︷︸︸︷

) )(
︷︸︸︷

)

(
︷︸︸︷

)(

︷ ︸︸ ︷
(
︷︸︸︷

) )
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(
︷︸︸︷

)(
︷︸︸︷

)(
︷︸︸︷

)

Find all the sequences of 4 pairs.

Exercise 3.1.4. A sequence of parentheses is balanced if the number of open
parentheses equals the number of closed parentheses and, at every point in the
sequence, the number of open parentheses to the left of that point is greater
than or equal to the number of closed parentheses to the left of that point.
There are five such sequences of 3 pairs: ((())), (()()), (())(), ()(()), ()()().
Find all the sequences of 4 pairs.

Note that the well-formed sequences of parentheses and the balanced se-
quences of parentheses you found in Exercises 3.1.3 and 3.1.4 are the same. We
will prove this in general in a later section.

Exercise 3.1.5. Alice, Brenda, Carlos, Duc, Elaine and Frank are seated in
that order around a round table. They can shake hands with one another across
the table, without crossing handshakes, in any one of five ways:

AB-CD-EF,
AB-CF-DE,
AD-BC-EF,
AF-BC-DE,
AF-BE-CD.

Suppose Georgia and Henry sit down at the table between Frank and Alice.
Find all the ways the eight people can shake hands across the table without
crossing handshakes.

Exercise 3.1.6. Here are all triples of integers (x1, x2, x3) subject to the con-
ditions that x1 = 0, x2 = 0 or 1, x3 = 0, 1 or 2 and x1 ≤ x2 ≤ x3:

(0, 0, 0),
(0, 0, 1),
(0, 0, 2),
(0, 1, 1),
(0, 1, 2).

Write down all quadruples of integers (x1, x2, x3, x4) subject to the conditions
that x1 = 0, x2 = 0 or 1, x3 = 0, 1 or 2, x4 = 0, 1, 2 or 3 and x1 ≤ x2 ≤ x3 ≤ x4.

Exercise 3.1.7. Outlines contain various levels of headings. The possible out-
line structures for all outlines with three headings, possibly at different levels,
are shown in Figure 3.5. List all the outline structures with four headings.

Six children, Aaron, Beatrice, Chen, Diana, Eduardo and Faye, are all of
different heights. Suppose Aaron is taller than Beatrice, Beatrice is taller than
Chen, Chen is taller than Diana, Diana is taller than Eduardo, and Eduardo is
taller than Faye. Let’s number the children: Aaron is 1, Beatrice is 2, Chen is
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I I I
II A II
III II A

I I
A A
B 1

Figure 3.5: Outlines with three headings

3, Diana is 4, Eduardo is 5 and Faye is 6. So one child is taller than another
translates into its number being less than the other’s.

There are 5 ways the children can be arranged in two rows and three columns
so that the children decrease in height down each column and across each row,
as shown in Figure 3.6. We call such an arrangement of numbers a 2×3 tableau.
Each row and each column of a tableau is in increasing order.

Exercise 3.1.8. Now suppose Ginny and Hal join the group and Faye is taller
than Ginny who is taller than Hal. Again, replace Ginny by 7 and Hal by 8. List
all the ways the eight children can be arranged in two rows and four columns
so that the children decrease in height down each column and across each row.
That is, list all the 2× 4 tableaux.

1 2 3 1 2 4 1 2 5 1 3 4 1 3 5
4 5 6 3 5 6 3 4 6 2 5 6 2 4 6

Figure 3.6: Tableaux of children

Exercise 3.1.9. For any one of Exercises 3.1.1 to 3.1.8, list all possibilities for
the next case. For example, list all the possible triangulations of a heptagon (a
seven-sided polygon).

Each of the objects above can be used to define a sequence of numbers.
For instance, let BWn denote the number of ways Bill can walk to work if he
lives n blocks south and n blocks west of work, if he cannot walk in the region
southeast of the diagonal from home to work. You have seen that BW3 = 5 and
BW4 = 14. We will call such a block-walk a non-crossing block-walk.

Similarly, define {TRn} so that TR3 is the number of ways to triangulate a
pentagon and TR4 is the number of ways to triangulate a hexagon.

In the same fashion, define {WFn}, {BAn}, {HSn}, {ISn}, {OLn}, and
{TBn}. Thus, WF3 is the number of well-formed sequences of parentheses with
3 pairs of parentheses, BA3 is the number of balanced sequences of parentheses
with 3 pairs of parentheses, and HS3 is the number of ways 6 people seated
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around a table can shake hands without crossing handshakes. Also, IS3 is the
number of triples of integers described in Exercise 3.1.6, OL3 is the number of
outline structures with 3 headings, and TB3 is the number of 2× 3 tableaux.

The discussion above shows that all the sequences take the value 5 when the
parameter is 3, that is,

TR3 = WF3 = BA3 = HS3 = IS3 = OL3 = TB3 = BW3 = 5 .

Exercises 3.1.1 to 3.1.8 show that all the sequences take the value 14 when the
parameter is 4.

Exercise 3.1.10. Show that all the sequences take the value 2 when the sub-
script is 2.

Exercise 3.1.11. Show that all the sequences take the value 1 when the sub-
script is 1.

Exercise 3.1.12. Describe how the parameter of the sequence relates to the
parameter of the problem for each of Exercises 3.1.1 to 3.1.8. For example, in
the triangulations of a polygon, what is the relationship between the n in TRn

and the number of sides of the polygon being triangulated?

We will assume that the sequences all take the value 1 when the parameter
is 0. This even makes some sense: BW0 = 1, for if Bill lives where he works,
then he has one legal path to work—he sits still!

Thus we have seen that all eight of the sequences defined in this section
begin {1, 1, 2, 5, 14, . . . }, where the initial term is indexed by 0.

The rest of this chapter will be devoted to solving the following three prob-
lems:

i. Show that all of the sequences above are the same sequence.

ii. Find a recursion for this sequence.

iii. Find an explicit formula for this sequence.

Section 3.2 will be devoted to showing

BWn = BAn = ISn = TBn , (3.1)

and
WFn = HSn = OLn . (3.2)

The technique that we will use is the Principle of One-to-one Correspondences.
Then in Section 3.3 we will show that

BWn = HSn = TRn , (3.3)

by demonstrating that {BWn}, {HSn} and {TRn} all satisfy the same recursion
and the same initial conditions. This will complete the first two parts of our
program outlined above.

Finally, the explicit formula will be derived in Section 3.4.
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3.2 One-to-One Correspondences

To show Equations (3.1) and (3.2), we use the Principle of One-To-One Corre-
spondences. For example, a balanced sequence of parentheses counted by BAn

corresponds in a very natural way to a non-crossing block-walk counted by BWn:
simply convert “(” to N and “)” to E. Thus the sequence (())() corresponds to
NNEENE. The fact that the number of left parentheses is always greater than
or equal to the number of right parentheses translates directly into the fact that
the block-walk does not cross the diagonal, and vice versa.

The remaining correspondences are somewhat harder. We show one of these
correspondences in detail and then ask you to produce the others. You should
be warned, however, that each of these correspondences requires a different
argument.

Let’s show that the objects counted by BWn correspond to objects counted
by TBn. Suppose we have a 2 × n tableau. List all the numbers in increasing
order, from 1 to 2n. Then replace each number by N if the number is in the first
row of the tableau, and by E if the number is in the second row of the tableau.
Thus, the tableau in Figure 3.7 corresponds to NNEENENNNEENENEE.

1 2 5 7 8 9 12 14
3 4 6 10 11 13 15 16

Figure 3.7: A 2× 8 tableau

We must now explain why the block-walk thus obtained does not cross the
railroad track, or, equivalently, why the N’s always “stay ahead” of the E’s.
Suppose for some E, the number of E’s up to that point in the block-walk
exceeds the number of N’s. Let’s say that the number of E’s up to that point is
k+ 1, while the number of N’s is k. But the k+ 1 E’s replaced numbers in the
second row of the tableau while the kN’s replaced numbers in the first row of the
tableau. From the way we constructed the block-walk from the tableau, these
2k + 1 numbers are the 2k + 1 smallest numbers and are therefore arranged in
the leftmost positions in their rows. Therefore, the (k+ 1)-st number in second
row will be smaller than the (k + 1)-st number in the first row, which does not
give a legal tableau.

The preceding two paragraphs show how to assign a non-crossing block-walk
to a tableau. But how do we know that some non-crossing block-walks aren’t
missed? And how do we know that two tableaux don’t give the same block-
walk under this correspondence? To answer these questions, we must reverse
the identification. Starting with a non-crossing block-walk we must construct
the corresponding arrangement of numbers, then verify that it is a legal tableau.

Once again, list the numbers from 1 to 2n. Above this list, write the block-
walk. The numbers below the N’s are placed in the first row of the tableau (in
increasing order), while the numbers below the E’s are placed in the second row
of the tableau (in increasing order).
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For instance, consider this non-crossing blockwalk:

NENNNENEENEENNEE .

Write it thus:

N E N N N E N E E N E E N N E E
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Then the tableau is that given in Figure 3.8.

1 3 4 5 7 10 13 14
2 6 8 9 11 12 15 16

Figure 3.8: Another 2× 8 tableau

This certainly reverses the process described above, and it is clear that the
numbers are arranged in order in the rows. But are they arranged in order in
the columns? Suppose the number in the second row of the (k+ 1)-st column is
smaller than the number in the first row of the (k+1)-st column. Let’s say that
the number in the first row is t and the number in the second row is s. Thus,
s < t.

Then s corresponds to an E in the block-walk. That is, there is an E in the
s-th position in the block-walk. The k numbers to the left of s in the tableau
correspond to k E’s to the left of the s-th position in the block-walk. Also,
no N’s to the left of the s-th position in the block-walk correspond either to
t or to a number to the right of t in the tableau, since all these numbers are
greater than s. Therefore, there cannot be more than k N’s to the left of the
s-th position in the block-walk. Thus, the number of E’s is greater than the
number of N’s at s-th position in the block-walk, and so the block-walk must
cross the diagonal at (or before) the s-th position. This gives a contradiction to
our assumption that we started with a non-crossing block-walk. Therefore, the
assumption that the smaller s is above the larger t is wrong.

Exercise 3.2.1. Give a correspondence which shows BWn = ISn. Which inte-
ger sequence corresponds to the non-crossing block-walk NENNEENNEE (see
Figure 3.9). Which integer sequence corresponds to the non-crossing block-walk
NENNNENEENEENNEE in your correspondence? Which non-crossing
block-walk corresponds to the integer sequence (0, 0, 0, 1, 1, 5, 5, 6)?

Notice that by combining the one-to-one correspondence between tableaux
and non-crossing block-walks with the one-to-one correspondence in Exercise
3.2.1, we could give a one-to-one correspondence between tableaux and integer
sequences.

Exercise 3.2.2. Give a correspondence which shows WFn = HSn. Which
arrangement of handshakes corresponds to the sequence of well-formed paren-
theses ()((()())())(()) in your correspondence? Suppose A, B, C, D, E, F,
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Figure 3.9: Hint: count the shaded blocks in each row

G, H, I, J, K, L, M, N, O, and P are seated around a round table and the
following handshakes are made: AD-BC-EL-FG-HK-IJ-MP-NO. Give the
corresponding sequence of well-formed parentheses.

Exercise 3.2.3. Give a correspondence which shows WFn = OLn. What out-
line corresponds to the sequence of well-formed parentheses ()((()())())(()) in
your correspondence? What sequence of well-formed parentheses corresponds
to the outline:

I
A

1
2

B
II
III

A .

Material in the text above and Exercise 3.2.1 have established Equations (3.1).
Exercises 3.2.2 and 3.2.3 have established Equations (3.2). What is left is to tie
the three groups of sequences given by Equations (3.1), Equations (3.2), and
{TRn} together with a common recursion. That is the goal of the next section.

3.3 The Recursion

The recursion formula for the sequences described in the previous section is
harder than the recursions for arithmetic and geometric sequences, or for the
Fibonacci numbers. We will demonstrate this recursion with three of the se-
quences described in Section 3.1.

The first sequence for which we will derive the recursion is {HSn}.



58 CHAPTER 3. CATALAN NUMBERS

Exercise 3.3.1. Use the values for HS0, HS1, HS2, HS3 and HS4 that you
found in Section3.1 to check arithmetically the following equations.

HS1 = HS0 ·HS0,

HS2 = HS0 ·HS1 +HS1 ·HS0,

HS3 = HS0 ·HS2 +HS1 ·HS1 +HS2 ·HS0,

and HS4 = HS0 ·HS3 +HS1 ·HS2 +HS2 ·HS1 +HS3 ·HS0 .

Exercise 3.3.2. From Exercise 3.3.1, conjecture a formula for HS5, HS6, and
HS7 and compute values for HS5, HS6, and HS7 based on your conjecture. Com-
pare the conjectured value for HS5 with what you obtained in Exercise 3.1.9.

Exercise 3.3.3. From Exercises 3.3.1 and 3.3.2 guess a general formula for
HSn.

To demonstrate the derivation of this recursion, suppose there are 16 persons
seated around the table. Label these 16 A to P. Now consider whom A shakes
hands with. Suppose, for instance, it is H. That divides the table into two
pieces. Six people are on one side of the AH handshake (B through G) and
eight are on the other side (I through P). See Figure 3.10.

A

B

C

D

E

F

G

H
I

J

K

L

M

N

O

P

Figure 3.10: 16 people, one handshake

The six people on one side can then shake hands in HS3 ways, while the eight
on the other side can shake hands in HS4 ways. Therefore, the total number of
legal handshake arrangements among the 16, such that A and H are shaking
hands, is HS3 ·HS4.

Exercise 3.3.4. How many legal handshake arrangements among the 16 are
there such that A and F are shaking hands? Such that A and B are shaking
hands? What would happen if A and G shook hands?
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Exercise 3.3.5. List all the possible persons that A can shake hands with and
give the number of legal handshake arrangements among the 16 that include
that handshake. Exercise 3.3.4 is a start of this list.

Exercises 3.3.4 and 3.3.5 demonstrate that

HS8 = HS7 ·HS0+HS6 ·HS1 +HS5 ·HS2 +HS4 ·HS3 +HS3 ·HS4

+HS2 ·HS5 +HS1 ·HS6 +HS0 ·HS7 .

Exercise 3.3.6. Discuss why HS0 was defined to be 1.

The argument described in the text above and in Exercises 3.3.4 and 3.3.5
can be made general. Suppose 2n people are seated around the table and that
Alice is one of those people. Determine who Alice is shaking hands with. That
divides the table into two groups, each of which must have a legal handshake
arrangement among themselves. The sum of the number of people in the two
groups is two less than the total around the table (Alice and her handshake
partner are not counted). So the sum, when divided by 2, is n− 1.

Exercise 3.3.7. Suppose 20 people, numbered from 1 to 20, are seated around
a table. Suppose person 1 shakes hands with person 8. See Figure 3.11. How
many ways are there for the remaining 18 people to shake hands without any
handshakes crossing?

1
2

3

4

5

6

7

8

9

10
11

12

13

15

16

17

18

19

20

14

Figure 3.11: 20 people, one handshake

Exercise 3.3.8. Suppose 40 people, numbered from 1 to 40, are seated around
a table. Suppose person 1 shakes hands with person 8 and person 14 shakes
hands with person 29. See Figure 3.12. How many ways are there for the
remaining 36 people to shake hands without any handshakes crossing?
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14

Figure 3.12: 40 people, two handshakes
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Next, we show the same recursion for the sequence {TRn}. The arguments
are similar to what we just did for {HSn}.

Exercise 3.3.9. Show how the formula

TR5 = TR0 · TR4 + TR1 · TR3 + TR2 · TR2 + TR3 · TR1 + TR4 · TR0

may be deduced by decomposing the triangulations of a heptagon into triangu-
lations of two smaller polygons. The examples in Figures 3.13 and 3.14 may be
of help.
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B C
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b
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b
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5

6

Figure 3.13: Decomposition of a triangulation

Exercise 3.3.10. Now show how the general recursion for {TRn} can be de-
duced by decomposing the triangulations of the (n+ 2)-gon into triangulations
of two smaller polygons.
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Figure 3.14: Another decomposition of a triangulation
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Exercise 3.3.11. Suppose the corners of a 24-sided polygon are numbered from
1 to 24. Find the number of triangulations of this polygon which include the
triangle 1-2-9. See Figure 3.15.

1
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24

Figure 3.15: Partial triangulation of a 24-gon

Exercise 3.3.12. Suppose the corners of a 24-sided polygon are numbered from
1 to 24. Find the number of triangulations of this polygon which include the
triangle 1-8-18. See Figure 3.16

Exercise 3.3.13. Suppose the corners of a 24-sided polygon are numbered from
1 to 24. Find the number of triangulations of this polygon which include the
edges 1-8, 1-15 and 16-22. See Figure 3.17

Finally, we want to show that the recursion also holds for the sequence
{BWn}. In the handshake problem, we found one special handshake, removed
it, and broke the remaining people up into two “smaller” tables. In the tri-
angulation problem, we found one special triangle, removed it, and broke the
remainder of the polygon into two smaller polygons. Analogously to these cases,
we must find a special N and E pair, remove them, and break the non-crossing
block-walk into two smaller non-crossing block-walks.

Figure 3.18 illustrates which north and east edges to remove: they are the
ones marked by A and B in the figure. A is the first N step along the path, and
B is the E step just before where the path first returns to the diagonal between
H and W.

Figure 3.19 shows how to create the two smaller block-walks. Let H1 be the
intersection at the north end of A. Let W1 be the intersection at the west end
of B. Then let H2 be the intersection at the east end of B and let W2 be W.
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Figure 3.16: Another partial triangulation of a 24-gon
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Figure 3.17: Yet another partial triangulation of a 24-gon
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H

W

A

B

Figure 3.18: A blockwalk northwest of the tracks

Then the first smaller block walk goes from H1 to W1, while the second goes
from H2 to W2. Notice that the path from H1 to W1 does not cross a new set
of railroad tracks (r1) located diagonally one block northwest of the original set
of railroad tracks.

Exercise 3.3.14. Using Figures 3.18 and 3.19 as guides, write down the general
recursion for the sequence {BWn}. Prove this recursion.

Exercise 3.3.15. Suppose Bill lives 14 blocks south and 14 blocks west of
work. How many non-crossing block-walks are there which first return to the
H-W diagonal at location X in Figure 3.20?

Exercise 3.3.16. Suppose Bill lives 14 blocks south and 14 blocks west of work.
How many non-crossing block-walks are there which return to the H-W diagonal
at location X in Figure 3.20 (but may return before and after this location)?

Exercise 3.3.17. Suppose Bill lives 20 blocks south and 20 blocks west of work.
How many non-crossing block-walks are there which return to the H-W diagonal
at X, Y and Z in Figure 3.21, but nowhere else?

Exercises 3.3.10 and 3.3.14 and the discussion above about the handshake
problem combine to show that all the sequences discussed in Section 3.1 are
counted by the same numbers. We call those numbers Catalan numbers. Since
all these sequences are the same, we give them a common name, {Cn}, called the
Catalan sequence. These numbers were named after the 19th century Belgian
mathematician Eugene Charles Catalan, who first discovered them in conjunc-
tion with the well-formed parentheses sequence problem.
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Figure 3.19: Decomposition of a blockwalk

H

W

X

Figure 3.20: A 14-by-14 block-walking grid
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H

W

X

Y

Z

Figure 3.21: A 20-by-20 block-walking grid
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Theorem 2. The number Cn counts each of the following:

i. The number of ways to triangulate a polygon with n+ 2 sides.

ii. The number of block-walks from southwest to northeast on an n×n
grid which stay northwest of the diagonal.

iii. The number of well-formed sequences of 2n parentheses.

iv. The number of balanced sequences of 2n parentheses.

v. The number of ways 2n people seated around a round table can shake
hands without crossing handshakes.

vi. The number of n-tuples of integers, (x1, x2, . . . , xn) subject to the
conditions 0 ≤ xi < i and x1 ≤ x2 ≤ · · · ≤ xn.

vii. The number of outlines with n different headings.

viii. The number of 2× n tableaux of children.

Theorem 3. The sequence {Cn} satisfies the recursion

Cn = Cn−1C0 + Cn−2C1 + · · ·+ C1Cn−2 + C0Cn−1, for n ≥ 1 ,

with the initial condition that C0 = 1.

Although the Catalan numbers are not as famous as Fibonacci numbers,
they also have a long and distinguished history, and they arise in almost as
many contexts. They occur in many other settings besides the ones given here,
and are also important numbers in computer science.

We conclude this section by showing why well-formed sequences of paren-
theses and balanced sequences of parentheses are the same.

Exercise 3.3.18. Discuss why each well-formed sequence of 2n parentheses is
also balanced.

Exercise 3.3.19. Use Exercise 3.3.18 and Theorem 2 to show that the set of
well-formed sequences of 2n parentheses and the set of balanced sequences of
2n parentheses are identical.

3.4 The Explicit Formula

The model we will use to obtain our explicit formula for Cn is the block-walking
model. Any of the other counting problems in Section 3.1 could be used, but
this one is the easiest.

The technique we use is a common one. Instead of counting the legal routes
Bill could take, we count all possible routes and subtract the illegal ones.
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Exercise 3.4.1. Suppose Bill lives 3 blocks south and 3 blocks west of work.
How many different routes to work does he have (ignoring the railroad tracks) if
he can only travel east and north? What if he lives 4 blocks south and 4 blocks
west? n blocks south and n blocks west? n blocks south and m blocks west?

Now suppose Bill lives 4 blocks south and 4 blocks west. Let’s call a path
that crosses the railroad tracks a bad path and one that doesn’t a good path.
That is, good paths are exactly non-crossing block-walks. Let’s look at one of
the bad paths, for example, the one shown in the first picture in Figure 3.22.
Bill’s home is marked H and work is marked W. We’ve called the bad path r.

H

W

r

H

W

Q

H

W

r

H´

Q

H

W

L

r

r´

A bad path Special points

The special point Q The reflected path

Figure 3.22: The reflection principle

Notice that every bad path must pass through at least one of 4 special
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intersections, shown in the second picture of Figure 3.22. Let’s specially mark
the special intersection which Bill encounters first on the bad path in Figure 3.22
with a Q. This is shown in the third picture of Figure 3.22.

Now we apply a clever trick. Reflect the part of Bill’s route from his home
H to this first special intersection Q through the diagonal line L through the
special intersections. This is shown in the final picture of Figure 3.22.

What results is a new path, r′, not from Bill’s home, but from a location
one block south and one block east of his home, which we will call H′, through
Q, all the way to his workplace.

Notice that every bad path will correspond, via such a reflection, to a dif-
ferent path from H′ to W. Another example is shown in Figure 3.23.

H´

Q

H

W

L
r´

r

Q

Figure 3.23: Another reflected path

Also notice that every path from H′ to W is bad in the sense that it must
cross the railroad tracks (the tracks are “in the way”). So every path from H′

to W will correspond to a bad path: find the first special intersection along the
path (it must pass through at least one, since it crosses the railroad tracks).
Call this special intersection Q. Now reflect the portion of this path from H′ to
Q back across the diagonal line L through the special intersections. The new
path is a bad path from H to W.

Therefore, the number of bad paths from H to W is the total number of
paths from H′ to W.

Exercise 3.4.2. Find the paths from H′ to W which correspond to the two
bad paths given in Figure 3.24.

Exercise 3.4.3. Suppose Bill lives 3 blocks south and 3 blocks west of work.
Draw all the paths from home, H, to work, W, including the bad ones. Also
draw all the paths from H′, located one block south and one block east of Bill’s
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H

W

H

W

Figure 3.24: Two bad paths

home, to W. Now pair up the paths from H′ to W with the bad ones from H
to W according to the method just described.

Exercise 3.4.4. If Bill lives 4 blocks south and 4 blocks west of work, what is
the number of paths from H′ to W? Use this to verify that the number of good
paths from H to W is 14.

Exercise 3.4.5. Now suppose Bill lives n blocks west and n blocks south of
work. How many blocks west and how many blocks south of work will H′ be?
Count the number of bad paths and subtract from the total number of paths
obtained in Exercise 1 to give a formula for Cn, the number of good paths.

We now state several forms for the explicit formula for the Catalan number.

Theorem 4.

Cn =

(
2n

n

)
−
(

2n

n− 1

)
=

1

n+ 1

(
2n

n

)
=

1

2n+ 1

(
2n+ 1

n

)
.

Exercise 3.4.6. Algebraically manipulate the first formula in Theorem 4 to
derive the second and third forms. Hint: Use Exercise 2.2.9 to show that (n+
1)! = (n+1)n!. Then use this identity to find a convenient common denominator.

Exercise 3.4.7. Use Theorem 4 to check the values of C0, C1, C2, C3, C4, C5,
C6 and C7 computed in earlier exercises.

Exercise 3.4.8. If 42 people are seated around a round table, how many ways
can they shake hands without crossing handshakes?
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Exercise 3.4.9. How many ways are there to triangulate a 20-sided polygon?

The ideas in this section can be used in a number of other similar situations.
Here are a few examples.

Exercise 3.4.10. Use the ideas of this section to count the number of paths
from H to W in Figure 3.25 which stay northwest of the railroad tracks.

H

W

Figure 3.25: A non-square block-walk grid

Exercise 3.4.11. Count the number of paths from H to W in Figure 3.26 which
stay northwest of the railroad tracks and which do not use the north-south edge
which is covered by a lake.

Exercise 3.4.12. Suppose Bill leaves his home and at each intersection, he
either walks east or north. If he walks a total of four blocks, how many paths
does he have? How many paths does he have if he must stay northwest of the
railroad tracks? (Notice that he will end up at A, B or C in Figure 3.27). An
example of one such path is also shown in Figure 3.27.

Exercise 3.4.13. Answer the two questions posed in Exercise 3.4.12 if he walks
a total of six blocks (see Figure 3.28 below). Find formulas for the answers to
the two questions if he walks a total of 2n blocks. The reflection principle may
be useful in the six block case and is essential in the 2n block case.
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H

W

lake

Figure 3.26: Block-walk grid with a lake

H

A

B

C

Figure 3.27: Length 4 block-walk
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H

Figure 3.28: Length 6 block walk

*Exercise 3.4.14. How many ways can Bill walk from his home at H1 to his
workplace at W1 and Mary walk from her home at H2 to her workplace at W2
(see Figure 3.29)? How many of these pairs of paths are there so that the paths
do not touch or cross?
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H1

H2

W1

W2

Figure 3.29: Find non-crossing paths on a grid





Chapter 4

Graphs

The graphs we discuss in this chapter are not the x-y coordinate graphs you
may be familiar with from your algebra classes. The graphs here are a kind of
line drawing. They are collections of points connected by lines. We will discuss
some of the properties of these graphs in this chapter. For instance, when is it
possible to draw such a graph on a piece of paper without lines crossing? We
will also find out about several special kinds of graphs and we will classify the
regular polyhedra.

4.1 Eulerian Walks and Circuits

Modern graph theory is said to have its origins in a famous old folk problem
called the Königsberg Bridge Problem.

Exercise 4.1.1. The people of Königsberg often strolled around their town after
dinner. See the map in Figure 4.1. Is it possible for a citizen of Königsberg to
arrange her stroll so that she crosses each of the seven bridges exactly once, and
finally returns to her home? Why or why not? Does the location of her home
matter?

Let’s replace each “land mass” with a dot (called a vertex, plural vertices),
and each bridge with a line (not necessarily straight) connecting dots (called an
edge). The Königsberg map becomes the graph in Figure 4.2.

The problem in Exercise 4.1.1 is then to find a walk through the graph in
Figure 4.2, starting and ending at the same place, so that each edge is used
exactly once.

A walk is simply an alternating sequence of vertices and edges, beginning and
ending with a vertex, where each edge goes between the vertices immediately
before and after in the sequence. For example, in Figure 4.3, one walk starts at
vertex A, goes along edge 1 to vertex B, then along edge 4 to vertex D, along
edge 7 to vertex E, along edge 8 to vertex B again, along edge 2 to vertex A
again, and finally along edge 5 to vertex C.

77
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Figure 4.1: The bridges of Königsberg
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Figure 4.2: Königsberg graph
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Another walk starts at D, goes along edge 7 to vertex E, then back along
edge 7 to vertex D again.

We have defined walks in a very general way. Edges may be repeated, vertices
may be repeated. Walks may be very long and complicated. Or they can be
very short, even consisting of a single vertex and no edges. Walks may start at
one vertex and end at another. Or they may start and end at the same place.
We will now consider several specializations of walks.

One special kind of walk is a closed walk, which is a walk which begins and
ends at the same vertex and has at least one edge.

A
B

C

D

E

1

2

3 4

5

6
7

8

Figure 4.3: A graph with labeled vertices and edges

Exercise 4.1.2. Find two more walks in the graph in Figure 4.3. Have one of
your walks start at D and end at E and visit C along the way. Have the other
walk be a closed walk.

The kind of walk that occurs in the Königsberg Bridge Problem is called
an Eulerian walk. It has the property that each edge is used in the walk
exactly once. If the Eulerian walk is a closed walk, it is called an Eulerian
circuit. The graph in Figure 4.3 has an Eulerian circuit. One such circuit is
A1B2A3D4B8E7D6C5A. The graph in Figure 4.2 does not have an Eulerian cir-
cuit. The goal of this section is to find a condition on a graph that is equivalent
to having an Eulerian circuit.

Exercise 4.1.3. Determine which of the graphs in Figure 4.4 have an Eulerian
circuit. If the graph has such a circuit, draw it. If not, give arguments why you
think no such circuit exists.
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Figure 4.4: Which have Eulerian circuits?
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Exercise 4.1.4. From your analysis in Exercise 4.1.3, state some property of a
graph which is equivalent to having an Eulerian circuit.

Some writers on this subject allow their graphs to have loops and multiple
edges (see Figure 4.5), while others do not.

Figure 4.5: A graph with loops and multiple edges

For the purposes of this discussion of Eulerian circuits, our graphs can have
multiple edges (but not loops).

Two vertices are connected if there is a walk from one to the other. This
does not mean that there is an edge between the two vertices. For instance, in
Figure 4.3 vertex C and E have no edge between them, but they are connected.

A graph is connected if every pair of vertices is connected. A graph which is
not connected has two or more connected pieces called connected components.
For instance, the graph in Figure 4.6 is not connected and has two connected
components.

Figure 4.6: A non-connected Graph

Exercise 4.1.5. Draw a graph which is not connected and which has three
connected components.

The degree of a vertex is the number of edges which use that vertex.

Exercise 4.1.6. Show that if a graph has an Eulerian circuit, it cannot have a
vertex of odd degree.
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The converse of Exercise 4.1.6 is somewhat harder to show. The next few
exercises describe an algorithm for finding Eulerian circuit in a connected graph
whose vertices all have even degree.

Exercise 4.1.7. The graph in Figure 4.7 has all even degrees. Find some closed
walk in this graph which does not use any edge more than once. (This closed
walk does not have to be an Eulerian circuit, since some of the edges may not
appear in it. In fact, this closed walk may be quite simple.) Find another closed
walk in this graph with three edges.

Figure 4.7: Finding an Eulerian circuit

Exercise 4.1.8. Erase the edges of the closed walk you found in Exercise 4.1.7
from this graph. (Don’t erase the vertices.) What are the degrees of the vertices
in this new graph? Why are they all even? Does this new graph have to be
connected?

Exercise 4.1.9. Now repeat Exercises 4.1.7 and 4.1.8 for each connected com-
ponent of the new graph. Continue this process until no edges remain.

Exercise 4.1.10. Now find an Eulerian circuit in the original graph by starting
with the last closed walk you found in Exercise 4.1.9 and adding back the closed
walks that you removed.

We can now summarize the previous group of exercises.

Theorem 5. A connected graph has an Eulerian circuit if and only if
every vertex has even degree.

There is a similar condition for a graph to have an Eulerian walk which is
not an Eulerian circuit. The next exercise asks you to find this condition.
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Exercise 4.1.11. State some property of a graph which is equivalent to having
an Eulerian walk from the vertex v to the vertex w, where v and w are different
vertices.

The degrees of the vertices of a graph can also be used to determine the
number of edges in the graph.

Exercise 4.1.12. In the graph in Figure 4.8, calculate the degrees of all the
vertices and add them. How many edges are there? Try this on some more
examples. Find and prove a formula which relates the number of edges in a
general graph to the sum of the degrees.

Figure 4.8: The handshake theorem

Exercise 4.1.13. Use the formula you found in Exercise 4.1.12 to show that
in every graph the number of vertices of odd degree is even.

Exercise 4.1.14. Use Exercise 4.1.13 to show that at a party, the number of
people who shake hands with an odd number of other people is even.

We can summarize the previous exercises with the following theorem, called
the handshake theorem.

Theorem 6 (The Handshake Theorem). In a graph with E edges, the
sum of the degrees of all the vertices is 2E.

4.2 Special Graphs

There are many “special cases” of graphs that we will find useful. Some of these
will be the subjects of later chapters. Others we will find scattered throughout
the rest of this chapter. These graphs will have no loops or multiple edges.

The simplest kind of graph is the null graph. Nn denotes the version of this
graph having n vertices. It is the graph with no edges. Figure 4.9 shows N3

and N4.
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N
3

N
4

Figure 4.9: Null graphs N3 and N4

The most complicated kind of graph is the complete graph. We let Kn denote
the complete graph having n vertices. In the complete graph, all possible edges
are drawn (no multiple edges or loops). Figure 4.10 shows K3 and K4.

3
K

4
K

Figure 4.10: Complete graphs

Exercise 4.2.1. Draw K5 and K6. Note that you may have to “cross edges”
to draw these.

Exercise 4.2.2. How many edges do K5 and K6 have? Kn?

Sometimes all the edges in a graph go between one set of vertices and another.
Such graphs are used to model job assignment problems. The jobs make up one
set of vertices, the applicants another. An edge between a job and an applicant
means that that applicant is qualified for that job. These graphs are called
bipartite. See Figure 4.11 for an example. All the edges are between the vertices
in the set {a, b, c, d} and the set {1, 2, 3}.

If every possible edge between two sets of vertices is drawn (no loops or
multiple edges), what results is a complete bipartite graph. Such graphs have
two indices—one for each set of vertices. Let Kn,m denote the complete bipartite
graph having vertex set sizes of n and m respectively. Figure 4.12 shows K2,2

and K2,3.

Exercise 4.2.3. Draw K3,3 and K3,4.
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a b c d

1 2 3

Figure 4.11: A bipartite graph

K
2,3

K
2,2

Figure 4.12: K2,2 and K2,3
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Exercise 4.2.4. How many edges do K3,3 and K3,4 have? Kn,m?

Exercise 4.2.5. When does Kn have an Eulerian circuit? When does Kn,m

have an Eulerian circuit?

An important property of bipartite graphs is that every closed walk has an
even number of edges.

Exercise 4.2.6. Prove that every closed walk in a bipartite graph has an even
number of edges.

Graphs merely keep track of vertices and edges. The representation of these
things on a piece of paper or a blackboard is purely a convenience. For example,
Figure 4.13 shows three ways of drawing the same graph.

1

23

4 5
1

2

34

51

2

34

5

Figure 4.13: Three ways of drawing the same graph

Whenever we speak of a graph, we must differentiate between the graph
(which is just a set, called vertices, and a set of pairs of vertices, called edges)
and the “picture” of the graph that we draw on a page or on a blackboard. In
particular, the edges may be long or short, curving or straight. They may or
may not cross.

You have probably noticed, however, that graph drawings are “nicer” if
edges do not cross. Figure 4.14 shows two ways of drawing K4. The second

Figure 4.14: Two ways of drawing K4

of these drawings is called a planar representation because the graph has been
drawn on a plane with no crossing edges. Figure 4.14 shows that graphs can
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sometimes be drawn with a planar representation and sometimes without a
planar representation. Graphs which have a planar representation are called
planar graphs. Graphs which are not planar are nonplanar. Notice that the
first drawing of K4 in Figure 4.14 is a planar graph drawn in a non-planar way;
it may be regarded as a planar graph in disguise.

Exercise 4.2.7. Determine which of the graphs in Figure 4.15 are planar
graphs. If they are planar, draw a planar representation. If not, give what-
ever reasons you can why you cannot draw a planar representation.

Figure 4.15: Planar graphs?

Some graphs cannot be drawn in the plane without crossing edges, no matter
how hard we try. Here are two examples.

Exercise 4.2.8. Three hermits, Jake, Jed and Jethro, live in the hills, each in
his own house. Located nearby are three wells. Jake , Jed and Jethro try to
build paths from their houses to each well in such a way that no pair of paths
cross. Is this possible?

Exercise 4.2.9. Exercise 4.2.8 asks you to try to draw a planar representation
of K3,3. Now try to draw a planar representation of K5.

A very famous theorem states that not only are K3,3 and K5 nonplanar, but
in a certain sense they are the only nonplanar graphs. The “certain sense” is
that inside each nonplanar graph there is a subgraph which “looks like” K3,3 or
K5: it may contain some vertices of degree 2, but these can be “forgotten.” An
example of a nonplanar graph and its “hidden” K3,3 is given in Figure 4.16.

We will look at planar graphs in more detail in Section 4.3.

Another special kind of graph is a tree. To define a tree, we first define a
cycle. A cycle is a closed walk with at least one edge and which does not repeat
vertices (except for the first and last) or edges. Trees are then connected graphs
(no loops or multiple edges) which have no cycles. Some examples are shown in
Figure 4.17.
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Figure 4.16: K3,3 in the Peterson graph

Figure 4.17: Three trees
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Exercise 4.2.10. Draw some trees with four, five and six vertices. How many
edges does each have? What is the relationship between the number of edges in
a tree and the number of vertices?

Vertices in a tree of degree one are called leaves or terminal vertices. Notice
that if a leaf and its incident edge (i. e., the edge with the leaf as one of its
endpoints) are removed (pruned), the resulting new graph is still a tree, but
with one fewer edge and one fewer vertex.

Exercise 4.2.11. Use the above argument to prove:

The number of vertices V and the number of edges E of a tree satisfy

E = V − 1 . (4.1)

Exercise 4.2.12. Is a tree a planar graph? Which of the complete graphs are
trees? Which of the complete bipartite graphs are trees?

Exercise 4.2.13. Suppose you remove an edge from a tree (but not the vertices
at either end of the edge). Is the resulting graph connected? What about the
converse? That is, suppose you have a connected graph and you know that if
you remove any edge, the graph becomes disconnected. Is the graph a tree?

Trees are used to model many real-world problems, including family trees,
biological classifications, essay outlines, and computer database structures. We
will look at trees in a later chapter.

4.3 Planar Graphs

Like all graphs, planar graphs have vertices and edges. But once a planar
representation of such a graph is given, it also has faces, regions bounded on all
sides by edges of the graph. One of the faces is the “infinite” outer face. This
face is called the exterior face.

Notice that it is the planar representation that has the faces, for if we draw
the graph in a non-planar way (see the left figure in Figure 4.14), we cannot
determine its faces. Furthermore, if we draw two different planar representations
of the same planar graph, the faces may change. For example, Figure 4.18 shows
the same graph drawn in two different ways. One way has one face surrounded
by 5 edges and three faces surrounded by 3 edges. The other way has two faces
surrounded by 4 edges and two faces surrounded by 3 edges.

Exercise 4.3.1. In what sense are the two graphs in Figure 4.18 the same
graph?

Exercise 4.3.2. On Figure 4.18, for each face indicate the number of edges
around the face.
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Figure 4.18: Two planar embeddings of the same graph

To keep things simple, we will take the point of view that the planar repre-
sentation is the planar graph.

Suppose we are given some connected planar graph. Let’s let V , E and F
stand for the number of vertices, edges and faces, respectively. (When counting
faces, be sure to count the exterior face.) An example is given in Figure 4.19.
In this example, F = 6, E = 13 and V = 9.

Figure 4.19: A planar graph

Exercise 4.3.3. Another example of a planar graph is given in Figure 4.20.
Find V , E, and F .

The number of faces, vertices and edges of a connected planar graph are
related in a fundamental way. That relationship is called Euler’s formula.

Theorem 7 (Euler’s Formula). In a connected planar graph with F faces,
E edges and V vertices,

F + V = E + 2 . (4.2)

In the next few exercises, we will prove Euler’s formula. First, let’s check it
for trees.

Exercise 4.3.4. How many faces does a tree have? Use Equation (4.1) to prove
Euler’s formula for the special case when the planar graph is a tree.



4.3. PLANAR GRAPHS 91

Figure 4.20: Another planar graph

Now suppose our connected planar graph is not a tree. Suppose we find an
edge whose removal will not disconnect our graph. If the graph is not a tree
and is connected, then Exercise 4.2.13 guarantees that such an edge exists. (Of
course, if the graph is already a tree, we can’t find such an edge.)

Exercise 4.3.5. If we remove this edge, what happens to the number of edges?
the number of faces? the number of vertices?

Exercise 4.3.6. Suppose we remove an edge from any connected planar graph
and are left with another connected planar graph. Show that F − E + V does
not change.

Therefore, starting with a connected planar graph, we remove edges as de-
scribed above, until we are left with a tree. By Exercise 4.3.6 F − E + V does
not change each time we remove an edge. Therefore, F −E+V will be the same
for the original graph as it is for the tree. But by Exercise 4.3.4 the resulting
tree will have F −E+V = 2. Thus we conclude that Euler’s formula is satisfied
by the original graph.

Exercise 4.3.7. Do some examples to figure out how the formula changes
if the graph is not connected. (Hint: let C denote the number of connected
components.)

One of the many consequences of Euler’s formula is that planar graphs can-
not have too many edges. To simplify the discussion somewhat, let’s define the
degree of a face. The degree of a face is the number of edges “around” the
face. We have to be careful about graphs with faces such as the interior face in
Figure 4.21. This face will have degree 8. Thus, if both sides of an edge border
the same face, this edge contributes two to the degree of the face.
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Figure 4.21: Degree of a face in a planar graph

Exercise 4.3.8. Compute the degree of each face in the graph in Figure 4.19.
Then take the sum. You should get 2E. Explain why. Do the same for the
graph in Figure 4.20?

Exercise 4.3.8 demonstrates the face version of the handshake theorem, The-
orem 6.

Theorem 8 (The Face Handshake Theorem). In a planar graph with E
edges, the sum of the degrees of the faces equals 2E.

Before proving Theorem 8, let’s check that the formula works when the
planar graph is a tree.

Exercise 4.3.9. Check that Theorem 8 is true when the graph is a tree.

Now let’s prove Theorem 8 for general planar graphs.

Exercise 4.3.10. Prove Theorem 8.

We saw in Figure 4.18 that different planar representations of the same graph
can lead to different degrees of their faces. However, Theorem 8 says that the
sum of these degrees must always be 2E.

Exercise 4.3.11. Compute sums of the degrees of the faces of the two graphs
in Figure 4.18. These sums should be the same.

Exercise 4.3.12. Show that the number of faces of a connected planar graph
is the same regardless of the planar representation.

Let’s now use the face handshake theorem and Euler’s formula to show why
K5 is not a planar graph. Suppose K5 is a planar graph.
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Exercise 4.3.13. Use Euler’s formula to show that if K5 were planar, it would
have 7 faces.

Exercise 4.3.14. Use Theorem 8 and the fact that if K5 were planar, each
face would have degree 3 or more to show that K5 cannot have the 7 faces you
computed in Exercise 4.3.13.

Exercise 4.3.14 shows that K5 cannot be planar. The ideas used in this
exercise can be generalized to other planar graphs.

Exercise 4.3.15. Use Theorem 8 to show the following:

Suppose a planar graph with E edges and F faces has at least three edges
around each face. Then

3F ≤ 2E . (4.3)

We now turn our attention to K3,3.

Exercise 4.3.16. If K3,3 were planar, how many faces would it have?

If we assume that every face of K3,3 has degree 3 or more, can we argue as
we did for K5 in Exercise 4.3.14?

Exercise 4.3.17. Using Exercise 4.3.14 as a model, and assuming that every
face of K3,3 has degree 3 or more and that K3,3 has the number of faces given
in Exercise 4.3.16, try to show that K3,3 is not planar. What goes wrong?

Exercise 4.3.17 does not mean that K3,3 is planar. It does mean that we will
have to improve our arguments somewhat.

Recall from Exercise 4.2.6 that if a graph is bipartite, all its closed walks
must have an even number of edges. Therefore, every face of K3,3 must be
surrounded by four or more edges, not three or more edges.

Exercise 4.3.18. Now use Theorem 8 and the fact that each face of K3,3 must
have degree 4 or more to show that K3,3 cannot have the number of faces you
computed in Exercise 4.3.16.

Exercise 4.3.19. Suppose a planar graph has at least four edges around each
face. Use Theorem 8 to show

4F ≤ 2E . (4.4)

The inequalities in Exercises 4.3.13 and 4.3.16 can be used with Euler’s
formula to give bounds on the number of edges in a planar graph. These in-
equalities essentially say that the number of edges in a planar graph cannot be
too big.

Exercise 4.3.20. Suppose every face of a certain connected planar graph has
at least three edges around each face. Use Inequality (4.3) and Euler’s formula
(Equation (4.2)) to show

E ≤ 3V − 6 . (4.5)
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Exercise 4.3.21. Does Inequality (4.5) hold for planar graphs which are not
connected? Why or why not? (Hint: a connected planar graph can be con-
structed from an arbitrary non-connected planar graph by inserting edges.)

Exercise 4.3.22. The graph with one vertex and no edges is planar. The graph
with two vertices and one edge is planar. Check Inequality (4.5) for these two
graphs. What is wrong?

Exercise 4.3.23. Suppose every face of a certain connected planar graph is
surrounded by four or more edges. Use arguments similar to those in Exer-
cise 4.3.20 and Inequality (4.4) to show that

E ≤ 2V − 4 . (4.6)

4.4 Polyhedra

The method used for proving Inequality (4.5) of Section 4.3 can be used to
classify polyhedra.

A polyhedron (plural: polyhedra) is a 3-dimensional solid body with flat,
polygonal surfaces called faces. It may seem confusing that we are using the
word “face” in two different contexts, but we shall soon see that these two
versions of “faces” coincide. We will be looking at convex polyhedra—polyhedra
without holes or indentations. An example of a convex polyhedron is a cube—
see Figure 4.22.

Figure 4.22: A cube

Although a polyhedron is a three-dimensional object, its topology can be
reduced to a two-dimensional planar graph. Pick one of the faces of the polyhe-
dron, and “punch a hole” in that face. Imagine that the faces are made of some



4.4. POLYHEDRA 95

stretchable material. Now stretch and spread the polyhedron out on a plane.
The face of the polyhedron with the hole punched becomes the exterior face of
the planar graph. The other faces of the polyhedron become the other faces of
the planar graph. We sometimes say the place where we punched the hole is a
“point at infinity.” The face where we punched the hole is the infinite face of
the planar graph. Figure 4.23 shows the tetrahedron drawn in the plane.

Figure 4.23: Planar view of a tetrahedron

Exercise 4.4.1. Draw a planar representation of the cube.

Since edges don’t “cross” in a polyhedron, they won’t cross after this stretch-
ing procedure, so the graph we get is planar. Therefore Euler’s formula therefore
holds for the edges, faces and vertices of a polyhedron.

If every face of the polyhedron is a regular polygon, all the faces are con-
gruent, and every vertex has the same degree, then we say the polyhedron is
regular. It is a remarkable fact, which is a consequence of Euler’s formula, that
there are only five kinds of regular polyhedra. These five are sometimes called
“Platonic solids.” This classification is our next goal.

When a regular polyhedron is stretched to become a planar graph, the faces
are no longer regular and no longer congruent. However, all the faces have the
same degree and all the vertices have the same degree. Let’s say that every face
has degree q and every vertex has degree p. For example, for the tetrahedron,
p = 3 and q = 3. Therefore, by Theorem 6, 3V = 2E and by Theorem 8,
3F = 2E.

Exercise 4.4.2. Use these two equations plus Euler’s formula to find F , V and
E for the tetrahedron.

Exercise 4.4.3. Use Theorems 6 and 8 to show that for the graph of a regular
polyhedron qF = 2E and pV = 2E.
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Exercise 4.4.4. Use Exercise 4.4.3 and Euler’s formula (Equation (4.2)) to
show

For a regular polyhedron with E edges, face degree q and vertex degree
p, the following equation holds:

1

p
+

1

q
=

1

2
+

1

E
. (4.7)

Exercise 4.4.5. Explain why p ≥ 3 and q ≥ 3.

Exercise 4.4.6. Find all integers p and q which satisfy Equation (4.7), subject
to the inequalities in Exercise 4.4.5.

Exercise 4.4.7. For each of the solutions you found in Exercise 4.4.6, find the
corresponding values of E, F and V . Your solution to Exercise 4.4.2 will be one
of these solutions. Draw the polyhedral graph in each case.

Theorem 9. There are exactly five regular polyhedra. These are the tetra-
hedron, the cube, the dodecahedron, the octahedron and the icosahedron.

Not all polyhedra are regular. Suppose that we only know that every face
has at least q edges and that every vertex has at degree at least p.

Exercise 4.4.8. Show that the equations in Exercise 4.4.3 are replaced by the
inequalities 2E ≥ qF and 2E ≥ pV . Explain why every polyhedron satisfies
2E ≥ 3F and 2E ≥ 3V .

Exercise 4.4.9. Show that it is impossible to construct a polyhedron entirely
out of faces with six or more sides. Hint: combine the inequalities 2E ≥ 3V ,
obtained from Exercise 4.4.8, and 2E ≥ 6F , obtained from Theorem 8, with
Euler’s formula.

Exercise 4.4.10. Suppose a polyhedron is made up of four hexagons and a
certain number of triangles, and is constructed so that exactly three faces meet
at each vertex. Show that there must be exactly four triangles. Hint: Let x
be the number of triangles. Justify each of the following equations and then
combine them with Euler’s formula.

2E = 3V

F = 4 + x

2E = 24 + 3x

Exercise 4.4.11. Suppose all the faces of a certain polyhedron are four-sided.
Suppose 18 of its vertices have degree four and the rest have degree three.
Determine the number of faces, edges and vertices of this polyhedron.
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As was stated earlier, not all polyhedra are regular. We can relax the reg-
ularity rules a bit to get a larger class of polyhedra. For instance, semi-regular
polyhedra are polyhedra whose faces are two or more types of regular poly-
gons, and the polygons are arranged around each vertex in the same way. An
example is the truncated tetrahedron, pictured in Figure 4.24. Around each
vertex are two hexagons and a triangle. (The regularity of the triangles and
hexagons is not apparent in this picture, because it is a planar representation
of a three-dimensional polyhedron.)

Figure 4.24: A truncated tetrahedron

There are two infinite classes of semi-regular polyhedra and 13 special ones.
The truncated tetrahedron above is one of the 13 special ones. One of the
infinite classes is obtained by connecting regular n-gons with squares. The
planar representation of an example when the n-gon is a hexagon is shown in
Figure 4.25.

Exercise 4.4.12. Find the other infinite class and as many of the other special
ones as you can.

4.5 Tessellations

A tessellation of the plane is a subdivision of the plane into polygons. Like
polyhedra, tessellations have various subcategories. One of these is regular.
That means that every polygon (also called a face) is a regular polygon, all the
polygons are congruent, every vertex has the same degree, and pairs of polygons
cannot share a part of an edge. An example is pictured in Figure 4.26.

The last condition rules out pictures like Figure 4.27.
A regular tessellation is like an infinite planar graph. We would like to use

Euler’s formula, but we must be able to “extend” it to infinity. Suppose we look



98 CHAPTER 4. GRAPHS

Figure 4.25: A hexagonal prism

Figure 4.26: A regular tessellation
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Figure 4.27: Not a regular tessellation

at a finite portion of the tessellation, which is a planar graph. Equation (4.7)
is almost valid. It is not quite right because the formulas in Exercise 4.4.3 are
not quite right.

For example, we might use the portion of the tessellation pictured in Fig-
ure 4.26 as a “partial tessellation”. The vertices on the interior of this partial
tessellation all have degree six. But those on the outer boundary have lower
degree—some have degree five, some have degree three and some have degree
two. The faces on the interior all have three edges around them, but the exterior
face has many edges.

However, if we let this partial tessellation grow larger and larger, the con-
tribution of the vertices, edges and faces on the outer boundary becomes small
compared to the contributions of the vertices, edges and faces in the interior.

Furthermore, as we let the partial tessellation grow, the number of edges
grows, so that Equation (4.7) becomes the following:

A regular tessellation with face degree q and vertex degree p satisfies

1

p
+

1

q
=

1

2
. (4.8)

Exercise 4.5.1. Use Equation (4.8) and the conditions p ≥ 3 and q ≥ 3 to
verify that there are only three regular tessellations of the plane. Draw them.

As in the case of polyhedra not all tessellations are regular. Again we can
relax the regularity rules a bit to get a larger class of tessellations.

Semi-regular tessellations are tessellations made up of two or more types of
regular polygons, and the polygons are arranged at each vertex in the same way.
An example is pictured in Figure 4.28

Note that each vertex has two octagons and a square around it.

Exercise 4.5.2. Suppose the degree of every vertex of a semi-regular tessel-
lation is four and that the tessellation is made up of triangles and hexagons.
How many triangles and how many hexagons meet at a vertex? Try to draw
the tessellation.

There are eight semi-regular tessellations. One was drawn in Figure 4.28.
One was described in Exercise 4.5.2.
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Figure 4.28: A semi-regular tessellation

Exercise 4.5.3. Find as many of the other six semi-regular tessellations as you
can.

4.6 Torus Graphs

We have seen several graphs which do not have planar representations—for
example, K5 and K3,3. It might be possible, however, to draw these graphs
on the surface of more complicated three-dimensional objects without crossing
edges.

For example, it might be possible to draw such a nonplanar graph on the
surface of a doughnut. The surface of a doughnut is called a torus (see Fig-
ure 4.29). A torus can be viewed in two dimensions as a rectangle with opposite
edges identified (see Figure 4.30). To convert from the rectangle to the torus,
imagine rolling a rectangular piece of paper into a tube, then curling the tube
up into a doughnut shape. Thus, in Figure 4.30, the point A appears in two
places. Notice that the corners of the rectangle (point P in Figure 4.30) all refer
to the same point.

Exercise 4.6.1. Draw K3,3 and K5 on the surface of a torus.

Exercise 4.6.2. Draw K6 on the surface of a torus.

Exercise 4.6.3. Draw K7 on the surface of a torus.
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Figure 4.29: A torus
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Figure 4.30: A flattened-out torus

Exercise 4.6.4. The idea of a face also makes sense for graphs on a torus. In
Exercise 4.6.1 you drew K5 and K3,3 on the torus. Show that for these graphs,
V − E + F = 0.

4.7 Coloring Graphs

If you tried to color the states in a map of the United States, you would find
that you could use just four colors and never have two states with a common
border colored alike.

The question of whether every map could be colored using four colors was
unsolved for a hundred years, until the mid 1970’s when Appel and Hocking
proved that four colors were all that was needed.

We usually translate the map coloring problem into a graph coloring prob-
lem. The faces in the map are replaced by vertices, the common borders by
edges. The map coloring problem translates into a problem of coloring the
vertices of a planar graph so that no two adjacent vertices are colored alike.
Figure 4.31 gives an example of this translation.

Actually, we might try to color the vertices of every graph (not just planar
graphs) so that adjacent vertices are colored differently. The number of colors
that are required is called the chromatic number of the graph. What Appel
and Hocking showed was that the chromatic number of every planar graph is
no more than four.

Exercise 4.7.1. What is the chromatic number of Kn? Of Kn,m?

Exercise 4.7.2. A teacher is trying to organize work groups in her classroom.
She has 10 students and she wants three work groups. However the following
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Figure 4.31: A planar map and its dual

pairs of students don’t get along with each other and should not be in the same
work group: Mark and Jennifer; Mark and Kristin; Mark and Lynn; Jennifer
and Oliver; Oliver and Kristin; Oliver and Phil; Phil and Kristin; Phil and Lynn;
Kristin and Lynn; Mark and Oliver. The other students, Ann, Bill, Cathy and
Edward, get along with everyone. Restate this as a coloring problem. Can she
do it?

All graphs have a number associated called the genus. The genus is the
number of “holes” that must be punched through a sphere to create a surface
upon which the graph can be drawn without crossing edges. Planar graphs have
genus 0. They can be drawn on the surface of a sphere with no holes. The torus
described in Section 4.6 has one hole; graphs which can be drawn on the torus
but not on the sphere, like K5, K6 and K7, have genus one.

Among all the graphs of a given genus, we might ask what is the largest
chromatic number? For genus 0, the answer, four, was given by Appel and
Hocking. For graphs of higher genus, there is a beautiful formula whose proof
actually predates the four color theorem. If g > 0 is the genus and c is the
largest chromatic number for graphs of that genus, then

c =

[
7 +
√

1 + 48g

2

]
, (4.9)

where [x] means the greatest integer less than or equal to x.

Exercise 4.7.3. How many colors suffice for graphs which can be drawn on a
torus? For graphs of genus 2?

Exercise 4.7.4. Although Equation (4.9) was only proved for g > 0, what
happens in that equation if you let g = 0?
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Although the proof of the four color theorem is certainly beyond the scope of
this class (it required the computer analysis of over 1400 special cases), the proof
that no more than five colors are required is sometimes given in undergraduate
graph theory courses. We will show that no more than six colors are required
to color the vertices of a planar graph with adjacent vertices colored differently.

The elements of this proof are actually the first steps in the proofs of the
five- and four-color results.

The key to the argument is the fact that planar graphs cannot have too
many edges, which was Inequality (4.5), namely, E ≤ 3V − 6.

Exercise 4.7.5. Use this inequality to show that a planar graph must have at
least one vertex of degree 5 or less.

The argument is an inductive argument. Start with a planar graph. Suppose
you have a method of 6-coloring each graph with fewer vertices. Find a vertex
of degree 5 or less in your graph. Remove it. Now use your method for smaller
graphs to color what’s left with the six colors. Then put the vertex of degree
5 back. It is adjacent to five or fewer vertices, which use five or fewer colors.
Since six colors are available, this vertex can be colored the sixth color without
messing up the coloring of the rest of the graph. Figure 4.32 describes the
argument.

green

black

white

purple
blue

green

black

white

purple
blue

red

Figure 4.32: Coloring a degree 5 vertex

Exercise 4.7.6. Why doesn’t this argument work for five colors instead of six?

4.8 Tournaments

In a round-robin tournament, every team plays every other team once. We can
visualize the outcome of such a tournament with a special kind of graph called
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a directed graph. In a directed graph, edges have a direction ascribed, usually
denoted pictorially as an arrow. In the case of a tournament, every possible edge
is drawn (as in a complete graph), with the arrow pointing from the winning
team to the losing team. Figure 4.33 describes a tournament with five teams,
A, B, C, D and E. In this tournament, B beats A, C, D and E; A beats C and
D; C beats D and E; D beats E; and E beats A.

A

B

CD

E

Figure 4.33: A tournament

We will begin by counting tournaments.

Exercise 4.8.1. Draw all the tournaments with three teams.

Exercise 4.8.2. How many tournaments are there with four teams? How many
are there with n teams?

Some tournaments are especially well-behaved. For instance, a tournament
might have the property that whenever u beats v and v beats w, then u beats
w. Such tournaments are called transitive. If this condition does not always
hold, then the tournament is called intransitive.

Exercise 4.8.3. Is the tournament in Figure 4.33 transitive or intransitive?

Exercise 4.8.4. Give an example of a transitive tournament with five teams.
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Some tournaments might contain a directed cycle, i. e., a sequence of teams
A, B, C, . . . , K, where A beats B, B beats C, . . . , and K beats A. In the above
tournament, A beats C, C beats D, D beats E and E beats A.

Exercise 4.8.5. Does an intransitive tournament contain a directed cycle?
Why or why not?

Notice that in the tournament in Figure 4.33, there is a 3-cycle (a directed
cycle with three edges): A beats D, D beats E and E beats A.

Exercise 4.8.6. Show that if a tournament contains a directed cycle, it contains
a directed 3-cycle. Conclude that if a tournament contains a directed cycle, it
is intransitive.

Exercises 4.8.5 and 4.8.6 show that a tournament is transitive if and only if
it has no directed cycles.

One way to describe a tournament is with its score vector. This is just the
sequence of the number of wins for each team. For example, the tournament
in Figure 4.33 has this score vector: (2, 4, 2, 1, 1). This means team A won two
matches, team B won four, team C won two, team D won one and team E won
one.

Exercise 4.8.7. Notice that the sum of scores in the example in Figure 4.33 is
10. Give another example of a tournament with five teams. What is its score
vector? What is the sum of the scores? What is the sum of the scores for a
tournament with n teams? What is the largest possible score?

The score vector does not determine the tournament; there are examples of
two essentially different tournaments with the same score vector. However, the
score vectors of transitive tournaments are especially simple and do determine
the tournament.

Exercise 4.8.8. Show that (0, 1, 2, . . . , n− 1) is the score vector of some tran-
sitive tournament with n teams.

Exercise 4.8.9. Suppose T is a transitive tournament. Show that the score
vector of T cannot have two equal values. Hint: Suppose two teams, A and B,
have equal scores. Suppose A beats B. Now suppose B beats C. Can C beat A?
Can every team that B beats beat A? Why not? Conclude that A must beat
all the teams that B beats. Why is this not possible?

Exercise 4.8.10. Conclude from Exercise 4.8.9 that if T is a transitive tour-
nament on n teams, then the score vector of T must be some rearrangement of
{0, 1, 2, . . . , n− 1}.

Exercises 4.8.8, 4.8.9 and 4.8.10 show that T is a transitive tournament on n
teams if and only if the score vector of T is a rearrangement of {0, 1, 2, . . . , n−1}.

Exercise 4.8.11. How many transitive tournaments with n teams are there?





Chapter 5

Integers and Rational
Numbers

In this chapter we will investigate some important properties of the integers and
the rational numbers. The properties of integers include facts about primes,
greatest common divisors and least common multiples, and the prime factor-
ization theorem. We will also discuss representations of numbers and different
number bases.

The integers extend quite naturally into the rationals. We will learn about
decimal and other representations of rationals and about describing a number
system with a collection of axioms.

5.1 Primes and Prime Factorization

Early in your mathematical life, you learned about numbers: how to count, how
to add and subtract, and how to multiply and divide. You also learned that
numbers come in different flavors. You probably first encountered the positive
integers, {1, 2, 3, . . . }, also called “counting numbers” or “natural numbers.”
When the number 0 is inserted, the set is called the nonnegative integers (in
some books “whole numbers”). However, you discovered you needed negative
numbers (if it warms 10 degrees from 20 below, what temperature is it?), thus
forming the set of integers.

Later you learned that the inverse process of multiplication, called division,
is not defined on all the integers. When one positive integer was divided by
another, the result was a quotient and a remainder. Some divisions resulted in
a zero remainder. Some did not. For example, when 18 is divided by 6, the
remainder is 0. But if 20 is divided by 6, the remainder is 2. In order to deal
with this second example, you learned about rational numbers. These will be
discussed later in this chapter. In this section and the following two we will
concentrate on some of the properties of the positive integers.

To express the fact that 6 divides 18 with no remainder, we write 6|18. The

107



108 CHAPTER 5. INTEGERS AND RATIONAL NUMBERS

symbol | is read “divides.” Thus d|n means d divides n, or d is a divisor of n or
a factor of n. Every integer larger than 1 always has two divisors: 1 and itself.
Some positive integers have many divisors.

Exercise 5.1.1. Write down all the divisors of 16. Of 36.

Integers larger than 1 whose divisors consist only of 1 and itself are called
primes. Integers larger than 1 which are not prime are called composite. For
instance, 98, 99 and 100 are composite (or composite numbers), but 97 and 101
are primes (or prime numbers).

Exercise 5.1.2. Write down all the primes smaller than 100.

Primes form the multiplicative building blocks of the positive integers. Ei-
ther a positive integer is a prime or it is a product of two smaller positive
integers. Now iterate this process on those two smaller positive integers: both
might be primes, but if one is composite, write it as a product of two smaller
positive integers. Continue this process, until the original integer is written as
a product of primes. For example,

144 = 36 · 4 = (9 · 4) · (2 · 2) = ((3 · 3) · (2 · 2)) · (2 · 2) .

Notice that there is more than one way to do this. Here is another way:

144 = 24 · 6 = (4 · 6) · (2 · 3) = ((2 · 2) · (3 · 2)) · (2 · 3) .

A very important theorem, called the Fundamental Theorem of Arithmetic, says
that regardless of how this is done, the final answer will contain the same list
of primes, with the same numbers of occurrences (called multiplicities). In our
example, 144 factors into 4 2’s and 2 3’s. We write 144 = 24 · 32. This is called
the prime factorization of 144. The multiplicity of the prime 2 is 4, while the
multiplicity of the prime 3 is 2

Exercise 5.1.3. Write down the prime factorizations of 1000, 192 and 196.

Determining the prime factorization of large numbers plays an important
role in modern cryptography (and its applications to internet security).

Exercise 5.1.4. Find the prime factorizations of 977220 and 39463. What
method are you using?

Exercise 5.1.5. Write down a three digit number. Now write down the six
digit number made up of two copies the three digit number. (If your original
number is abc, then the six digit number is abcabc.) Use your calculator to
divide the six digit number by 13. Does it divide evenly? Explain. Now divide
the quotient by 11. Does that divide evenly? Explain. Now divide that quotient
by 7. Does that divide evenly? Explain.

We can use the Fundamental Theorem of Arithmetic to count the number
of divisors a given number has. The next few exercises describe this method.
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Exercise 5.1.6. How many divisors does 32 have? 36? 100? 144?

Exercise 5.1.7. Work out a general rule for computing the number of divisors
of an integer. (Hint: use the prime factorization.) If N = pkqmrn where p,
q and r are distinct primes and k, m and n are positive integers, how many
divisors does N have?

Exercise 5.1.8. How many divisors does 23 · 35 · 72 have? How many divisors
does 64 · 242 · 1002 have?

Exercise 5.1.9. Every student in a class with 25 students is seated. Each
student in the room takes a number from 1 to 25. The teacher calls off all
the numbers from 1 to 25 successively. When a student hears a number called
which divides her number, she stands if she is seated and sits if she is standing.
After all 25 numbers have been called, what are the numbers of the students
left standing? Complete and prove the following: the number of divisors of a
number is odd if and only if . . . . What is the relationship between this statement
and the game just described?

The Fundamental Theorem of Arithmetic says that every integer can be
written uniquely as a product of primes.

Exercise 5.1.10. Since 23 · 3 = 3 · 23, in what sense is the prime factorization
of 24 “unique?”

Exercise 5.1.11. Suppose m and n are two integers, both ≥ 1. Is it possible
that m2 = 2n2? If so, give an example, if not, give a reason.

Suppose A and B are two numbers whose product is a perfect square, AB =
C2.

Exercise 5.1.12. Do A and B have to be perfect squares? If not, give an
example. If so, give a proof.

Now suppose A and B have no common divisor, and their product is a
perfect square, AB = C2.

Exercise 5.1.13. Show that A and B both have to be perfect squares.

The next two exercises demonstrate that there is no “largest” prime, just like
there is no “largest” integer. We begin by assuming that there is a largest prime.
Then the list of primes must be finite. We write down this list: {2, 3, 5, . . . , P},
where P is this largest prime. The Fundamental Theorem of Arithmetic implies
that every integer greater than one is a product of numbers from this list. In
particular, if N = 2 · 3 · 5 · · ·P , then N + 1 is a product of numbers from this
list.
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Exercise 5.1.14. Continuing the discussion above, can 2 divide N + 1? Can
3 divide N + 1? Can 5 divide N + 1? Can each of the primes in the list
{2, 3, 5, . . . , P} divide N + 1?

Exercise 5.1.15. Use Exercise 5.1.14 to conclude that N + 1 is not a product
of numbers from this list. Why does this mean that P is not the largest prime?

Summarizing these last two exercises, we have the following theorem.

Theorem 10. There is no largest prime number. Equivalently, there are
an infinite number of primes.

5.2 The Euclidean Algorithm and the GCD

Suppose we wish to find a common multiple of 24 and 36. We could simply
multiply 24 and 36. But in many situations we want the smallest such mul-
tiple. This is called the least common multiple, or LCM. We refer to it with
LCM(24, 36).

A related problem is to find a common divisor of 24 and 36. Certainly 1 is
a common divisor, but we usually want the largest such divisor. This is called
the greatest common divisor, or GCD, and we refer to it with GCD(24, 36).

Exercise 5.2.1. What is GCD(24, 36) and LCM(24, 36)?

There are a couple of ways you may have learned to calculate the GCD.
(We shall see that the LCM can be computed easily from the GCD.) One way is
simply to find any common divisor, divide into both numbers, and repeat. When
the two numbers no longer have a common divisor, take the product of all the
divisors. That will be the GCD. Another way is to find the prime factorization
of both numbers, then deduce the GCD from the prime factorization.

Exercise 5.2.2. Find the GCD of 96 and 144 using both methods.

Exercise 5.2.3. How can you find the LCM directly from the prime factoriza-
tion? Demonstrate on 96 and 144.

Exercise 5.2.4. If we start with a perfect square (144, for instance), and factor
it into a product of two numbers which do not have a common factor (like 16·9),
then the two numbers themselves are perfect squares. Explain why.

A third way to compute the GCD, one which is very effective on large num-
bers and is implemented on computers, is called the Euclidean algorithm.

Notice that GCD(24, 36) = GCD(36− 24, 24). This is because each number
which divides 24 and 36 also divides 36− 24 and 24, while each number which
divides 36 − 24 and 24 also divides 36 and 24 (since 36 = (36 − 24) + 24).
Therefore, the set of common divisors of 24 and 36 is exactly the same as the
set of common divisors of 36 − 24 and 24. In particular, the greatest common
divisors will be the same.
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Exercise 5.2.5. In a similar manner, show that GCD(96, 144) = GCD(144 −
96, 96).

The Euclidean algorithm is based on the following fundamental fact, which
generalizes the above argument.

Exercise 5.2.6. Show that if n > m are positive integers, then the GCD of n
and m is the same as the GCD of m and n−m.

The Euclidean algorithm iterates Exercise 5.2.6. For example, let’s compute
GCD(48, 18). By Exercise 5.2.6, we have

GCD(48, 18) = GCD(30, 18) = GCD(18, 12) = GCD(12, 6) = 6 .

Let’s demonstrate with a larger example: 14520 and 37800.

GCD(37800, 14520) = GCD(23280, 14520) = GCD(8760, 14520) .

Note that since division is repeated subtraction, these two steps could be re-
placed by the single step of dividing 14520 into 37800 and taking the remainder
(8760), then replacing 37800 with 8760. Here is the complete process (using
these division-remainder shortcuts):

GCD(14520, 37800) = GCD(8760, 14520)

= GCD(5760, 8760)

= GCD(3000, 5760)

= GCD(2760, 3000)

= GCD(240, 2760)

= GCD(120, 240) .

We stop when one of the numbers is a divisor of the other. That divisor must
be the GCD, so our answer is 120.

Exercise 5.2.7. Show the arithmetic in each step in the above calculation.

Exercise 5.2.8. Use the Euclidean algorithm to find the GCD of 33075 and
30030. Find the GCD of 329800 and 480249.

The fact that we could divide one number into another and get a remain-
der is something you probably learned in grade school, and is a fundamental
arithmetic principle which we will see again. We can express this fact alge-
braically: for nonnegative integer n and positive integer d, there is a unique
pair of nonnegative integers q and r, with r < d, such that

n = q · d+ r . (5.1)

We can find the greatest common divisor of more than two numbers. For
example, GCD(12, 20, 30) = 2. We can compute this by using the prime factor-
ization. Or we can use the Euclidean algorithm repeatedly: first find the GCD
of 12 and 20, then find the GCD of that number and 30.
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Exercise 5.2.9. Find GCD(504, 1120, 5670).

Exercise 5.2.10. Find X = GCD(504, 1120), Y = GCD(504, 5670) and Z =
GCD(1120, 5670). Is GCD(X,Y ) = GCD(504, 1120, 5670)?

As was mentioned earlier, we may use the GCD to compute the LCM. The
next two exercises demonstrate how this is done.

Exercise 5.2.11. Write down the product of 24 and 36 and also the product
of GCD(24, 36) and LCM(24, 36).

Exercise 5.2.12. Prove that GCD(m,n) ·LCM(m,n) = m ·n. Use this to find
LCM(14520, 37800).

5.3 Number Bases

We have learned to represent our numbers in a base ten positional system. We
have grown so familiar with our system that it is hard for us to “pull it apart”
and find out what really makes it work. We should recognize, however, that
other cultures through the ages have used other number systems and even other
positional systems.

Our number system is a positional system. The location of a digit within
the number has a meaning. If a 3 appears in the rightmost position, it means
something different than a 3 in the second rightmost position.

In fact, a 3 in the rightmost position contributes 3 to the number; in the
second rightmost position it contributes 30; in the third position, it contributes
300, etc. That first position we call the 1’s position, the second position the 10’s
position, the third position the 100’s position, etc. Any digit in, say, the 10’s
position gets multiplied by 10. Any digit in the 1000’s position gets multiplied
by 1000.

So the number 12553 really means 1 · 104 + 2 · 103 + 5 · 102 + 5 · 10 + 3.

In general, each nonnegative integer N written dndn−1dn−2 · · · d2d1d0

means

N = dn10n + dn−110n−1 + dn−210n−2 + · · ·+ d2102 + d110 + d0 . (5.2)

Our various arithmetic algorithms (long division, for example) exploit this
notation. Because we are so familiar with the notation, it is easy to forget its
real meaning, Equation (5.2) above.

As was mentioned above, our number system is not the only system used
through the ages, not even the only positional system. The Mayans, in partic-
ular, used a base twenty system.

All that’s required to express a number using another base is an equation
like Equation (5.2), where ten is replaced by the other base.

Exercise 5.3.1. Write down the base b analog of Equation (5.2).
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The first consequence of this is that the number of digit symbols changes.
We need exactly b different symbols to express integers in base b. For base
ten, the symbols are 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. If b is less than ten, we usually
choose 0, 1, . . . , b−1, although nothing says we couldn’t use something different.
If b is greater than ten, we usually use 0 through 9 and some other symbols.
Sometimes T is used for ten and E for eleven. Of course, the problem here is
what gets used for twelve? Sometimes A is used for ten, B for eleven, etc. This
is what we will do.

Since we are using the same symbols to mean different things, we should
give some indication of what base we are in. Let’s write a subscript to indicate
the base; no subscript will mean base ten. For example, 10 means the number
ten, while 10eight means eight and 10two means two.

Another thing we notice is that as the base grows larger, the length of the
numbers grows shorter. For example, if 1000 is written in base one thousand,
it is 10thousand. The same number in base 2 is 1111101000two.

This seems to give an advantage to a large number base. But large bases
come at a considerable cost: if we used base one thousand, we would need to
have one thousand symbols for digits. Even worse, our multiplication tables
would be one thousand by one thousand, and would therefore have one million
entries! On the other hand, the symbols and arithmetic tables for base 2 are
ridiculously simple:

1two + 1two = 10two ,

1two + 0two = 0two + 1two = 1two ,

0two + 0two = 0two ,

1two · 0two = 0two · 1two = 0two · 0two = 0two and

1two · 1two = 1two .

Exercise 5.3.2. Table 5.1 lists the first 15 counting numbers in base ten, base
two, base three, base eight, base twelve and base sixteen. Write down the next
fifteen counting numbers in these bases.

Exercise 5.3.3. What is the next counting number in base two after 100111two?
After 4677eight in base eight? After 3A7Fsixteen in base sixteen?

*Exercise 5.3.4. How many digits in base b are required to write a particular
number N?

Converting numbers from one base to another is quite simple. Here is one
way to take a number N from base ten to another base. Divide N by b. The
remainder is the 1’s digit. Now divide the quotient by b again. The remainder
is the b’s digit. Continue in this manner until nothing remains.

For example, if we want to write 75 in base four, divide 75 by 4 to get 18
with remainder 3. Then divide 18 by 4 to get 4 with remainder 2. Then divide
4 by 4 to get 1 with remainder 0. Finally, divide 1 by 4 to get 0 with remainder
1. The remainders are 1, 0, 2 and 3, so 75 = 1023four.
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Base
Ten Two Three Eight Twelve Sixteen

1 1 1 1 1 1
2 10 2 2 2 2
3 11 10 3 3 3
4 100 11 4 4 4
5 101 12 5 5 5
6 110 20 6 6 6
7 111 21 7 7 7
8 1000 22 10 8 8
9 1001 100 11 9 9

10 1010 101 12 A A
11 1011 102 13 B B
12 1100 110 14 10 C
13 1101 111 15 11 D
14 1110 112 16 12 E
15 1111 120 17 13 F

Table 5.1: Counting Numbers

Exercise 5.3.5. Convert to bases two, three, nine and twelve: 81, 256, 1000.

Exercise 5.3.6. Explain why this method works. Use your answer in Exer-
cise 5.3.1.

Exercise 5.3.7. Convert from base ten:

i. to base three: 4000

ii. to base five: 7293

iii. to base two: 966

iv. to base two: 1545

v. to base eight: 1276

vi. to base sixteen: 3977

One way to convert back to base ten is simply to use Exercise 5.3.1 directly.
For instance,

1023four = 1 · 43 + 0 · 42 + 2 · 41 + 3 · 40

= 1 · 64 + 0 · 16 + 2 · 4 + 3 · 1 = 75 .

Exercise 5.3.8. Convert to base ten: 100two, 155eight, EEFFsixteen, A00twelve.
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Here is an alternative (and somewhat faster) method: Take the leftmost
digit of the number you are converting, multiply it by b and add the next digit.
Multiply that result by b and add the next digit. Continue until no digits remain.

For instance, for 1023four, compute 1 · 4 + 0 = 4, then 4 · 4 + 2 = 18, then
18 · 4 + 3 = 75.

Exercise 5.3.9. Repeat Exercise 5.3.8 using this method.

Exercise 5.3.10. Use your answer in Exercise 5.3.1 to give a reason why this
method works.

Exercise 5.3.11. Convert to base ten:

i. 6A0B5twelve

ii. 740433eight

iii. 4FECsixteen

iv. 2210112three

v. 101110100two

vi. 111011101two

Some bases are more useful than others. The important ones are base two
(called binary), base three (ternary), base eight (octal), base twelve (duo deci-
mal) and base sixteen (hexadecimal).

Two is useful because binary is the language of computers. Since 16 = 24,
there is an especially easy way to convert back and forth between binary and
hexadecimal. To go from binary to hexadecimal, group the digits four at a time,
starting from the right. Each group of four digits represents a number (written
in binary) from 0 to 15. These numbers correspond to the hexadecimal digits.

For example, 100110100two = [0001][0011][0100] = 134sixteen.
To convert a hexadecimal number to binary, expand each digit (from 0 to

F) into a four digit binary (from 0000 to 1111).
For example, 24Esixteen = [0010][0100][1110] = 1001001110two.

Exercise 5.3.12. Convert from base two to base sixteen: 100010101000two;
convert from base sixteen to base two: AEE09sixteen.

Exercise 5.3.13. Explain why this method works.

Exercise 5.3.14. Convert from base three to base nine: 21211101three; con-
vert from base eight to base four: 77320eight (hint: go through base 2 in an
intermediate step).

Exercise 5.3.15.

i. Convert to base sixteen: 101110100two
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ii. Convert to base sixteen: 3320213four

iii. Convert to base three: 78055nine

iv. Convert to base two: 4AEFsixteen

v. Convert to base two: 6437eight

vi. Convert to base two: 30321four

To do arithmetic in another base, we could convert the numbers to base ten,
do the arithmetic in our comfortable base ten system, then convert the answer
back. However, it’s usually easier to do the arithmetic in the original base. All
that is necessary is the appropriate multiplication or addition table. And that
need not be “memorized.” It can be constructed “on the fly” from the base ten
tables. For example,

1 31 51 5six

+ 2 1 4six

1 0 1 3six

In the one’s place, 5 plus 4 is nine, which is 13six. So write the 3 and carry
the 1.

In the six’s place, 5 plus 1 plus the carried 1 is seven, which is 11six. So
write the 1 and carry the 1.

In the thirty-six’s place, 3 plus 2 plus the carried 1 is six, which is 10six. So
write the 0 and carry the 1.

In the two hundred sixteen’s place, write the carried 1.
For subtraction, borrowing in the base must take place:

7 0 3eight

− 2 6 7eight

4 1 4eight

In the one’s place, borrow an eight from the eight’s place to make the 3 a
13eight. Then subtract 7 from 13eight to get four.

In the eight’s place, borrow a sixty-four from the sixty-four’s place to make
the 0 a 10eight. But since one was borrowed from the eight’s place for the
subtraction in the one’s place, the 10eight is reduced by one to 7. Now subtract
the 6 from the seven to get 1.

Finally, in the sixty-four’s place, the seven had one borrowed to leave a 6.
Subtract 2 from that 6 to get 4.

Here is an example of multiplication:

3 2 2four

× 1 3four

2 2 3 2
3 2 2

1 2 1 1 2four
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Here is an example of division:

2 0 2 1three

2 1three ) 1 2 0 2 1 2three

1 1 2
1 2 1
1 1 2

2 2
2 1

1three

Exercise 5.3.16. Add in base five: 41301five and 44043five. Add in base two:
10011two and 101001two.

Exercise 5.3.17. Do the following additions:

i. 20112three + 21011three

ii. 4AB7twelve + 6A95twelve

iii. 1011101001two + 100100111two

iv. 41557eight + 36604eight

v. 44014five + 20133five

vi. 110111100two + 10010101two

Exercise 5.3.18. Subtract in base nine: 788nine from 3504nine. Subtract in
base four: 313four from 2021four.

Exercise 5.3.19. Do the following subtractions:

i. 44733eight − 31665eight

ii. 3A44sixteen − 2AEFsixteen

iii. 110100010two − 100110111two

iv. 143320five − 44222five

v. 3200twelve − 2AA9twelve

vi. 10010011two − 1011110two

Exercise 5.3.20. Multiply in base twelve: 2A43twelve by B6twelve. Multiply in
base eight: 35eight by 274eight.

Exercise 5.3.21. Divide in base two: 101two into 100101000two. Divide in base
sixteen: 4Esixteen into 3A9Dsixteen.



118 CHAPTER 5. INTEGERS AND RATIONAL NUMBERS

5.4 Integers

In this section we will begin a discussion of number systems. This discussion
will be continued in later chapters. We start with a discussion of the properties
of the integers, including the negative integers. A common notation of this set
is Z. We are so familiar with the arithmetic and order properties of Z that we
take them for granted. Let’s write down here some of these properties.

P-1 The sum, product or difference of every two integers is another integer.
However, the quotient of two integers is not always an integer.

P-2 The order in which two things are added (or multiplied) does not matter.
However, the order in which they are subtracted or divided does.

P-3 Multiplication distributes through addition.

P-4 The integer 0 is special. If we add it to or subtract it from another integer,
it does not change the other integer. If we multiply it by another integer,
we get 0. We cannot divide by it.

P-5 The integer 1 is special. If we multiply it by another integer, we get the
other integer. If we divide another integer by it, we get the other integer.

P-6 Every integer except 0 has a negative. The sum of the two is 0.

P-7 If a non-0 integer is positive, its negative is negative. If non-0 integer is
negative, its negative is positive.

P-8 The integer 1 is positive. Its negative, −1, when multiplied by another
integer, gives the negative of that integer.

P-9 The product of two negatives is positive. The product of two positives is
positive. The product of a negative and a positive is negative.

Exercise 5.4.1. Give an illustrating example of each part of each of the prop-
erties listed above.

Exercise 5.4.2. Find at least two more such properties.

The list of properties above is chaotic. There are several difficulties with it.
Let’s try to sort these out. First, it is hardly complete—no such list could be
complete. Second, the use of the word “negative” is confusing. It means two
different things. It is the “additive inverse” in Property P-6. But in Property
P-7, negative means less than 0. These two different meanings lead to confusing
phrases such as “the negative of a negative is positive.”

Finally, some of these properties are consequences of others. If we try to
figure out which properties “define” the integers, and which can be proved from
these defining properties, we come up with the following list, which we will call
axioms.

Addition axioms:
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A-1 (Closure). The sum of every two integers is an integer. That is, for every
pair of integers n and m, n+m is also an integer.

A-2 (Associative). (k +m) + n = k + (m+ n) for every triple of integers k, m
and n.

A-3 (Commutative). The order in which things are added does not matter.
That is, m+ n = n+m for every pair of integers m and n.

A-4 (Identity). There is a special integer, called 0, which, when added to every
other integer, leaves that integer unchanged. That is, the integer 0 has
the property that 0 + n = n for every integer n.

A-5 (Inverse). Every integer has a special “twin” which, when added to it,
yields 0. That is, for each integer n, there is another integer, called −n,
such that n + (−n) = 0. (Some textbooks use − to represent −n. This
avoids the confusion between the additive inverse and numbers less than
0.)

Multiplication axioms.

M-1 (Closure). The product of every two integers is an integer. That is, for
every pair of integers n and m, n ·m is also an integer.

M-2 (Associative). (k ·m) · n = k · (m · n) for every triple of integers k, m and
n.

M-3 (Commutative). The order in which things are multiplied does not matter.
That is, m · n = n ·m for every pair of integers m and n.

M-4 (Identity). There is a special integer, called 1, which, when multiplied by
every other integer, leaves that integer unchanged. That is, the integer 1
has the property that 1 · n = n for every integer n.

Distributive law.

D-1 (Distributive). n · (k +m) = n · k + n ·m for all integers k, m, and n.

Order axioms.

O-1 (Trichotomy). For every pair of integers, one is less than the other or
they are equal. That is, for integers m and n, exactly one of these holds:
m < n, n < m or m = n.

O-2 (Transitivity). If k, m and n are integers and if k < m and m < n then
k < n.

O-3 Adding equal values to both sides of an inequality does not change the
inequality. That is, if k, m and n are integers with m < n then m+ k <
n+ k.
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O-4 The product of positive integers is positive. Thus, if m and n are integers
such that 0 < m and 0 < n then 0 < m · n.

We axiomatize a number system for a several reasons. One reason is that it
restores order to a list of properties such as those given earlier in this section.
The axiom list strips down the number system to its essence. We retain only
those axioms that we need. Other behavior displayed by our number system
can be explained in terms of our axioms.

For example, all the properties described earlier can be derived from the
above axioms. The formal structure of the arguments may be like those that
you have seen in a plane geometry class. For example, in Property P-4, it is
stated that the product of 0 with an integer is 0. That is, if n is an integer,
then 0 · n = 0. Here is a proof of this statement.

0 = n · 0 + (−(n · 0)) A-5

= n · (0 + 0) + (−(n · 0)) A-4

= (n · 0 + n · 0) + (−(n · 0)) D-1

= n · 0 + (n · 0 + (−(n · 0)) A-2

= n · 0 + 0 A-5

= 0 + n · 0 A-3

= n · 0 A-4

= 0 · n M-3 .

Exercise 5.4.3. Here is a proof that (−1) · n = −n (Property P-8). As in the
example above, give reasons for each step in this proof.

(−1) · n+ n = (−1) · n+ (1) · n
= ((−1) + (1)) · n
= 0 · n
= 0

⇒ (−1) · n = −n .

Another reason to describe a number system by a list of axioms is that we
may discover other number systems which satisfy the same list of axioms. Then
we can conclude about the new system any result we were able to prove about
the old system using the axioms. The beauty of this axiomatic approach is that
it allows us to state and prove many common properties for widely disparate
objects.

Exercise 5.4.4. Which of the axioms above does the set of even numbers
satisfy? Which does the set of odd numbers satisfy?

Exercise 5.4.5. Which of the addition, multiplication and distributive axioms
are satisfied by polynomials in the variable x with integer coefficients?
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5.5 Rational Numbers

In this section we will show how the integers are extended to the rational num-
bers.

Exercise 5.5.1. Give two ways in which the integers and the rational numbers
are different. That is, describe two things that you can do with rational numbers
that you cannot do with integers.

Notice that in the list of axioms in the previous section, there is a “missing”
axiom: an M-5 axiom. This axiom would say that every integer has a mul-
tiplicative inverse, a number such that when multiplied by the given number,
gives 1.

But we know this doesn’t happen: for example, 2 does not have such an
inverse. Rational numbers were invented to deal with this “defect.”

We may view the integers as an attempt to solve certain linear equations
of the form ax + b = 0. However, when we are confronted with an equation
like 3x + 1 = 0, we cannot find an integer solution. The reason is the missing
multiplicative inverse.

The rational numbers have this missing axiom. They satisfy all the axioms
of the integers in the previous section, plus one more:

M-5 (Inverse). Every rational number except 0 has a special “twin” which,
when multiplied by it, yields 1. That is, for each rational a 6= 0, there is
another rational, called a−1, such that a · a−1 = 1.

*Exercise 5.5.2. In Exercise 5.4.5 you saw that polynomials with integer co-
efficients satisfied the same addition, multiplication and distributive axioms as
the integers. What “extension” of the polynomials will also satisfy the M-5
Axiom?

Another name for a−1 is 1
a . We now define, for integers a and b, a 6= 0,

b
a = b · 1

a . This definition, together with the axioms stated earlier, give us the
usual arithmetic on fractions. The b is called the numerator, the a is called the
denominator. The set of all numbers of the form a/b where a and b are integers
is called rational numbers. A common notation for the rational numbers is Q.

Exercise 5.5.3. Show that between every pair of distinct rational numbers
there is a third rational number. Is the same thing true for integers? That is, is
it true that for every pair of distinct integers there is a third, different, integer
which lies between the first two? Explain.

We need to clarify two points about this fractional notation for rational
numbers. The first point is that it is not unique. If the numerator and denom-
inator have a common factor, that factor can be “canceled” from both parts.
Thus, the fraction 6

15 and the fraction 2
5 both represent the same rational num-

ber. Usually, we try to reduce as much as possible, so that the numerator and
denominator have no common factor.
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Divide Into Get Remainder
13 40 3 1
13 10 0 10
13 100 7 9
13 90 6 12
13 120 9 3
13 30 2 4
13 40 3 1

Table 5.2: Long division

Exercise 5.5.4. If the numerator and denominator have no common factor,
what is their GCD?

The second point is that if n and d are positive integers with n ≥ d, then

n

d
= q +

r

d
, (5.3)

where q is a positive integer and r is an integer between 0 and d − 1. For
instance, 19

4 = 4 + 3
4 .

Exercise 5.5.5. Explain why Equation (5.3) is just a restatement of Equa-
tion (5.1).

Fractional values can be effectively described by our positional base ten
system described earlier. We represent a number by a sequence of digits, a
decimal point, and a second sequence of digits. The number represented has as
its integer portion the number represented by the first sequence of digits, using
Equation (5.2). The fractional portion is represented by the sequence of digits
to the right of the decimal point. Notice that this sequence may be infinitely
long. If this sequence is f1f2f3 · · · , the fraction it represents is

f1 ·
1

10
+ f2 ·

1

102
+ f3 ·

1

103
+ · · · . (5.4)

In this format, rational numbers have a particularly simple representation.
Rational numbers can always be represented as repeating or terminating deci-
mals. Let’s see how this works.

If we want to write 1/3 as a decimal, we would divide 3 into 1. Performing the
long division gives 0.333 · · · . At each stage of the division, we get a remainder
of 1. When we “bring down” the 0, we are always dividing 10 by 3.

A more complicated example might by 4/13. The steps are in Table 5.2.
After the last step in Table 5.2, the process will repeat, and we will get

0.307692307692 · · · .
A third example is 15/22. When the long division is performed, we get

15/22 = 0.61818 · · · . Notice that the first digit does not repeat.
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To save space, we will describe these repeating decimals with a bar over
the repeating section. Thus 0.333 · · · = 0.3, 0.307692307692 · · · = 0.307692 and
0.61818 · · · = 0.618.

Calculators are a poor tool to use when working with repeating decimals.
Some repeating decimals don’t look “repeating” on the calculator.

Exercise 5.5.6. Is 7/17 a rational number? Use your calculator to compute
7/17. Does it “look like” a rational number on your calculator? Explain.

Exercise 5.5.7. Convert to decimal: 7/17.

And some non-repeating decimals appear repeating.

Exercise 5.5.8. Use your calculator to compute

√
2− 1

13861
− 1

297195528
.

Do you think this number is rational? (Remember that
√

2 is irrational.)

We have been discussing one kind of rational number: repeating decimals.
Another kind of rational number “divides evenly.” For example, 1/2 = 0.5.
These are called terminating decimals.

Exercise 5.5.9. Which of these rationals are repeating decimals and which are
terminating: 2/5, 5/6, 4/15, 3/40? In general, which rationals are terminating
and which are repeating?

Exercise 5.5.10. Why will every rational number be a repeating decimal or a
terminating decimal? How long can the repeating sequence be for the fraction
b/a, where b and a 6= 0 are integers?

The converse of the statement in Exercise 5.5.10 is also true: every repeating
decimal or terminating decimal is a rational number. Here is an easy way to
convert a repeating decimal to a rational. Let’s demonstrate with 0.42

Let x = 0.42. Then 100x = 42.42. Now subtract these two equations:
99x = 42 or x = 14/33.

Exercise 5.5.11. Why did we multiply by 100 in this process?

Exercise 5.5.12. Convert to rationals: 0.4453, 13.221, 1.112.

One way of seeing that every repeating decimal corresponds to a rational
number is to use Equation (5.4). Again, using 0.42 to demonstrate, we know
that 0.4242 · · · stands for

4 · 1

10
+ 2 · 1

100
+ 4 · 1

1000
+ 2 · 1

10000
+ · · · .
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This can be seen to be the sum of a geometric sequence, something we learned
about in Chapter 1. The common ratio of the geometric sequence is less than
one, so by the results of that earlier chapter, this “infinite” sum can be evaluated
as a fraction.

Uniqueness is a thorny issue when dealing with representations of rational
numbers. We have already seen that the fractional form p/q is not unique
(remember 1/2 = 2/4). The representation as repeating or terminating deci-
mals also has its problems. For instance, is 2.4 terminating? Or is 2.4 = 2.40
repeating? Even more problematic is the next exercise.

Exercise 5.5.13. What rational number does 0.9 represent?

Exercise 5.5.14. Find another decimal representation of 0.9. Find another
decimal representation of 3.2159. Find another decimal representation of 190.

Exercise 5.5.15. Restate the following sentence so that it is true: every ra-
tional has a unique representation as a repeating or terminating decimal. Hint:
Use Exercise 5.5.14 to explain what exception must be ruled out.

Exercise 5.5.16. Make a list of situations where the fraction form for rational
numbers is “better,” and make a list of situations where the repeating or ter-
minating decimal form is “better.” Explain what definition of “better” you are
using.

We summarize our results regarding the representation of rational numbers
as decimals as follows.

Theorem 11. Every rational number has a unique representation as a
terminating decimal or as a repeating decimal where the repeating section
is not 9.

We can write our rational numbers in other number bases, just as we wrote
the integers in other bases. Instead of “decimal fractions,” we have “basal
fractions.” Instead of a “decimal point,” we use a “basal point.” And just as
with decimal fractions, rationals are repeating or terminating basal fractions.

For example, in binary, 0.1two is one-half.

*Exercise 5.5.17. Convert to base two, base five and base eight: 0.5, 0.2, 1/3.

*Exercise 5.5.18. Convert to decimal fractions: 0.5eight, 0.2three.

*Exercise 5.5.19. True or false (and give reasons): For each rational number,
there is a number base such that the given rational number can be expressed as
a terminating basal fraction in that base.

In a later chapter, we will discuss the next extension of our number system,
the set of real numbers which includes irrational numbers. Irrational numbers
are those whose decimal representations neither terminate nor repeat. An ex-
ample is 1.6060060006 · · · . Another is π = 3.14159 · · · .
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5.6 Countability of the Rational Numbers

Everyone knows what we mean when we say a finite set has a certain number of
elements. But what if the set is the set of integers? The set of integers has an
infinite number of elements. Mathematicians have discovered how to compare
“infinities.”

Exercise 5.6.1. Make an argument that the set of even counting numbers is
smaller than the set of all counting numbers. Now make an argument that
the set of even counting numbers has the same size as the set of all counting
numbers.

Mathematicians have resolved this paradox. Let’s extend our notion of size
in the following way. Two finite sets will have the same size if they have the
same number of elements. An infinite set and a finite set never have the same
size. And two infinite sets have the same size if we can establish a one-to-
one correspondence between the elements of one and the elements of the other.
Thus, for example, the set of positive integers and the set of all integers have
the same size, because we can set up this one-to-one correspondence: 1 → 0,
2 → 1, 3 → −1, 4 → 2, 5 → −2, 6 → 3, . . . . In general, for positive integer k,
2k → k and 2k + 1→ −k.

Exercise 5.6.2. Show that the following sets have the same size as the positive
integers: odd integers, multiples of 5, powers of 10.

Exercise 5.6.3. Suppose A, B and C are three infinite sets and A and B have
the same size and B and C have the same size. Do A and C have the same size?

Exercise 5.6.2 demonstrates the fundamental paradox of sizes of infinite sets:
a set can have the same size as one of its subsets! This is definitely not true of
finite sets; in fact, a set is infinite if and only if it has the same size as one of
its subsets!

Sets, like those in Exercise 5.6.2, which have the same size as the counting
numbers, are called countable. To show that some infinite set is countable, one
must make a sequence out of the elements of the set. For example, the posi-
tive multiples of three are countable because we can write them in a sequence:
{3, 6, 9, 12, . . . }. Also, all integers are countable, because we can write them in
a sequence:

{0, 1,−1, 2,−2, 3,−3, . . . } .

You’ve seen some examples of subsets of the integers which are countable.
Now you will see that some important supersets of the integers are also count-
able.

Let’s write the positive rational numbers in a table:
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1
1

2
1

3
1

4
1

5
1

6
1 . . .

1
2

2
2

3
2

4
2

5
2

6
2 . . .

1
3

2
3

3
3

4
3

5
3

6
3 . . .

1
4

2
4

3
4

4
4

5
4

6
4 . . .

...

Notice that numbers are repeated in this table. For example, 1
2 , 2

4 , 3
6 , etc. all

appear.

Exercise 5.6.4. Use this table to show the positive rational numbers are count-
able. What did you do with the repeats, like 1

2 and 2
4? Does this imply that

the rationals are countable? Why?

At this point you might be suspicious that all infinite sets are countable.
We shall see in a later chapter that this is not true; in fact, there are infinitely
many sizes of infinity!



Chapter 6

Modular Arithmetic

Cyclic behavior is a commonplace phenomenon. Examples can be time-related,
such as days of the week, hours in a day and months of the year. Other examples
include positions on a roulette wheel or points on a compass. In this chapter,
we will place such behavior on a mathematical footing. We will describe the
special arithmetic for such situations, called modular arithmetic, or sometimes
“clock arithmetic.”

6.1 Examples

We usually describe modular arithmetic or “clock arithmetic” in terms of cal-
culating time. For instance, if it is 2:30 p.m. now, what time will it be in 40
hours? If today is Monday, what day of the week will it be in 30 days? If it is
now 40 minutes past the hour, what time will it be in 45 minutes?

How might we calculate what day of the week it will be in 30 days? Thirty
days consists of four weeks (of seven days each) and two extra days. So if
today is Monday, in thirty days it will be Wednesday. One way to perform this
calculation is to divide the 30 days by the seven days in a week. The result is
the number of weeks, while the remainder is the number of extra days.

Exercise 6.1.1. If it is 2:30 p.m., what time will it be in 40 hours?

Exercise 6.1.2. If it is now 40 minutes past the hour, what time will it be in
45 minutes?

The idea of dividing and using the remainder will be a central theme in the
following sections.

6.2 Rules of Modular Arithmetic

The exercises of the previous section illustrate several situations where different
numbers are in some sense the same. This motivates a new kind of arithmetic

127
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where the addition, subtraction, multiplication and division is done on collec-
tions of numbers.

For example, if we add 5 hours to 6 o’clock, we get 11 o’clock, but if we
add the same 5 hours to 10 o’clock, we get 15 o’clock, which is the same as 3
o’clock. Similarly, 14:00 on a University of Minnesota class schedule is the same
as 2:00 on a bus schedule. We could even say that −3 o’clock is the same as 9
o’clock—after all, 9 o’clock is four hours earlier than 1 o’clock.

Notice that 10 o’clock, 22 o’clock, 34 o’clock, −2 o’clock and −14 o’clock
all represent the same position on the clock. Notice also that they all differ by
multiples of 12. For example, 22 and −2 differ by 24, which is twice 12. This
discussion motivates the following idea.

We say that the integer a is congruent to the integer b mod n if n|(b − a).
The notation we shall use is a ≡ b mod n. Sometimes we leave off the “mod
n” if we know what n is. (“Mod” is short for modulus.) For example, 10 ≡ 22
mod 12 because 12 divides (22 − 10) and 22 ≡ −2 mod 12 because 12 divides
(−2− 22).

Exercise 6.2.1. Verify that every two even numbers are congruent mod 2
and that every two positive numbers ending in 3 are congruent mod 10. Is 12
congruent to 20 mod 4? mod 5? Is 17 congruent to 32 mod 3? mod 4? mod 5?

Exercise 6.2.2. Prove that if a ≡ b mod n, then b ≡ a mod n.

Exercise 6.2.3. Prove that if a ≡ b mod n and b ≡ c mod n, then a ≡ c
mod n.

Exercise 6.2.4. Prove that a ≡ a mod n.

Exercises 6.2.2, 6.2.3 and 6.2.4 show that congruence mod n splits the inte-
gers up into n disjoint subsets, called congruence classes. Every number belongs
to one of these classes. If two numbers are in one class, then each is congruent
to the other in either direction. If two numbers are in different classes, they are
not congruent to one another.

For example, for mod 12 (clock arithmetic), there are 12 congruence classes.
One of the classes contains the integers −14, −2, 10, 22, and 34.

Exercise 6.2.5. Write down three other integers (besides those listed above)
in the mod 12 congruence class containing 10.

Exercise 6.2.6. Write down two integers from each of the other eleven mod
12 congruence classes.

As another example, there are two mod 2 congruence classes: the even num-
bers and the odd numbers.

Exercise 6.2.7. Give three integers in each of the mod 3 congruence classes.
Give two integers in each of the mod 6 congruence classes. Give one integer in
each of the mod 10 congruence classes.
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At this point, it is convenient to represent an entire mod n congruence
class with a single symbol. Let’s let [k]n represent the mod n congruence class
containing k. For example, [10]12 = {. . . ,−14,−2, 10, 22, 34, . . . }. When there
is no confusion about the modulus, we will omit the subscript. In the example
above, we would write [10]. Using this notation, we see that [10] = [−2] = [34] =
· · · . Thus, [−2] and [34] are alternate descriptions of the mod 12 congruence
class [10]. The complete list of mod 12 congruence classes is [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11] and [12].

Exercise 6.2.8. Use this [ ]-notation to give another description of [5]12.

Exercise 6.2.9. Use this notation to list the five mod 5 congruence classes.
Also use it to list the two mod 2 congruence classes.

Exercise 6.2.10. Use this notation to give two descriptions of the mod 4 class
containing 33. Of the mod 6 class containing 33. Of the mod 17 class containing
60. Of the mod 15 class containing 60.

Exercise 6.2.11. Is [12]12 = [0]12? Is [2]2 = [0]2? Prove that [n]n = [0]n.
(You will need to use the definition of congruence and congruence class in your
proof.)

This notation for congruence classes is consistent with our original congru-
ence notation. That is, [A]n = [B]n if and only if A ≡ B mod n, because both
notations mean n divides the difference between A and B.

Mod n congruence classes let us “fold” all of the integers up into n symbols.
In the clock example, the only numbers on the clock are 1, 2, . . . , 12, which
represent the twelve congruence classes described above.

Because we have so many ways of representing the same congruence class,
it is useful to have a “standard” representation of the classes. Usually, but not
always, we use [0], [1], . . . , [n− 1] for the mod n classes. It is especially easy to
convert other forms of the class into this standard form, because of the Euclidean
algorithm, which we studied in Chapter 5. We restate the key theorem here in
a more general form.

Theorem 12. If m is an integer and n is a positive integer, then there
is a unique pair of integers, q and r, with 0 ≤ r < n, which satisfy

m = n · q + r

or, equivalently,
m− r = n · q .

Recall that q is the quotient when m is divided by n and r is the remainder.
For example, the standard representation of the mod 12 class [34] is [10],

because if 34 is divided by 12, the remainder is 10. By Theorem 12, the difference
between 34 and this remainder must be a multiple of 12.

Exercise 6.2.12. Find the standard representation for [69]12. For [18]5. For
[37]7. For [14]2.
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Theorem 12 is slightly more general than what was encountered in Chapter
5 because it allows m and q to be negative integers. Special care must be
taken in applying Theorem 12 in this case. For instance, in the mod 12 world,
if m = −26, by Theorem 12, q = −3 and r = 10, so [−26] = [10]. This is
not computed by taking the remainder when 26 is divided by 12. (This is a
mistake occasionally made by designers of computer compilers and software!)
Here are two methods which work: add some multiple of 12 to −26, so that the
number you get is positive, then divide by 12 and take the remainder; or take
the remainder when 26 is divided by 12, but then subtract from 12 (unless the
answer is 0, and then leave it alone).

Exercise 6.2.13. Find the standard representation for [−61]12. For [−20]5.
For [−10]7. For [−11]2.

Now let’s learn to do arithmetic using congruence classes instead of numbers.
What enables us to do this are these two definitions:

[A]n + [B]n = [A+B]n , (6.1)

and
[A]n · [B]n = [A ·B]n . (6.2)

What Equation (6.1) says is that if we add anything in the congruence class
[A] to anything in the congruence class [B] we always get something in the
congruence class [A + B]. For example, in mod 12, [4] + [10] = [2] means that
if we add anything in congruence class [4] (say −8) to anything in congruence
class [10] (say 34), we get something (26) in congruence class [2].

Equation (6.2) makes a similar statement about multiplication.
Addition, subtraction and multiplication are now easy: simply do usual

arithmetic, and divide by the modulus and take remainders when convenient.
For example, let’s calculate 4 · 9 + 10 in mod 11. That is, let’s find [4 · 9 + 10]11.
First, take 4 · 9 = 36 ≡ 3 mod 11. Then 3 + 10 = 13 ≡ 2 mod 11.

Or this can be done by doing all the arithmetic first, then dividing by 11
and taking the remainder: 4 · 9 + 10 = 46 ≡ 2 mod 11. In either case, we get

4 · 9 + 10 ≡ 2 mod 11 ,

or
[4 · 9 + 10]11 = [2]11 .

As another example, in mod 2, this arithmetic translates as follows:

even plus odd is odd 0 + 1 ≡ 1 [0] + [1] = [1] ,

even plus even is even 0 + 0 ≡ 0 [0] + [0] = [0] ,

odd plus odd is even 1 + 1 ≡ 0 [1] + [1] = [0] ,

even times even is even 0 · 0 ≡ 0 [0] · [0] = [0] ,

even times odd is even 0 · 1 ≡ 0 [0] · [1] = [0] ,

odd times odd is odd 1 · 1 ≡ 1 [1] · [1] = [1] .
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Exercise 6.2.14. Find the standard class representative for these calculations:

7 + 9 mod 12 ;

8 · 9 mod 11 ;

[3]9 − [8]9 .

Exercise 6.2.15. Do the following subtractions:

9− 13 mod 6 ;

[−2]4 − [−5]4 .

Exercise 6.2.15 shows that subtraction presents little difficulty in modular
arithmetic. Division, however, is more problematic, as we shall see in the next
section.

Notice that the question at the beginning of Section 6.1 can be answered
quite neatly using modular arithmetic. If we number the days of the week,
beginning with Sunday= 1, in 30 days it will be day [30+2]7 = [4]7 =Wednesday.
Or even more simply, [30]7 = [2]7, so the day of the week has advanced by two
days.

Exercise 6.2.16. The normal gestation period for an elephant is 22 months.
If a female elephant is impregnated in November, in which month will she be
due to deliver?

Exercise 6.2.17. A ship is heading 15◦ east of north. It turns port (left) 45◦

degrees. What is its new heading? (Do not use a negative number in your
answer.)

Exercise 6.2.18. Some Roulette wheels have 38 “slots” on them, numbered
00, 0, then 1 through 36. The wheel is currently on the slot numbered 17. It is
spun and moves 422 slots. Where is it now?

We can use modular arithmetic to calculate future days of the week in more
complicated situations. For example, if today is Wednesday, June 30, 1999, what
day will Christmas fall on in the year 2005? Each 365 day year will advance the
day by one (since [365]7 = [1]7). Each leap year will advance the day by two.
Between Christmas, 1999, and Christmas, 2005, there are two leap years and
four non-leap years, so the day will advance by [2 · 2 + 4 · 1]7 = [1]7. What is
left is to count days between June 30, 1999, and Christmas, 1999. Each 30-day
month will advance the day by two days and each 31-day month will advance the
day by three days. Between June 30 and November 30 there are three 31-day
months and two 30-day months, thus advancing the day by [3 · 3 + 2 · 2]7 = [6]7.
Finally, there are 25 days between November 30 and Christmas, advancing the
day by [25]7 = [4]7. The final calculation is then [6 + 4 + 1]7 = [4]7, so that
Christmas, 2005 falls on a Sunday.
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Exercise 6.2.19. On what day of the week will July 4, 2006 fall?

Sometimes we can decide if solutions to integer equations exist by “reducing
mod n”. For example, the equation 6x + 9y = 5 does not have a solution in
integers, because if we reduce mod 3, we get 6x + 9y ≡ 5 mod 3, which is the
same as 0 ≡ 2 mod 3.

Exercise 6.2.20. A weather forecaster has determined that there are two major
cyclical temperature variations. One has a cycle of every 14 years, the other
has a cycle of every 8 years. This year is the peak of the first cycle; next year
is the peak of the second cycle. Will the two cycles ever peak in the same year?
Explain.

6.3 Solving Equations

Recall that a linear equation, like 2x − 5 = 0, has a single solution in our
ordinary number system. Recall also, that two equations and two unknowns
could have no solution, a unique single solution, or an infinite set of solutions.
Also recall that a quadratic equation, like x2 − 3x + 2 = 0, could have two
solutions, one solution, or no solutions. We will discover similar behavior in
modular arithmetic when we try to solve equations.

Exercise 6.3.1. Solve by trial and error: [5]6x+[2]6 = [3]6. That is, determine
all mod 6 congruence classes x which satisfy that equation by testing each one.
In a similar way, solve [3]6x+ [2]6 = [5]6.

The strange outcome in the second part of Exercise 6.3.1 has to do with
multiplicative inverses (the M-5 Axiom in our list in Chapter 5).

Let’s look at another example: 3x + 8 = 4. We will first solve this in the
rational number system, then we will try to solve it in two different modular
number systems.

First, let’s carefully describe what we do when we solve 3x + 8 = 4 in the
rational number system.

Add the additive inverse of 8 to both sides:

3x+ 8− 8 = 3x = 4− 8 = −4 .

Multiply by the multiplicative inverse of 3 on both sides:

3−1 · 3x = x = 3−1 · (−4) = −4/3 .

Now let’s do the whole thing mod 11. That is, let’s solve

[3]11x+ [8]11 = [4]11 .

Add the additive inverse of [8] (which is [3] because [8] + [3] = [0]) to both
sides:

[3]x+ [8] + [3] = [3]x = [4] + [3] = [7] .
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Now comes the hard step: find the multiplicative inverse of [3] (it’s not 1/3!).
We can actually use the Euclidean algorithm to find it; more on that later. For
now, we just systematically search. It is [4] (because [4][3] = [12] = [1]—
remember that the inverse is that number you have to multiply by to get [1]).

So multiply both sides by [4]:

[4][3]x = x = [4][7] = [28] = [6] .

But what happens if we do the whole thing mod 9? Changing the modulus
changes the entire problem! Add the additive inverse of [8] (which is now [1]) to
both sides to get [3]x = [5]. But [3]9 has no multiplicative inverse—we shall see
why later. So we cannot solve this equation by multiplying by the multiplicative
inverse of [3]. In fact, a systematic search shows that [3]9x+ [8]9 = [4]9 has no
solution!

Exercise 6.3.2. What happens if the original equation is [3]9x + [8]9 = [2]9?
Be careful!

The previous exercises illustrate the necessity of finding multiplicative in-
verses in solving linear equations. Let’s determine under what circumstances
we can find such inverses.

Exercise 6.3.3. For each mod 3 congruence class, either find its multiplicative
inverse, or determine that none exists. Repeat this for mod 4, mod 5, and
mod 6. Make a conjecture about when congruence classes have multiplicative
inverses in a given modular arithmetic.

Exercise 6.3.4. Suppose 0 < k < n and the GCD of k and n is not 1. Show
that [k]n cannot have a multiplicative inverse.

Exercise 6.3.4 shows that if the GCD of a number with the modulus is not 1,
then its congruence class cannot have a multiplicative inverse. But the following
is also true: If the GCD is 1, then its congruence class does have a multiplicative
inverse. In fact, we will learn how to construct the multiplicative inverse!

The construction is based on the Euclidean algorithm. To begin, let’s use
the example above, where we needed to find the multiplicative inverse of [3]11.
We can easily see that GCD(3, 11) = 1, but let’s go through the Euclidean
algorithm:

GCD(3, 11) = GCD(2, 3) = GCD(1, 2) = 1 .

The first step comes from dividing 3 into 11 and taking the remainder of 2.
Hence, 2 = 11− 3 · 3.

The second step comes from dividing 2 into 3 and taking the remainder of
1, from which we obtain 1 = 3− 1 · 2.

We can now reverse these steps to write the GCD of 3 and 11 as a multiple
of 3 added to a multiple of 11. Here is how. Start with the GCD obtained in
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the last step, 1. Notice that in this last step, we had

1 = 3− 1 · 2 , (6.3)

that is, 1 was 1 times 3 plus −1 times 2. But in the next-to-last step, 2 was 1
times 11 plus −3 times 3. By inserting this in for the 2 in Equation 6.3, we get

1 = 3− 1 · 2
= 3− 1 · (11− 3 · 3)

= 4 · 3− 1 · 11 .

This last step comes from combining the multiples of 3. Now we have written
the GCD as a multiple of 3 added to a multiple of 11. When we reduce this
equation mod 11, the multiple of 11 disappears (since [11]11 = [0]11), leaving
[1] = [4][3]. This means that the mod 11 congruence classes [4] and [3] are
multiplicative inverses of one another.

Let’s do the harder problem of finding the multiplicative inverse of [33]97.
First trace through the Euclidean algorithm:

GCD(33, 97) = GCD(31, 33) = GCD(2, 31) = GCD(1, 2) = 1 .

That is,

31 = 97− 2 · 33 ;

2 = 33− 1 · 31 ; and

1 = 31− 15 · 2 .

Then work backwards. The final 1 is a multiple of 31 added to a multiple
of 2. The 2 is a multiple of 33 added to a multiple of 31, so by putting these
together, we find that 1 is a multiple of 31 added to a multiple of 33. But 31 is
a multiple of 97 added to a multiple of 33, so finally, 1 is a multiple of 97 added
to a multiple of 33. Here is the exact calculation.

1 = 31− 15 · 2 the last step above

= 31− 15 · (33− 1 · 31) replacing the 2

= 16 · 31− 15 · 33 combining factors of 31

= 16 · (97− 2 · 33)− 15 · 33 replacing the 31

= 16 · 97− 47 · 33 combining factors of 33 .

Therefore,

[1] = [−47][33]

= [50][33] .

Thus, [33]97 and [50]97 are multiplicative inverses of each other.
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Exercise 6.3.5. Check directly that [33]97 and [50]97 are multiplicative inverses
of each other. Also check directly that [33]97 and [−47]97 are multiplicative
inverses of each other.

Exercise 6.3.6. Find a multiplicative inverse of [17]23. Also find a multiplica-
tive inverse of [16]25.

The method above describes how to write GCD(m,n) as ma + nb where a
and b are integers. For example,

GCD(27, 120) = GCD(12, 27) = GCD(3, 12) = 3 ,

according to the Euclidean algorithm. Working backwards as above,

3 = 27− 2 · 12

= 27− 2 · (120− 4 · 27)

= 27− 2 · 120 + 8 · 27

= 9 · 27 + (−2) · 120 .

Exercise 6.3.7. What is GCD(18, 30)? Write it as 18a+ 30b.

Exercise 6.3.8. You have an unlimited supply of water, a drain, a large con-
tainer, and two jugs which contain 18 cups and 30 cups respectively. Explain
how you can use the jugs to put 6 cups of water into the container.

Exercise 6.3.9. You have an unlimited supply of water, a drain, a large con-
tainer, and two jugs which contain 7 cups and 9 cups respectively. Explain how
you can use the jugs to put one cup of water into the container.

Exercise 6.3.10. Find the solution set of the equation

[8]11x+ [9]11 = [6]11 .

Exercise 6.3.11. Find the solution set of the equation

[8]9x+ [4]9 = [6]9 .

Exercise 6.3.12. Finish this statement and explain why it is true: Every mod
n congruence class, except the class [0], has a multiplicative inverse if and only
if . . . .

So far in this section, we have been using the congruence class notation [k]
to describe equations. However, we can also use the congruence notation. For
instance, the following calculation describes how to solve [2]5x+ [1]5 = [4]5:

[2]5x+ [1]5 = [4]5

[2]5x = [3]5

[3]5[2]5x = [3]5[3]5

[6]5x = [9]5

x = [4]5 .
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Using congruence notation, this becomes

2x+ 1 ≡ 4 mod 5

2x ≡ 3 mod 5

3 · 2x ≡ 3 · 3 mod 5

6x ≡ 9 mod 5

x ≡ 4 mod 5 .

Notice that our answer in the first case was x = [4]5, which expresses x as
a unique congruence class. In the second case, our answer was x ≡ 4 mod 5,
which expresses x as the infinite collection of numbers making up the congruence
class [4]5. Is the correct answer a single object (the congruence class) or many
objects (the members of the class)? We will take the view that the answer
is a single object. The notation [k]n emphasizes this fact. When we use the
congruence notation ≡, we will keep in mind that while x ≡ 4 mod 5 means
that x could be 4 or 9 or 14, etc., we will regard x as a single entity, the entire
class [4]5. From this point of view, the solution set of the equation 2x + 1 ≡ 2
mod 5 has one member, which has infinitely many names: 3, −2, 8, −7, and so
forth.

Exercise 6.3.13. Find the solution set of the equation

2x+ 5 ≡ 1 mod 7 .

Exercise 6.3.14. Find the solution set of the equation

5x+ 4 ≡ 3 mod 8 .

Now let’s try to solve some systems of equations. Remember that “solve”
means to find the solution set, which may be empty. Also, since we have only
a finite number of congruence classes, we cannot have an infinite number of
solutions. For example, the equation 2x+ y ≡ 1 mod 3 has only three pairs of
congruence classes as solutions:

x = [0] and y = [1] ,

x = [1] and y = [2] ,

x = [2] and y = [0] .

Exercise 6.3.15. Solve the system of equations

x+ [2]7y = [4]7 ,

[4]7x+ [3]7y = [4]7 .

Exercise 6.3.16. Solve the system of equations

x+ y ≡ 3 mod 11 ,

3x+ 5y ≡ 1 mod 11 .
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Exercise 6.3.17. Solve the system of equations

x− y ≡ 4 mod 5 ,

−2x+ y ≡ −3 mod 5 .

Exercise 6.3.18. Solve the system of equations

x+ y ≡ 1 mod 2 ,

x+ z ≡ 0 mod 2 ,

x+ y + z ≡ 0 mod 2 .

Exercise 6.3.19. Solve the system of equations

x+ 2y ≡ 4 mod 5 ,

4x+ 3y ≡ 4 mod 5 .

Exercise 6.3.20. Solve the system of equations

[2]5x+ [3]5y = [1]5 ,

[4]5x+ y = [3]5 .

Exercise 6.3.21. Solve the system of equations

6x+ y ≡ 2 mod 7 ,

2x− 2y ≡ 3 mod 7 .

Next, let’s try some quadratic equations. We can solve quadratic equations
in one of four ways. First, we can adapt the quadratic formula from high school
algebra. Remember that this formula was derived by completing the squares, so
a second method is to complete the square. Third, we could find a factorization
into linear factors. These three methods are the three methods we usually
employ when working with quadratics in our usual algebra system. The fourth
method is special to modular arithmetic: simply try all possible answers. This
method is feasible because in modular arithmetic there are only a finite number
of possible answers.

Here is an example. We sketch all four methods on this example. Suppose

x2 + x+ 3 ≡ 0 mod 5 . (6.4)

To use the quadratic formula, we must evaluate

−b±
√
b2 − 4ac

2a

in mod 5. Since 2a is 2, we note that division by 2 in mod 5 is the same as
multiplication by 3 (3 is the multiplicative inverse of 2 in mod 5). So replacing
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the division by 2 and substituting for a, b and c from Equation (6.4), we have

3(−1±
√

1− 12) ≡ 3(−1±
√

4) mod 5

≡ 3(−1± 2) mod 5

≡ 3, 1 mod 5 ,

because −11 ≡ 4 mod 5 and 4 has exactly two square roots (2 and −2) in mod
5.

To complete the square, we note that half the coefficient of x (in mod 5, of
course) is 3 and 32 is 4 in mod 5, so we need to make the constant term 4. We
do this by adding 1 to both sides of Equation (6.4):

x2 + x+ 3 ≡ 0 mod 5

x2 + x+ 4 ≡ 1 mod 5

(x+ 3)2 ≡ 1 mod 5

x+ 3 ≡ 1, 4 mod 5

x ≡ 3, 1 mod 5 .

To factor, try factors whose product is 3. We immediately get

x2 + x+ 3 ≡ (x− 1)(x− 3) mod 5 .

Finally, if we plug in 0 or 4 into Equation (6.4), we get 3; if we plug in 2, we
get 4; and if we plug in 1 or 3, we get 0.

Exercise 6.3.22. Solve x2 + [3]11x+ [4]11 = [0]11.

Exercise 6.3.23. Solve x2 + x+ 3 ≡ 0 mod 7.

Exercise 6.3.24. Solve x2 + x+ 1 ≡ 0 mod 3.

We can describe a Cartesian coordinate system for congruence classes. Points
in the system correspond to pairs (x, y) where x and y are congruence classes.
Lines are described by equations of the form

Ax+By = C ,

where A, B and C are constant congruence classes, and A and B are not both
[0].

We could even “graph” points and lines by displaying the standard form for
the equivalence class on a Cartesian coordinate system.

Thus, for example, in mod 2, there are four points: ([0], [0]), ([0], [1]),
([1], [0]), and ([1], [1]). We could display these as the four points in usual coor-
dinates: (0, 0), (0, 1), (1, 0), and (1, 1).

The line x+y = [1] consists of these two points: ([0], [1]) and ([1], [0]). There
are five other lines. These are x+ y = [0], y = [1], y = [0], x = [1], and x = [0].

The point ([0], [1]) lies on three of these lines: x + y = [1], x = [0], and
y = [1].
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Exercise 6.3.25. How many “points” are there in the mod 3 Cartesian coordi-
nate system? How many “lines?” How many “points” on a “line?” How many
“lines” pass through a given “point?”

Exercise 6.3.26. How many “points” are there in the mod 5 Cartesian coordi-
nate system? How many “lines?” How many “points” on a “line?” How many
“lines” pass through a given “point?”

Exercise 6.3.27. Suppose p is a prime number. How many “points” are there
in the mod p Cartesian coordinate system? How many “lines?” How many
“points” on a “line?” How many “lines” pass through a given “point?”

Exercise 6.3.28. What points are on the mod 3 “circle” x2 + y2 ≡ 1 mod 3?

6.4 Divisibility Tests

Recall from Chapter 5 that each non-negative integer N written

dndn−1dn−2 · · · d2d1d0

means

N = dn10n + dn−110n−1 + dn−210n−2 + · · ·+ d2102 + d110 + d0 . (6.5)

The following exercises can be done by reducing Equation (6.5) mod n for
some particular n. For example, if Equation (6.5) is reduced mod 2, then the
left hand side is N mod 2 and the right hand side is d0 mod 2, since 10 ≡ 0
mod 2. Therefore, a number is even if and only if its last digit is even.

Exercise 6.4.1. Find a divisibility test for divisibility 5 and prove that it works.

For divisibility by 3, we reduce Equation (6.5) mod 3. Since 10 ≡ 1 mod 3,
we must have 10k ≡ 1 mod 3 for every k ≥ 1. Therefore, Equation (6.5)
becomes

N ≡ dn + dn−1 + · · ·+ d1 + d0 mod 3 .

Therefore, N is divisible by 3 if and only if the sum of its digits is divisible by
3.

Exercise 6.4.2. Show that a number is divisible by 9 if and only if the sum of
its digits is divisible by 9.

Exercise 6.4.3. Find similar divisibility tests for divisibility by 4, 6, 8 and 10.
(Hints: for 4, look at the rightmost two digits; for 8, look at the rightmost 3
digits; 10 is similar to 2 and 5; and 6 = 2 · 3.)

Exercise 6.4.4. Show that a number is divisible by 11 if and only if the alter-
nating sum of its digits is divisible by 11. (Alternating sum means add the first
digit, subtract the second, add the third, subtract the fourth, etc.)
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Exercise 6.4.5. Why do perfect squares always end in 0, 1, 4, 5, 6 or 9 in our
number system?

The divisibility test for 9 leads to an old-fashioned “check” of arithmetic
called “casting out nines.” Suppose we add 44752833 to 95501042 and get
140253875. We can check our arithmetic by adding digits and wiping out 9’s
wherever we find them. For example, in 44752833, we eliminate a 4 and the 5
(4 + 5 = 9) and the 7 and 2 (7 + 2 = 9), leaving 4 + 8 + 3 + 3 = 18. Now kill
the 18 (1 + 8 = 9), leaving 0. In 95501042, we wipe out 9, 5 and 4, leaving
5 + 1 + 2 = 8. Then 0 + 8 = 8. Finally, do the same to the answer: 140253875.
Get rid of 4 and 5, 8 and 1 and 7 and 2, leaving 3 + 5 = 8. Thus, the answer
checks (which does not guarantee that the answer is correct, however).

The same technique works for multiplication, subtraction and division.

Exercise 6.4.6. Explain why casting out 9’s works.

Exercise 6.4.7. What kind of errors will casting out 9’s not find? Discuss.

Exercise 6.4.8. Explain “casting out 11’s”, based on Exercise 6.4.4. What
kind of errors will casting out 11’s not find? Will it find the errors not found
by casting out 9’s?

Exercise 6.4.9. Summing digits is a technique used in bar codes. The digit
sum, called a checksum, is the last number encoded in the bar code. The
bar code reader reads the numbers, then the checksum, then checks to see they
correspond. For example, the Postal Service uses the sum of digits mod 9. U.P.S.
and Federal Express use the sum of digits mod 7. Comment on the ability of
these two schemes to detect (a) single digit errors and (b) transposition errors
(adjacent numbers swapped).

Other number bases have their own collections of divisibility tests.

Exercise 6.4.10. Find tests for divisibility by 4 in base eight, by 5 in base
four, by F in base sixteen.

*Exercise 6.4.11. Show the following: a number written in base b is divisible
by b− 1 if and only if the sum of its digits is divisible by b− 1.

*Exercise 6.4.12. Show the following: A number written in base b is divisible
by b+ 1 if and only if the alternating sum of its digits is divisible by b+ 1.

*Exercise 6.4.13. Complete the following: Suppose d|b. A number written in
base b is divisible by d if and only if . . . .

*Exercise 6.4.14. Explain “casting out b− 1’s” in base b arithmetic.



6.5. NIM 141

6.5 Nim

Number bases and modular arithmetic can be used in mathematical games.
A famous example is the game of nim. In this game, between two players, a
collection of sticks is placed in several rows. Each row may have many or few
sticks in it. The players alternate turns. Each in her turn picks up one or more
sticks from one row only. The person who picks up the last stick wins.

For example, suppose the sticks are arranged in rows with 5, 8, 8, 2, and 10
sticks, as in Figure 6.1.

Figure 6.1: Nim Game

The first player picks up all 10 from the last row. The second picks up 5
from the second row; the first picks up 6 from the third row; and the second
picks up all 5 in the first row. The remaining three rows are shown in Figure 6.2.

Figure 6.2: Continuation of Nim Game

The first player picks up all three in the first row. The second player chooses
one from the second row; the first chooses one from the third row. The config-
uration is now shown in Figure 6.3.

Figure 6.3: Continuation of Nim Game

The second player must play, so the first player will win.
For “most” starting positions, the first player always has a winning strategy.

Write the number of sticks in a row in binary notation. In our example, the rows
have 101two, 1000two, 1000two, 10two, and 1010two sticks, respectively. We now
treat each binary digit as a mod 2 congruence class. Let’s write the five binary



142 CHAPTER 6. MODULAR ARITHMETIC

numbers down, lining up the columns, and writing the digits as congruence
classes,

[0] [1] [0] [1]

[1] [0] [0] [0]

[1] [0] [0] [0]

[0] [0] [1] [0]

[1] [0] [1] [0] .

Next, find the sum of each column of congruence classes. We get

[1] [1] [0] [1] .

If all the sums are [0], we will call the configuration even; if at least one of the
sums is [1], we call it odd. This configuration is odd, since three of the sums are
[1].

Exercise 6.5.1. Prove that no matter how the sticks are removed, every even
configuration becomes odd.

Exercise 6.5.2. Prove that by an appropriate choice of sticks to remove from
one row, every odd configuration can be made even. What choice works in the
above game? (Hint: Find the leftmost [1] in the sum. Find a row of sticks
for which there is a [1] in the same column. Now how would you compute the
number of sticks to remove from that row in order to make the configuration
even?)

Exercise 6.5.3. Assume the first player begins with an odd configuration.
Describe a winning strategy for that player. What should the strategy of the
first player be if the original configuration were even?

Exercise 6.5.4. How many sticks should the first player remove, and from
which row, in the game given in Figure 6.4?

Figure 6.4: Another Nim Game

Exercise 6.5.5. How many sticks should the first player remove, and from
which row, in the game given in Figure 6.5?
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Figure 6.5: Yet Another Nim Game

Figure 6.6: Still Another Nim Game

Exercise 6.5.6. How many sticks should the first player remove, and from
which row, in the game given in Figure 6.6?

*Exercise 6.5.7. Analyze the game if the last player to pick up a stick loses.





Chapter 7

Probability and Statistics, I

In this chapter we begin a study of two interrelated topics, probability and
statistics. We use probability to determine the likelihood of various results
based on some predetermined model. In statistics, we turn things around: we
construct a model to describe events based on the results of experiments.

In this chapter we will construct probability models to describe uncertainty.
We will begin with an important probability model: all possible outcomes are
equally likely. This is called the equiprobable model. Another important model
is the binomial model, when an experiment is repeated independently several
times.

Then we will turn our attention to the topic of statistics. In particular, we
will learn how to display data, or collections of numbers and information.

We will conclude the chapter with a discussion of conditional probabilities.

A solid understanding of counting techniques is essential to an understanding
of probability. Therefore, it might be useful to review Chapter 2 at this time.

7.1 The Equiprobable Model

In the world of probability, sets are called events, elements of a set are called
sample points, and the universal set is called the sample space. A probability is
a number which is assigned to each sample point such that: (1) this number
is always between 0 and 1; and (2) the sum of these numbers over all sample
points is 1. These two properties are very important. Notice that no probability
is ever larger than 1 nor is negative.

In more mathematical language, a probability function is a function from
the sample space to the real interval [0, 1] having the property that the sum
of its values equals 1. The value it assigns to a particular sample point is the
probability of that sample point. More generally, the probability of an event in
the sample space is the sum of the probabilities of the sample points in the event.
In particular, the event consisting of all sample points (that is, the sample space
itself) has probability 1.

145
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(1,1) (1,2) (1,3) (1,4) (1,5) (1,6)
(2,1) (2,2) (2,3) (2,4) (2,5) (2,6)
(3,1) (3,2) (3,3) (3,4) (3,5) (3,6)
(4,1) (4,2) (4,3) (4,4) (4,5) (4,6)
(5,1) (5,2) (5,3) (5,4) (5,5) (5,6)
(6,1) (6,2) (6,3) (6,4) (6,5) (6,6)

Table 7.1: Pair of dice outcomes

For example, if we toss a coin twice, our sample space has four sample points:
HH, HT, TH and TT (For example, HT represents the possible outcome
of heads on the first toss and tails on the second toss.) If we assume that
each of these sample points is equally likely, we would assign each of them the
probability 1

4 . Note that 1
4 + 1

4 + 1
4 + 1

4 = 1. A typical event might be “at least
one heads.” We could write this event as

E = {HH,HT,TH} .

Since E has three sample points in it and each of those has probability 1
4 , E

has probability 3
4 .

The notation we usually use for a probability function is P . In the previous
example, then, P (HH) = 1

4 . We also use P for the probability of the various
events. Again, from the previous example, P (E) = 3

4 .
Sometimes the assignment of probabilities to sample points can be derived

from the physical setup. Examples are fair dice (each side of each six-sided die
is equally likely to appear face-up), fair coins (as above, each side of each coin
is equally likely), card decks (every possible order of cards is equally likely), etc.
In many important examples, each sample point has the same probability, so if
there are t sample points, each would have probability 1/t. In this case, called
the equiprobable model, an event with s sample points would have probability
s/t. In effect, the equiprobable model reduces probability questions to counting
questions.

The equiprobable model was used in the coin toss above. As another exam-
ple, suppose we toss a pair of fair dice. The numbers from one to six are equally
likely on each of the two dice. So the sample space for the equiprobable model
has the sample points described in Table 7.1.

Exercise 7.1.1. Use Table 7.1 to write down the event which is described by
“rolling a seven.” The event “rolling doubles.” The event “rolling eleven.”

Exercise 7.1.2. Using the equiprobable model, compute the probabilities of
the events in Exercise 7.1.1.

Exercise 7.1.3. A fair coin is tossed three times. Write down a sample space
with each sample point equally likely, which describes all the possible outcomes.
What is the probability that tails appears exactly twice? At least twice?
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Exercise 7.1.4. Explain this sentence: “If E and F are disjoint events, then
the probability of E or F occurring is the probability of E plus the probability
of F .” What sentence replaces this one if we omit the word “disjoint?” What
aspects of Chapter 2 (Counting) are closely related to your answers to this
problem?

Exercise 7.1.5. What is the probability of the empty set? The entire sample
space? If the probability of E is p, what is the probability of Ec, the complement
of E?

Here is another example of how probabilities can be computed from counting
results. Suppose a box contains 15 golf balls and suppose 5 of these are painted
red, while the remaining are white. Six of the balls are selected at random
(leaving nine in the box). Let’s determine the probability that exactly three
of the six are painted red. First, we determine the sample space. The sample
space consists of all the ways of choosing six balls out of the 15. The number
of sample points in the sample space is then

(
15
6

)
. Each sample point is equally

likely, so we use the equiprobable model.
The event in question is all the sample points consisting of a selection of

six balls, three of which are painted red. The number of sample points in this
event is

(
5
3

)(
10
3

)
. The first factor counts the number of ways of picking three red

balls, and the second counts the number of ways of picking three white balls.
The multiplication principle then requires us to take the product. Therefore the
probability of our event is (

5
3

)(
10
3

)(
15
6

) =
240

1001
.

Exercise 7.1.6. Calculate the probability that exactly two of the six balls are
red. Calculate the probability that none of the six balls is red.

Exercise 7.1.7. Use Exercise 7.1.5 to compute the probability that at least
one of the six balls is red.

For the next two exercises, suppose that six of the fifteen balls are painted
red and that four are painted green. The remaining five are white. Again, a
sample of six balls is drawn.

Exercise 7.1.8. Compute the probability that exactly two are red, two are
white and two are green.

Exercise 7.1.9. Compute the probability that exactly two are green and at
least one is red.

In the following exercises, use the equiprobable model and counting tech-
niques from Chapter 2 to compute the probabilities in question.
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Exercise 7.1.10. Calculate the probability of being dealt the various poker
hands described in Chapter 2. (Use the numbers of each kind of hand computed
in that chapter. Recall that a poker hand consists of five cards from a standard
deck of 52 cards.)

Exercise 7.1.11. Calculate the probability of being dealt a “perfect hand” in
bridge. (Recall that a perfect hand consists of 13 cards all in one suit.)

Exercise 7.1.12. Six married couples are standing in a room. The twelve
people are divided, at random, into six pairs. Find the probability that each
pair is a married couple. That each pair contains a male and a female.

Exercise 7.1.13. Suppose that in a certain northern Minnesota lake, there are
N walleyes. Suppose that 100 of these have been marked. What is the prob-
ability that in a sample of 200 walleyes there are exactly 5 which are marked?
(Your answer should be a formula with N in it.)

*Exercise 7.1.14. Find the number of fish N for which the probability in Ex-
ercise 7.1.13 is largest. Hint: let {pN} denote the sequence of probabilities com-
puted in Exercise 7.1.13. That is, pN is the answer you got in Exercise 7.1.13.
Now compute the ratio of pN to pN−1. Show that this ratio is > 1 if N is
smaller than a certain number and it is < 1 if N is larger than that number.
Conclude that pN is largest when N is that certain number. In your evaluation
of the ratio of pN to pN−1, many of the factorials will cancel or partially cancel.

Exercise 7.1.15. Nine students are to be divided at random into three groups
of three students. One group will work on Chapter 2, one will work on Chapter
3 and one on Chapter 4. What is the probability that Joe and Robert are in
the Chapter 4 group? What is the probability that Joe and Robert are in the
same group?

Exercise 7.1.16. Nine students are to be divided at random into three indis-
tinguishable groups of three students. What is the probability that Joe and
Robert are in the same group?

7.2 The General Model

When the equiprobable model does not apply, probability calculations are usu-
ally harder. For instance, in the dice model described in the previous section,
we could have let each sample point represent the sum of the values on the
dice. Then there would be only 11 sample points, labeled by the values 2 to 12.
Since these sample points would not be equally likely, calculating probabilities
of events would be more difficult. We avoided those difficulties by setting up a
sample space where every sample point was equally likely.

Sometimes, however, we cannot avoid unequal probabilities. Suppose a pair
of dice is tossed where each die is “loaded” so that the probability of each face
is proportional to the number of dots on that face. We are going to compute
several probabilities with these loaded dice.



7.3. BINOMIAL MODEL 149

Let’s start by computing the probability of each face on a single die. Say p
is the probability of the face with one dot.

Exercise 7.2.1. What (in terms of p) is the probability of the face with two
dots? The face with six dots?

Exercise 7.2.2. Use Exercise 7.2.1 and the fact that the sum of the probabilities
of the six faces must be 1 to compute p.

Exercise 7.2.3. Now suppose this loaded pair of dice is tossed. What is the
probability that the first face has four dots and the second face has three dots?

Exercise 7.2.4. For this loaded pair of dice, find the probability of rolling
seven. Of rolling doubles. Of rolling eleven. Of rolling an even number.

Exercise 7.2.5. A coin is weighted so that heads is twice as likely to appear as
tails. This coin is tossed three times. What is the probability that tails appears
exactly twice? At least twice?

Exercise 7.2.6. Show that Exercise 7.1.5 remains valid even if the equiprobable
condition is not applicable.

Exercise 7.2.7. Prove the following formula:

If E and F are two events, then

P (E ∪ F ) = P (E) + P (F )− P (E ∩ F ) . (7.1)

Also prove:

If E and F are disjoint events, then

P (E ∪ F ) = P (E) + P (F ) . (7.2)

That is, Exercise 7.1.4 remains valid even if the equiprobable condition does
not hold.

Exercise 7.2.8. In the dice experiment described in Exercise 7.2.4, what is
the probability that at least one die is a three? Use this exercise to illustrate
Equation (7.1).

7.3 Independent Events and the Binomial Model

Two events are independent if the probability of one is not affected by the
occurrence of the other. For instance, suppose a pair of fair dice are tossed
twice. The event of rolling seven on one toss is not affected by rolling a seven
on the other toss.

This informal definition of independence can be made mathematically precise
by considering the probability of the intersection of the two events, called the
joint probability of the two events.
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Suppose we let E represent the event of rolling seven on the first toss, and
F represent the event of rolling seven on the second toss. Let’s compute the
probability of rolling seven on both tosses, that is, P (E ∩ F ). There are 36
outcomes on the first toss and 36 on the second toss. By the multiplication
principle of Chapter 2, there are 362 total outcomes. There are 6 ways of rolling
seven on the first toss and 6 ways of rolling seven on the second toss. Again, by
the multiplication principle, there are 62 ways of rolling seven on both tosses.
Using equiprobability, we then have that the probability of rolling seven on both
tosses is

P (E ∩ F ) =
62

362
=

6

36
· 6

36
= P (E)P (F ) .

This motivates the following definition of independence.

Two events E and F are independent if

P (E ∩ F ) = P (E)P (F ) . (7.3)

If two events are not independent, they are dependent events.
Be careful not to confuse independent events with disjoint events. For ex-

ample, tossing a seven on the first toss and tossing a six on the second toss
are independent events, while tossing a seven on the first toss and tossing a six
on the first toss are disjoint events. Roughly speaking, disjoint events are two
events which are mutually exclusive, while independent events are two events
such that one does not affect the other.

Exercise 7.3.1. For each of the following pairs of events, guess whether they
are independent or dependent, without making any calculations. Then make the
calculation required by Equation (7.3) to check your guess. Also, note which
pairs are disjoint.

i. A coin is flipped twice. The two events are “first toss heads” and “second
toss heads.”

ii. A standard deck of playing cards is shuffled several times, then the top
two cards in the deck are drawn. The two events are “both cards aces”
and “both cards kings.”

iii. Same experiment as part ii, but the two events are “both cards aces” and
“at least one card is a spade.”

iv. Only one card is drawn at random from the card deck. The two events
are “card is a spade” and “card is an ace.”

v. Two residents of Minneapolis are selected one at a time at random. The
two events are “first one is blue-eyed” and “second one is blue-eyed.”

vi. Nine students are to be divided at random into three groups of three
students. The two events are “Joe and Robert are in a group together”
and “Jenn and Julie are in a group together.”



7.3. BINOMIAL MODEL 151

vii. Same as part vi, but the two events are “Joe and Robert are in a group
together” and “Jenn and Joe are in a group together.”

Exercise 7.3.2. A fair coin is tossed ten times, and all ten times heads appears.
What is the probability heads will appear on the eleventh toss?

Sometimes an experiment is repeated several times and it is assumed that
the different trials are independent. This leads us to the binomial model.

For example, suppose a pair of fair dice is tossed four times and we want
to find the probability of rolling seven exactly twice. There are

(
4
2

)
choices

for the two rolls that are seven. For example, the first and third rolls might be
seven. These

(
4
2

)
choices are disjoint events. The probability of each one of these

events is easily computed from the independence assumption. For instance, the
probability the first and third rolls are seven is

1

6
· 5

6
· 1

6
· 5

6
=

(
1

6

)2

·
(

5

6

)2

.

Each of these
(

4
2

)
events will have the same probability:

(
1
6

)2 · ( 5
6

)2
. Therefore,

by Equation (7.2), the probability that seven occurs exactly twice will be(
4

2

)
·
(

1

6

)2

·
(

5

6

)2

.

Here are several exercises that require you to compute probabilities in the
context of a sequence of independent trials.

Exercise 7.3.3. Find the probability that the fair dice come up seven at least
twice in the four rolls.

Exercise 7.3.4. A pair of fair dice is tossed 10 times. Find the probability of
rolling 7 exactly 4 times. At least 4 times.

Exercise 7.3.5. Repeat Exercise 7.3.4 with the loaded dice of Exercise 7.2.4.

Exercise 7.3.6. Suppose an unprepared student takes a ten-question multiple-
choice exam. Each question has four possible answers, only one of which is
correct. What is the probability that she can attain a passing grade of at least
80% by guessing?

Exercise 7.3.7. Suppose an experiment is repeated independently n times.
Suppose each experiment has probability of success p (and probability of failure
q = 1 − p). Use your experience from the above problems to write down a
formula for the probability of exactly k successes in the n trials.

Exercise 7.3.8. Every day a class meets, the nine students in the class are
divided at random into three groups of three students. The class meets 20 times.
What is the probability that Joe and Robert are never in a group together? Are
in a group together at least five times? Use the formula from Exercise 7.3.7
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Exercise 7.3.9. Suppose a certain baseball player comes to bat and has prob-
ability 0.6 of being put out, 0.1 of getting a walk, 0.2 of getting a single, and
0.1 of getting an extra-base hit. If he comes to bat five times in a game, what
is the probability that he gets a walk and a single (and three outs)? That he
has a perfect day (no outs)? What independence assumption are you making?
Is it a reasonable assumption?

Exercise 7.3.10. A pair of fair dice are tossed six times. What is the proba-
bility that among the six outcomes, exactly one will be a seven and exactly one
will be an eleven? Exactly two will be seven, and at least one will be eleven?

Exercise 7.3.11. A card is drawn and replaced from an ordinary deck of 52
cards. How many times must this experiment be performed so that the proba-
bility of drawing at least one heart is greater than 3/4? This problem can be
done both with and without logarithms. Do it both ways.

Summarizing the result in Exercise 7.3.7, we have

If an experiment with two outcomes (success and failure) is repeated in-
dependently n times, where the probability of success on any one trial is p
and the probability of failure is q = 1− p, then the probability of exactly
k successes in the n trials is (

n

k

)
pkqn−k . (7.4)

Exercise 7.3.12. Using the Binomial Theorem (Theorem 1) and the fact that
p+ q = 1, show that if expression 7.4 is added up for all values of k, the result
is 1.

7.4 Misuse of Statistics

Statistics is a much misunderstood and misused subject. It is relatively easy to
find examples of this misunderstanding and misuse merely by reading a daily
newspaper or watching television news. Here are a few examples.

Exercise 7.4.1. In 1991, 45,827 persons were killed in motor vehicle traffic
accidents. In that same year, there were 941 air transport fatalities. Comment
on the conclusion that you are safer flying than driving. What other data may
be useful?

Exercise 7.4.2. In 1970, 17.2% of the deaths in the United States were due
to cancer. In 1990, that percentage was 23.9%. Explain why this percentage
is increasing in spite of better treatments. What other information would you
need to support your position?

Exercise 7.4.3. In 1990, of the 92,000 pedestrians injured or killed in traffic
accidents, 36% were injured or killed at night. Comment on the conclusion that
it is safer to walk at night.
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Exercise 7.4.4. Minnesota public schools have had high school graduation
rates among the top five of all the states for many years. What conclusions can
you draw about the quality of public school education in Minnesota? Why?

Exercise 7.4.5. A representative of a cell phone company makes the following
statement in opposition to a proposed law limiting cell phone use in automobiles:
“In the last 5 years, cell phone use is up ten fold, while automobile accidents
are down 5%.” Is this a valid argument?

Exercise 7.4.6. Find an example of misused statistics in the newspaper or on
television.

7.5 Graphs

In statistics, we try to construct a model to describe events based on the results
of experiments.

The result of these “experiments” usually is a collection of numbers, called
data. In this section we will learn about various pictorial representations of
data.

Data come in two forms: numerical and categorical. For example, each of
us has a height, weight, age and number of siblings (numerical data); but we
also can be classified by name, sex, eye color or hair color (categorical data).
Numerical data can be continuous or discrete. Continuous data would include
height, weight or age; number of siblings is discrete data. We usually make
continuous data into discrete data by defining ranges. For example, in measuring
height, we might measure to the nearest inch. We might measure age in number
of months. We will only consider discrete data.

Numerical data have an order defined—the order inherited from the ordinary
order on numbers. We could, for instance, rank ourselves by height or by age or
by the number of siblings. Categorical data do not usually have a natural order
assigned.

One way of summarizing data is with a frequency distribution. We simply
add up the number of occurrences of each category or number in our sample.

Table 7.2 shows a list of data for 25 students: height in inches, age in months,
sex, eye color, number of siblings and G.P.A.

Exercise 7.5.1. Find the frequency distributions for sex, for eye color and for
number of siblings.

We often use intervals of values to group numerical statistics to give a more
useful picture. For instance, we might group the weights in 10 pound intervals.

Exercise 7.5.2. Group height, weight and age values and find their frequency
distributions.
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Height Weight Age Sex Eyes Siblings GPA
71 205 245 M Blue 1 3.3
72 194 229 M Blue 0 3.2
65 122 250 F Green 1 3.4
68 153 247 M Brown 4 3.9
62 113 369 F Hazel 2 3.1
60 101 313 F Blue 1 3.1
66 141 233 M Brown 1 2.5
70 152 242 M Blue 1 2.9
66 134 260 F Blue 3 3.8
74 198 288 M Hazel 1 3.3
71 177 241 M Brown 2 3.0
70 190 220 M Blue 2 3.6
67 139 299 F Brown 2 2.7
67 152 248 F Brown 0 2.1
75 212 249 M Green 1 3.1
61 98 239 F Brown 1 2.9
66 120 253 F Brown 1 3.2
63 111 268 F Blue 0 4.0
66 129 237 F Hazel 1 3.4
69 149 270 F Green 3 2.8
68 156 249 M Brown 0 2.4
70 173 229 M Brown 4 2.9
68 141 235 F Blue 5 3.2
71 182 239 M Blue 2 3.7
69 160 332 M Blue 1 1.9

Table 7.2: Twenty-five students
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One way of displaying data is with a bar graph, sometimes called a his-
tograph. Each value of the frequency distribution is represented as a vertical
bar. The height of the bar is proportional to the frequency of the corresponding
value.

Exercise 7.5.3. Bar graphs are better at displaying frequency distributions of
numerical data rather than categorical data. Why?

Exercise 7.5.4. Construct bar graphs for the numerical statistics in Exer-
cises 7.5.1 and 7.5.2. Use the intervals you used in Exercise 7.5.2.

Categorical data can also be represented as a bar graph, but the use of an
axis gives the false impression that order is involved. Sometimes pie charts are
used to display categorical data. In a pie chart, a circle is divided into sectors
corresponding to the categories, of size proportional to the frequency of the
category.

Exercise 7.5.5. Draw a pie chart for eye color.

Now let’s use the pool of students described in Table 7.2 to perform some
sampling experiments.

Exercise 7.5.6. What is the probability that a student chosen at random from
these twenty-five students has blue eyes? Has brown eyes? Is female?

When a sampling experiment is repeated, we have to decide whether the
item chosen in the first experiment is to be returned to the pool of items for
the subsequent experiment. If it is returned, we say the sampling is done with
replacement; if not, the sampling is done without replacement. Generally speak-
ing, sampling with replacement is somewhat easier to model, since it leads to
independent trials.

Now let’s repeat the experiment in Exercise 7.5.6 five times with replacement.

Exercise 7.5.7. Suppose five students are selected at random, with replace-
ment. What is the probability that exactly three of them have blue eyes? At
least three are female?

Let’s see what happens when we repeat the experiment in Exercise 7.5.6
without replacement.

Exercise 7.5.8. Suppose five students are selected at random from the 25
students described in Table 7.2, without replacement. What is the probability
that exactly three of them have blue eyes? At least three are female?

Next, let’s compute some joint probabilities.

Exercise 7.5.9. Based on the data in Table 7.2, what is the probability that a
student chosen at random is a blue-eyed male? A brown-eyed female?
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Exercise 7.5.10. Are the events of being blue-eyed and of being male inde-
pendent in this pool of students?

Extrapolating probabilities from small samples to large populations can be
unreliable. The last exercise illustrated some of the difficulty. In our sample,
the two events “blue-eyed” and “male” were not independent. But our intuition
tells us that these are independent events for a general population.

In this and the previous sections, we have seen how a predetermined knowl-
edge of a probability distribution can be used to find the probabilities of various
events. Determining these probabilities is especially easy if the equiprobable
model is in effect.

In real life, however, the assignment of probabilities is more problematic.
If a newspaper says that 39% of the residents of Minneapolis say they will
move out of the city in the next five years, does that mean the newspaper
asked every resident if they would move out in five years? How can a drug
company determine that a certain drug cures a disease 20% of the time? In both
cases, the probability assignment was determined by experiments and sampling
procedures. These issues will be dealt with in a subsequent chapter.

7.6 Conditional Probabilities

Sometimes our sample space is reduced for us by additional information. The
probabilities we construct are then called conditional probabilities. If E and F
are events in some sample space, we write E|F to mean the event E given the
event F . That is, we already know that F has happened or will happen. This
effectively reduces the sample space to F and we compute all our probabilities
by pretending F is the new sample space.

For example, consider the twenty-five students in Table 7.2. Suppose a
student is chosen at random from among these twenty-five and that student
is male. Then the probability that he has blue eyes is 6/13. By stating that
the student is male, we have effectively reduced the sample space to just the
thirteen males among the twenty-five students. Of those thirteen, six have blue
eyes.

Exercise 7.6.1. Suppose a student is chosen at random from among the twenty-
five and that student has blue eyes. What is the probability that the student is
male?

It is important to understand the difference between conditional probability
and joint probability. In the Exercise 7.6.1, you were asked to find the proba-
bility that the student selected was male, given that the student had blue eyes.
This will be different, in general, from the probability that the student selected
was male with blue eyes (cf. Exercise 7.5.9)!

It is sometimes useful to display conditional probabilities on a “tree dia-
gram.” Beginning at the “root,” paths describe the different choices. Each edge
is labeled with a particular conditional probability. The end nodes are labeled
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with the product of the probabilities on the path from the root. These nodes
represent all the possible outcomes, and their corresponding probabilities.

An example from Exercise 7.6.1 is shown in Figure 7.1. The same exercise
is shown in Figure 7.2.
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Figure 7.1: One tree diagram

Note that the trees in Figures 7.1 and 7.2 describe two views of the same
situation (Table 7.2). Figure 7.1 first divides the sample space into blue-eyed
and not-blue-eyed. Then it divides those two groups into male and female.
Figure 7.2, on the other hand, first divides the sample space into male and
female, then into blue-eyed and not-blue-eyed. Note the differing conditional
probabilities. Note also that the joint probabilities at the bottoms of the trees
are the same.

In the case of the data in Table 7.2, we are easily able to draw both of these
trees. In many situations, however, we can draw only one of the trees, yet we
need to compute the conditional probabilities of the other tree.

Exercise 7.6.2. Explain where all the probabilities in Figures 7.1 and 7.2 come
from. Also, explain how to use the tree in Figure 7.1 to answer the question
posed in Exercise 7.6.1.

Exercise 7.6.3. Using the data in Table 7.2, draw the trees which correspond
to the following events: “blue-eyed” and “not blue-eyed,” “0 or 1 sibling” and
“at least 2 siblings.” Calculate the various conditional and joint probabilities
and write them in the appropriate places on your trees.

Tree diagrams may be used in several of the exercises in this section.

Exercise 7.6.4. A pair of fair dice is rolled. What is the probability the roll
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Figure 7.2: Another tree diagram

is even, given that the two numbers showing are different? If the roll is even,
what is the probability the two numbers are different?

Exercise 7.6.5. Three fair coins are tossed. What is the probability exactly
one is heads, given that both heads and tails appear?

Exercise 7.6.6. Three fair coins are tossed. What is the probability exactly
one is heads, given that the first coin shows tails?

In the following two exercises, you will be asked to calculate some probabili-
ties for words selected at random from all the words which may be formed using
the letters of the word READER the same number of times as they appear in
READER.

Exercise 7.6.7. What is the probability that the two E’s are adjacent?

Exercise 7.6.8. First guess whether the probability in question is greater than,
the same as, or less than the probability in Exercise 7.6.7. Then compute the
probability.

i. The probability that the two E’s are adjacent, given the first letter of the
word is an R.

ii. The probability that the two E’s are adjacent, given the first letter of the
word is an E.

iii. The probability that the two E’s are adjacent, given the first letter of the
word is an A.
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iv. The probability that the two E’s are adjacent, given the first letter of the
word is an D.

Exercise 7.6.9. Nine students are to be divided at random into three groups
of three students. What is the probability that Jenn and Julie are in the same
group, given that Joe and Robert are in a group together? What is the proba-
bility that Jenn and Joe are in the same group, given that Joe and Robert are
in a group together?

The fundamental formula in the calculations of conditional probabilities is
the following.

If E and F are two events, then

P (E|F ) = P (E ∩ F )/P (F ) . (7.5)

Equivalently,
P (E ∩ F ) = P (F )P (E|F ) . (7.6)

Exercise 7.6.10. Check these formulas for the events in Exercise 7.6.1 above.

Exercise 7.6.11. Prove the following, using Equation (7.5) and Equation (7.3):
if E and F are independent events, then P (E|F ) = P (E).

Even conditions which seem to differ little can change the conditional prob-
abilities, as the next two exercises show. In each of these, compute the require
probabilities by considering the sample space.

Exercise 7.6.12. A small deck of four cards consists of two aces (ace of spades
and ace of hearts) and two deuces (deuce of spades and deuce of hearts). Two
cards are selected without replacement. What is the probability both are aces?
Both are aces given that at least one is an ace? Both are aces given that one is
the ace of spades?

Exercise 7.6.13. The same experiment is performed as in the previous exercise.
What is the probability that at least one card is a heart? What is the probability
that at least one card is a heart, given that at least one card is a spade? What
is the probability that at least one card is a heart, given that one card is the
ace of spades?

Conditional probabilities can be used to solve the famous birthday paradox,
whose solution you are asked to find in the next exercise.

Exercise 7.6.14. What is the probability that at least two persons in our
classroom have the same birthday? Assume each year has 365 days and each
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birthday is equally likely. Solve this problem in two different ways. For one
method, compute the complement probability by using the equiprobable model
and counting possible birthdays. For the second method, compute the comple-
ment probability by using Equation (7.6) repeatedly.

In many of the following exercises, you will be computing the conditional
probabilities you “don’t know” from the conditional probabilities you “do know.”
This involves finding the “other tree” described in the discussion before Exer-
cise 7.6.2.

Let’s use the trees in Figures 7.1 and 7.2 as an example. Suppose we did
not know any of the probabilities on Figure 7.2. How could we compute them?
We can find the probability attached to the male branch (13/25) by adding the
probabilities of male-and-blue joint outcome (6/25) to the male-and-not-blue
joint outcome (7/25) from Figure 7.1. Similarly, we can find the probability
attached to the female branch (or we can subtract the probability on the male
branch from one). From these, we can use Equation (7.5) to compute the
conditional probabilities. For instance, the blue-given-male conditional is 6/25
divided by 13/25.

Here is another example. Suppose one box of golf balls contains 10 balls, six
are painted red and the remaining four white. Another box contains eight balls,
five painted red and the remaining three white. A ball is selected at random
from the first box and moved to the second (but its color is not observed).
Then a ball is drawn from the second box. The tree in Figure 7.3 describes
the situation. Note that the joint probability that the first ball moved is white
and that the second ball selected is also white is 2

5 ·
4
9 = 8

45 . This follows from
Equation 7.6, where E is the event that the second ball is white and F is the
event that the first ball is white.
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Figure 7.3: First golf ball tree
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From Figure 7.3 we can compute the probability that the second ball is
white by adding the two joint probabilities where the second ball is white. This
probability is 1/5 + 8/45 = 17/45.

Thus we can construct the “other” tree, conditioning on the second event.
This tree is drawn in Figure 7.4. From this tree, using Equation 7.5, we can
compute these new conditional probabilities. For instance, the probability that
the first ball was white, given that the second was white, is 8

45/
17
45 = 8

17 .
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Figure 7.4: Second golf ball tree

Exercise 7.6.15. Using the information given in Figure 7.3, fill in the remaining
conditional and joint probabilities on the tree in Figure 7.4. In particular, find
the probability that the first ball was red, given that the second was red.

The following exercises require you to use these examples as a model to find
the required probabilities.

Exercise 7.6.16. Suppose that the probability of a left-handed person getting
a passing score on a certain math test is 1/4, while for a right-handed person,
the probability is 1/5. If left-handed people make up 10% of the population,
what is the probability that a person passing the test is left-handed? (Assume
everyone is either left-handed or right-handed.)

Exercise 7.6.17. A game show host offers a contestant a choice of three doors.
Behind one door is a new car. Behind the other two doors is billy goat. The
contestant chooses door #2. The host then opens door #1 revealing a goat.
The host then offers the contestant the choice of

i. keeping her choice of door #2, or
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ii. changing her choice to door #3.

What should she do? Again, state what assumptions you are making.

Exercise 7.6.18. A newspaper article announces a new test for a certain kind
of cancer. The article trumpets that the test is “90% effective”. Later in the
article, you learn that “90% effective” means that the probability that someone
tests positive will be 0.9 if they have the disease. Further along in the article,
you find out that doctors are worried about a “false positive” of 5%. That
means that if a person does not have the disease, the test will be positive with
probability 0.05. Finally, in the second continuation of the article, on the back
of the sports section, you learn that the overall rate of this disease is 0.01%, i.
e., in the general population, the probability of someone having the disease is
0.0001.

A friend of yours tests positive. What is the probability she has the disease?
Suppose your friend is a member of a “high risk” population, where the overall
disease rate is 0.05%. Now what is the probability she has the disease, given a
positive test. Can you make other suggestions about the use of this test?

Genetics is the study of traits passed on from one generation to the next. In
the simplest model, a certain trait is determined by a pair of genes, and each
gene may be one of two types, say G and g. An individual may have genetic type
(called genotype) GG, Gg, or gg. Often the types GG and Gg are physically
indistinguishable; we say G dominates g. The gene G is called dominant. The
gene g is called recessive.

Individuals inherit one such gene from each of their parents. The gene
inherited is chosen at random. Thus, if the parents’ genotypes are both Gg, one-
quarter of their offspring will have genotype GG, one-half will have genotype
Gg, and one-quarter will have genotype gg. Three-quarters will therefore display
the dominant physical characteristic.

Exercise 7.6.19. Check that the numbers of the previous paragraph are cor-
rect.

Let’s assume that eye color is controlled by a single gene, that the gene B
is dominant and the gene b is recessive. Also, let’s assume brown eyes is the
dominant physical characteristic and blue eyes is the recessive physical charac-
teristic. Therefore, BB and Bb genotypes are brown-eyed and bb genotype is
blue-eyed, and these are the only possible eye colors.

We will also assume that mating is done randomly, independent of eye color.
Finally, let’s assume that the genotype distribution is stable. That means

that each generation displays the same ratio of genotypes (BB:Bb:bb) as the
preceding generation.

The stability of the genotype distribution and random mating leads us to
an equation. Let p denote the percentage of BB genotype and q the percentage
of Bb genotype. Random mating implies that the probability that both the
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Father
BB Bb bb

Mother BB 1.00 0.50 0.00
Bb 0.50 0.25 0.00
bb 0.00 0.00 0.00

Table 7.3: Offspring genotype = BB

father and the mother are BB genotype will be p2, that both the father and
the mother are Bb genotype will be q2, and that one parent is genotype BB
and one is Bb will be 2pq. (The factor 2 comes from the fact that either parent
could be the BB genotype.)

Table 7.3 describes the probability of a BB genotype offspring, given the
father and mother genotypes:

Table 7.3 plus random mating gives us this expression for the percentage of
BB genotype in the offspring population: p2 + pq + q2/4. The stability of the
genotype distribution then gives this equation:

p2 + pq + q2/4 = p .

For the remaining exercises, we will assume that people with BB genotype
make up 64% of the population, that is, p = 0.64.

Exercise 7.6.20. What percentage has Bb genotype?

We now assume that the mother of a child is blue-eyed. We wish to compute
the probability that the father is blue-eyed, subject to conditions on the eye color
of a child. Again, we draw the two relevant trees in Figure 7.5 and Figure 7.6.
We use the notation C-Bb to denote the child has genotype Bb, and F-bb to
denote the father has genotype bb. Note that certain branches are missing
because they are impossible. For instance, since the mother is blue-eyed, the
child cannot have BB genotype.

Exercise 7.6.21. Fill in the probabilities on these trees. Use your results from
Exercise 7.6.20.

Exercise 7.6.22. Suppose a blue-eyed child has a blue-eyed mother. What is
the probability the child’s father is blue-eyed?

Exercise 7.6.23. What is the probability that the child’s sibling is blue-eyed?
(You may have to draw yet another tree to solve this problem.)
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Chapter 8

Vector Geometry

In this chapter, algebraic methods are used to solve geometric problems, but
we begin with a non-algebraic review of some aspects of geometry. In the
second and subsequent sections, we treat lines and segments in a manner that
is probably different from what you have seen before, and include applications
to various geometric figures. Section 5 treats some aspects of geometry in three
dimensions. A special topic connected with the Pythagorean Theorem is the
content of Section 6.

8.1 Review of some plane geometry

Exercise 8.1.1. Position two congruent right triangles as shown in Figure 8.1,
with the point A = B′ lying on the segment with endpoints C and C ′. Prove
that ∠BAA′ is a right angle.

S
S
S
S

�
�
�
�

C A = B′ C ′

B
A′

Figure 8.1: Two congruent right triangles

Exercise 8.1.2. Explain why the shaded portion of the large left square in
Figure 8.2 has the same area as the shaded portion of the large right square.

The preceding exercise is preparation for a proof of the following famous
theorem credited to Pythagoras from approximately 500 B.C.

Theorem 13 (Pythagorean Theorem). The square of the length of the hy-
potenuse of a right triangle is equal to the sum of the squares of the lengths of
the other two sides.

165
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b b

a a

a

b

a

Figure 8.2: The Pythagorean Theorem via comparison of areas

Exercise 8.1.3. Use Exercise 8.1.2 to prove the preceding theorem.

Exercise 8.1.4. Explain how the picture in the left side of Figure 8.2 can be
used to prove the algebraic identity

(a+ b)2 = a2 + 2ab+ b2 . (8.1)

The right side of Figure 8.2 and the algebraic identity (8.1) can be used to
give a slightly different proof of the Pythagorean Theorem that does not involve
the left side of Figure 8.2. Using both sides of the figure is a device for avoiding
all algebra in the proof except for the addition and subtraction of areas. Another
variation of the proof was given by James A. Garfield when he was a member
of the United States House of Representatives, about 5 years before he became
the twentieth president of the United States. His proof using a trapezoid and
the algebraic identity (8.1) is described on page 161 of Volume 3 (1876) of The
New England Journal of Education, alphabetized in the University of Minnesota
library as ‘Journal of Education’ (and is not the only journal with that name).
[Actually, General Garfield (as he was known from civil war days) does not claim
credit for the proof but says it arose out of discussions with other members of
Congress.]

Exercise 8.1.5. Let c denote the length of the hypotenuse of a right triangle
and let a and b denote the lengths of the other two sides. Two of these three
numbers are given and you are to find the third number. For instance if a = 2
and c = 8 are given, you should obtain b =

√
60, or preferably b = 2

√
15, but

not b = 7.746.

i. a = 5, b = 12

ii. a = 3, b = 3

iii. a = 1, c = 2
√

5
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iv. b = 51, c = 149

A segment (which some insist should be called a line segment) consists of
two points P and Q together with all the points between them; P and Q are
the endpoints of the segment. A segment with endpoints P and Q is a subset
of the line passing through the points P and Q.

The perpendicular bisector of a segment is a line that passes through the
midpoint of the segment and is perpendicular to the segment. Here is a standard
high school geometry problem.

Exercise 8.1.6. Prove that the perpendicular bisectors of two sides of a triangle
meet at a point that is equidistant from all three vertices of the triangle. Then
deduce that the perpendicular bisector of the third side also passes through that
point.

The point where the three perpendicular bisectors of the sides of a triangle
meet is called the circumcenter of the triangle. Since it is equidistant from
all three vertices, there exists a circle centered there passing through all three
vertices.

Exercise 8.1.7. Draw three pictures showing circumcenters of triangles, one
for an acute triangle, one for a right triangle, and one for an obtuse triangle.

Given any line l and any point P , there exists a unique line m through P
perpendicular to l. The distance from P to the intersection of l and m is also
called the distance from P to l.

Exercise 8.1.8. Draw a picture illustrating the preceding paragraph.

A ray consists of all points on a line to one side of some point Q on that
line. The point Q itself is considered to be part of the ray, and the ray is said
to emanate from Q. Two rays emanating from the same point Q are said to
form an angle at Q, and the rays are called sides of the angle. Since each of
two segments having a common endpoint Q can be viewed as part of a ray
emanating from Q, we also speak of the angle formed by two such segments.

Exercise 8.1.9. Draw pictures illustrating the preceding paragraph.

Here is another standard high school geometry problem.

Exercise 8.1.10. Prove that any point on the bisector of an angle is equidistant
from the two sides of the angle. Then deduce that the angle bisectors of a
triangle meet in a point equidistant from the three sides of the triangle.

The point where the three angle bisectors of a triangle meet is called the
incenter of the triangle. Because it is equidistant from the three sides of the
triangle, there exists a circle centered there that is tangent to the three sides of
the triangle.

Exercise 8.1.11. Draw three pictures showing incenters of triangles, one for
an acute triangle, one for a right triangle, and one for an obtuse triangle.
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A median of a triangle is a line passing through a vertex of the triangle
and the midpoint of the opposite side. A substantial problem in high school
geometry is to prove that the medians of a triangle meet in a common point.
A proof not typically given in high school is a topic later in this chapter. The
point where the medians meet is called the centroid of the triangle.

Exercise 8.1.12. Draw three pictures showing centroids of triangles, one for
an acute triangle, one for a right triangle, and one for an obtuse triangle.

An altitude of a triangle is a line that passes through a vertex and is perpen-
dicular to the side (possibly extended) opposite that vertex. It develops, as we
will see later in this chapter, that the altitudes of a triangle meet in a common
point; it is the orthocenter of the triangle.

Exercise 8.1.13. Draw three pictures showing orthocenters of triangles, one
for an acute triangle, one for a right triangle, and one for an obtuse triangle.

8.2 Parametric representations of lines

Recall that points in a plane can be represented by ordered pairs (x, y) of num-
bers. The origin must be specified as well as the directions for the two axes and
a unit of measurement. An ordered pair of numbers is sometimes called a point.

Sometimes we will use a single capital letter to denote a point. Thus, we
might write P = (x, y). If we want to emphasize the distinction between geome-
try and arithmetic, we might avoid the equals symbol and say that P is a point
with coordinates (x, y); x is the first coordinate and y is the second coordinate.
In case several points are to be discussed, subscripts can be used to distinguish
them. For instance, the vertices of a triangle could be denoted by P1 = (x1, y1),
P2 = (x2, y2), and P3 = (x3, y3).

Exercise 8.2.1. Let P1 = (0, 0), P2 = (0, 3), P3 = (1, 5
2 ), P4 = (−2, 0), and

P5 = (
√

5,−1). Locate these points on a coordinate system. Then sketch the
line passing through P1 and P2, the line passing through P3 and P4, and the
line passing through P5 and P1.

Exercise 8.2.2. Suppose someone starts at the origin and moves on a line at
constant speed, arriving at the point (0, 3) after 2 hours. Where is she 4 hours
after starting from the origin? 5 hours after? 1 hour after? 1/2 hour after?

√
7

hours after? t hours after, for an arbitrary positive number t?

Exercise 8.2.3. Suppose someone starts at the point (1, 5
2 ) and moves on a

line at constant speed, arriving at the point (−2, 0) after 1 hour. Where is he t
hours after starting at (1, 5

2 ).

We have already seen that ordered pairs of real numbers are called points.
Another name for an ordered pair of real numbers is vector. We use this term
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when certain arithmetical operations are performed with the ordered pairs; ad-
dition of vectors and multiplication of a vector by a real number are defined
by

(x1, y1) + (x2, y2) = (x1 + x2 , y1 + y2)

and
k(x, y) = (kx, ky) ,

respectively. It is standard practice never to use a symbol such as × or · to
denote this multiplication.

Exercise 8.2.4. Calculate (3,−2) + (4, 1). Draw a picture of a quadrilateral
with vertices at (0, 0), (3,−2), (4, 1), and (3,−2) + (4, 1). What kind of quadri-
lateral does it appear that you have obtained? (Later in this section you will
learn how to check whether you have been deceived by appearances on this
issue.)

Exercise 8.2.5. Let P = (−2, 4). Calculate 2P , (−2)P , 0P , 1P , 1
2P , and

(− 1
3 )P . Place all these points on a coordinate system. Then make some relevant

comments.

Notice that when working with vectors, parentheses get used for more than
one purpose. For instance, in the expression

(4 + 5)(3,−1)

the first set of parentheses plays the usual grouping role and the second, in
conjunction with the comma, indicates a vector. Some parentheses playing a
grouping role can be omitted without creating ambiguity. For a vector P , one
would usually write −2P rather than (−2)P and −P instead of (−1)P or −1P .

Exercise 8.2.6. Simplify the following three expressions:

i. (4 + 5)(3,−1) ;

ii. −2(3,−1) ;

iii. −(−4,−5) .

Exercise 8.2.7. Perform the following calculations:

i. 2(4, 3)− 1
3 (24, 18) ;

ii. 0(5, 6) + 5(0, 0) ;

iii. [(5,−3)− (−2, 2)] + (−4,−1) ;

iv. (5,−3) + [−(−2, 2) + (−4,−1)] ;

v. (5,−3)− [(−2, 2) + (−4,−1)] ;

vi. 4(3,−1) + 5(3,−1) (compare with (i) of Exercise 8.2.6)
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vii. 1
3 [6(2,−3)] .

Exercise 8.2.8. For each of the following equations decide whether there is a
solution for k and if so, find it. For those that do not have a solution, give a
proof that there is no solution.

i. (4, 3) = k(−12,−9)

ii. (4, 3) = k(8, 7)

iii. (0, 0) = k(8, 7)

iv. (8, 0) = k(0, 0)

v. (
√

3− 1, 1) = k(2,
√

3 + 1)

Letters other than P are often used for vectors and letters other than x and
y for their coordinates. A vector Q is said to be a multiple of a vector P if
Q = kP for some real number k.

Exercise 8.2.9. Use your answers for Exercise 8.2.8 to conclude that certain
vectors are multiples of certain other vectors, and also to identify some vectors
that are not multiples of certain other vectors.

Suppose that Laura starts at (−1,−2), walks in a straight line at constant
speed, and goes through the point (2, 0) after 1 minute. Since (2, 0)−(−1,−2) =
(3, 2), we see that Laura moves 3 units in the x-direction and 2 units in the y-
direction every minute. Thus after t minutes she will have moved 3t units in
the x-direction and 2t units in the y-direction. Therefore, after t minutes Laura
is at the point

(−1 + 3t,−2 + 2t) ,

which we could also write as

(−1,−2) + t(3, 2) .

In particular, after 3
2 minutes Laura is at the point ( 7

2 , 1). If we imagine that
Laura was already walking when she was at the point (−1,−2), but only then
did we start a timing device, it would be meaningful to ask for Laura’s position
at time −3. It would be

(−1,−2)− 3(3, 2) = (−1,−2) + (−9,−6) = (−10,−8) .

Laura’s path is shown in the left side of Figure 8.3. The same path is shown in
the right side of the figure where times at which Laura is at various points are
also shown. An arrow representing the vector (3, 2) is shown in both sides of
the figure. It indicates the direction in which Laura is moving, and its length
indicates her speed.

By placing the arrow with its tail at (0, 0) we emphasize that the direction
and speed of travel can be specified without regard to the actual path of travel.
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Figure 8.3: A line represented parametrically

By placing the arrow on the path of travel we convey additional information,
but give the somewhat misleading impression that an arrow of the same length
and direction placed elsewhere would have a different meaning.

Sometimes the terms ‘point’ and ‘vector’ are used in the same discussion.
Even though both words refer to ordered pairs of real numbers, they tend to
be used for different geometric interpretations. The best picture of a point is
usually a dot, whereas an arrow is often the best when the word ‘vector’ is used.

Exercise 8.2.10. For each of Exercise 8.2.3 and the last question of Exer-
cise 8.2.2 do the following. Write your answer in the form A+tD for appropriate
vectors A and D. Draw a picture of the path of travel. Show D as an arrow
with its tail at (0, 0).

Exercise 8.2.11. Bus schedules often have a picture of the path of travel,
but do not place times along side the picture. Rather names are attached to
various places along the path, and then a separate list is given with name and
corresponding time. Why are bus schedules written in the manner just described
rather than in the apparently simpler way of just placing times along side the
picture of path of travel?

Let A be any point and D any vector different from (0, 0). The set

{A+ tD : t any real number}

is the line through A in the direction determined by D. The vector D is called
a direction indicator of the line, t is called the parameter, and the formula itself
is called a parametric representation of the line. Notice that the parameter
itself does not appear on the graph of the line. Of course, letters other than t
may used, although t is a common choice because it can be useful to view it as
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representing time as in Exercises 8.2.2 and 8.2.3. The different roles of A and
the direction indicator D can be highlighted by using the word ‘point’ for A and
the word ‘vector’ for D. Often the set notation is omitted; so for instance, one
speaks of the line

(3, 5) + t(−2,−5) , t a real number , (8.2)

or, more briefly,
(3, 5) + t(−2,−5) . (8.3)

Exercise 8.2.12. Find five points on the line (3, 5) + t(−2,−5), exactly one of
which corresponds to an integer t, exactly three of which correspond to negative
t, and exactly two of which correspond to irrational t.

Exercise 8.2.13. Prove that the line with equation y = 5
2x −

5
2 is the line of

the preceding exercise.

Exercise 8.2.14. Draw pictures of the following lines on a common coordinate
system:

i. (1, 2) + t(2, 3) ;

ii. t(2, 3) ;

iii. (−1,−1) + t(2, 3) ;

iv. (3,−4) + t(4, 6) ;

v. (5, 0) + t(−2,−3) .

Calculate the slopes of each of these lines, and then write point-slope equations
for each of the lines.

Exercise 8.2.15. Draw pictures of the following lines on a common coordinate
system:

i. t(0,−3) ;

ii. (5, 0) + t(0, 3) ;

iii. (−3, 0) + t(0,−3) ;

iv. (0,−7) + t(0, 6) .

Exercise 8.2.16. Explain why A and A+D are two points on the line described
parametrically as A+ sD.

Exercise 8.2.17. Explain why B−A is a direction indicator of the line passing
through two points A and B. Explain why 2(B − A) and 3(A − B) are also
direction indicators of this line.

Exercise 8.2.18. Find two points on each of the following two lines and then
represent the lines parametrically.
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i. y = −x+ 4 ;

ii. y = 5
7x−

3
4 .

Exercise 8.2.19. Explain with pictures why the slope of a line with direction
indicator (u, v) equals v/u. Also, discuss the case u = 0 in which case division
by u is not possible.

Exercise 8.2.20. In each part of this problem find all points of intersection of
the given pairs of lines:

i. (1, 1) + s(4,−2) , (0, 1) + t(3, 0) ;

ii. (4, 4) + r(2, 1) , (0, 0) + s(−6,−3) ;

iii. (3,−1) + s(−2,−5) , (5, 4) + s(4, 10) .

Comment on how to approach such problems when the same symbol is used for
the parameter for both given lines.

Exercise 8.2.21. We will not give a proof of the theorem following this exercise,
but many of the preceding exercises give us reasons to believe that it is true.
Explain how some of the preceding exercises illustrate the theorem.

Theorem 14. Let D denote a direction indicator of a line l passing through
a point A, and E a direction indicator of a line m passing through a point B.
Then:

• l and m intersect in exactly one point if E is not a multiple of D;

• m = l if E and (B −A) are both multiples of D;

• m is parallel to l if E is a multiple of D but (B−A) isn’t a multiple of D.

Exercise 8.2.22. Create three problems to which a classmate should apply the
preceding theorem: one where the answer is that the two lines are the same,
one where there is no point of intersection, and one where there is exactly one
point of intersection whose coordinates are not integers.

Exercise 8.2.23. Prove that the quadrilateral with vertices (4,−3), (3, 0),
(5, 2), and (6,−1) is a parallelogram. Also, represent the diagonals parametri-
cally.

Exercise 8.2.24. Let P and Q be two points neither of which is a multiple of
the other. Prove that the quadrilateral with vertices (0, 0), P , P +Q, and Q is
a parallelogram and obtain parametric representations for its diagonals.

Exercise 8.2.25. Why in the preceding exercise was it important to assume
that neither P nor Q is a multiple of the other?
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Often a diagonal of a parallelogram is regarded as a segment rather than a
line.

For an example (not connected with parallelograms) on how to treat seg-
ments parametrically, let us consider the segment with endpoints (−4, 2) and
(3,−2). A direction indicator of the line through these points is (7,−4), and a
parametric representation of the line is

(−4, 2) + t(7,−4) .

Notice that we get one endpoint of the segment by setting t = 0 and the other
endpoint by setting t = 1. The values of t between 0 and 1 give the other points
on this segment. Therefore, a parametric representation of the segment is

(−4, 2) + t(7,−4) , 0 ≤ t ≤ 1 .

The formulas

(3, 5) + t(−2,−5) , t ≥ 0 ,

and

(3, 5) + t(−2,−5) , t ≤ 0 ,

describe two rays emanating from the point (3, 5).

Exercise 8.2.26. Give a parametric description of a third ray emanating from
(3, 5). Draw a picture of this ray and of the two rays described above. On the
same coordinate system, but in different colors, also draw pictures of the line

(3, 5) + t(−2,−5)

and the segment

(3, 5) + t(−2,−5) , 0 ≤ t ≤ 1 .

Exercise 8.2.27. Use Theorem 14 to decide how many points are in the inter-
section of the following two lines.

(3, 4) + t(2,−2) ;

(3,−2) + t(4, 5) .

Then find all such points. Check your answer by drawing a picture.

Exercise 8.2.28. How, if at all, does your answer to the preceding problem
change if the lines are replaced by the rays

(3, 4) + t(2,−2) , t ≥ 0 ;

(3,−2) + t(4, 5) , t ≥ 0 ?

Suppose these two parametric formulas represent the motion of two runners.
Will they collide.
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Exercise 8.2.29. How, if at all, does you answer to Exercise 8.2.27 change if
the lines are replaced by the segments

(3, 4) + t(2,−2) , 0 ≤ t ≤ 1 ;

(3,−2) + t(4, 5) , 0 ≤ t ≤ 1 ?

Check your answer by drawing a picture.

Exercise 8.2.30. Find the intersection of the ray emanating from (3, 5) having
direction indicator (−2,−3) and the segment having endpoints (−1,−1) and
(6, 19

2 ).

8.3 Distances and norms

The distance of a point P = (x, y) from the origin can be calculated by using
the Pythagorean Theorem. It equals√

x2 + y2 .

Two notations are commonly used to express this notion. Since on the real line,
absolute value denotes distance from the origin, the same symbol is sometimes
used to denote distance from the origin. However, we will use the other possible
notation. Thus

‖P‖ =
√
x2 + y2 .

If we are using vector terminology, we call ‖P‖ the norm of the vector P . Notice
that Pythagorean Theorem shows that the distance between two points P and
Q is the norm of their difference, that is, ‖Q− P‖.

Exercise 8.3.1. Draw a picture illustrating the use of the Pythagorean Theo-
rem to show the distance from a point P to the origin is ‖P‖. Draw a picture
illustrating the use of the Pythagorean Theorem to show that the distance be-
tween two points P and Q is ‖Q− P‖.

Exercise 8.3.2. Calculate the norms of the four vectors (12,−5), (−6, 7), (6, 2),
and (

√
5− 2,

√
5 + 2). Also, use some of your calculations to show that it is not

always true that ‖P +Q‖ = ‖P‖+ ‖Q‖. Hint: Do not confuse norms of vectors
with absolute values of numbers.

Exercise 8.3.3. Prove that ‖kP‖ = |k| ‖P‖ for every real number k and ev-
ery vector P . Hint: Do not confuse norms of vectors with absolute values of
numbers.

Theorem 15. Let t1 and t2 be two arbitrary real numbers, let A be a point,
and let D be a vector different from (0, 0). Then the distance between the points
A+t1D and A+t2D equals |t2−t1| ‖D‖. If the parametric representation A+tD
corresponds to motion with t denoting time, then the speed of travel equals ‖D‖.
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Proof. The distance between the two points equals

‖(A+ t2D)− (A+ t1D)‖ = ‖(t2 − t1)D‖ ,

which by the preceding exercise, equals |t2 − t1| ‖D‖, as desired. Since the
distance traveled between any two times is the absolute value of the difference
between those two times multiplied by ‖D‖, the speed of travel is ‖D‖.

Exercise 8.3.4. Suppose that (9, 11) + t(−4, 7) represents Joe’s travel along a
line. How far does he travel in 3 units of time?

Exercise 8.3.5. Consider the segment with endpoints A and B represented
parametrically by

A+ tD , 0 ≤ t ≤ 1 .

Fix a value of t between 0 and 1; call this fixed value t0. Show that the quotient
obtained by dividing the distance from A to the point A+ t0D by the distance
from B to the point A+ t0D equals t0/(1− t0). Then use the fact to show that
the midpoint of the segment is 1

2A+ 1
2B.

Exercise 8.3.6. Find the midpoint of the segment connecting the points ( 13
3 ,

5
2 )

and ( 5
3 ,−

7
4 ). Also find the point on this segment whose distance from ( 13

3 ,
5
2 ) is

half its distance from ( 5
3 ,−

7
4 ).

Exercise 8.3.7. Find parametric representations of the medians of a triangle
with vertices at A, B, and C. Find an appropriate value of the parameter for
each median in order to show that each of the medians passes through the point
1
3A+ 1

3B + 1
3C.

It is natural to call 1
3A + 1

3B + 1
3C the average of the points A, B, and C.

Thus the preceding exercise is a request for you to prove that every triangle has
a centroid and that the centroid is the average of the vertices.

Exercise 8.3.8. Find the centroid of the triangle with vertices at the points
(0, 0), (1, 3), and (4, 0), and illustrate with a picture.

Exercise 8.3.9. Find the centroid of the triangle with vertices at the points
(2, 0), (−1,

√
3), and (−1,−

√
3), and illustrate with a picture.

Exercise 8.3.10. Use vector methods to prove that the diagonals of a paral-
lelogram bisect each other.

8.4 Orthogonality and perpendicularity

We have learned how to multiply a number by a vector, getting a vector as an
answer. Now we will learn how to multiply two vectors to obtain a number as
an answer. We will use a dot ‘·’ to denote this multiplication; moreover, unlike
the situation for multiplication of numbers, we will never omit the dot. The dot
product of two vectors D = (b, c) and E = (u, v) is defined by the formula

D · E = bu+ cv .
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Before treating geometric issues we must learn a little more about the dot prod-
uct from an algebraic point of view.

Exercise 8.4.1. Illustrate and then prove the distributive law for the dot prod-
uct and sum of vectors. You may of course use the distributive law for numbers.

Exercise 8.4.2. Illustrate and then prove the following formula relating the
norm of a vector and the dot product of that vector with itself:

‖P‖2 = P · P .

Exercise 8.4.3. Prove that

k(P ·Q) = (kP ) ·Q = P · (kQ)

for all vectors P and Q and all numbers k.

Recall that ‖Q − P‖ is the distance between the points P and Q. The
following theorem gives a formula for the square of this distance in terms of
norms of P and Q separately and their dot product.

Theorem 16. For any points P and Q

‖Q− P‖2 = ‖Q‖2 + ‖P‖2 − 2(P ·Q) .

Proof. We use Exercises 8.4.1 and 8.4.2 together with the easily proved
commutativity of the dot product:

‖Q− P‖2 = (Q− P ) · (Q− P )

= Q · (Q− P )− P · (Q− P )

= Q ·Q−Q · P − P ·Q+ P · P
= ‖Q‖2 − 2(P ·Q) + ‖P‖2 ,

as desired.

Exercise 8.4.4. Fill in the blank in the following formula

‖P +Q‖2 = ‖P‖2 + ‖Q‖2 .

Two vectors are said to be orthogonal if their dot product equals 0.

Theorem 17. A necessary and sufficient condition for two lines to be perpen-
dicular is that their direction indicators be orthogonal.

Partial Proof. (The proof of a theorem that says “necessary and suffi-
cient” or “if and only if” often requires two separate arguments going in op-
posite directions. For this theorem we will skip the proof of sufficiency, but
comment that one approach to proving sufficiency is to first prove a converse of
the Pythagorean Theorem—namely, that if the square of one side of a triangle
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equals the sum of the squares of the other two sides, then the triangle is a right
triangle.)

Suppose that two lines are perpendicular at a point A. Let D and E denote
direction indicators of the two lines. Then the triangle with vertices A, A+D,
and A+E has a right angle at A. It is now left for the reader, in the following
exercise, to complete the proof that D and E are orthogonal.

Exercise 8.4.5. Use the Pythagorean Theorem to finish the above proof of
necessity.

Because of Theorem 17, ‘orthogonal’ and ‘perpendicular’ are often treated
as synonyms, although usually ‘orthogonal’ is used in conjunction with vectors
and ‘perpendicular’ in conjunction with lines.

In the first section of this chapter it was mentioned that the the altitudes of
any triangle intersect in a common point called the orthocenter of the triangle.
We will now prove this fact.

We will use an important fact in 2-dimensional geometry, a fact which will
not be proved here. It is that if a line m is perpendicular to a line k and a line
n is perpendicular to a line l, then a necessary and sufficient condition for m
and n to meet in a single point is that k and l meet in a single point. Two sides
of a triangle are parts of lines that do meet in a single point. Hence, any two
altitudes of a triangle meet in a single point.

Let F denote the intersection of the altitudes from A and B in a triangle
with vertices at A, B, and C. Using the relation between perpendicularity of
lines and orthogonality of vectors, we obtain

(F −A) · (C −B) = 0 ;

(F −B) · (A− C) = 0 .

We use the distribution law to rewrite these two equalities:

F · (C −B) = A · (C −B) ;

F · (A− C) = B · (A− C) .

We rewrite once more:

F · (C −B) = A · C −A ·B ;

F · (A− C) = B ·A−B · C .

Now we add the two equalities, again using the distributive law:

F · (A−B) = A · C −B · C ,

which is equivalent to

F · (A−B) = C · (A−B) ,

Subtract C · (A−B) from both sides to get

(F − C) · (A−B) = 0
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Therefore, the line through F and C is perpendicular to the line through A and
B; that is, F is on the altitude from C. So all three altitudes meet at F .

Exercise 8.4.6. The words in the preceding discussion are somewhat mislead-
ing in case the triangle of interest is a right triangle, but the essentials of the
argument are valid for such a triangle. Explain.

Exercise 8.4.7. Find the orthocenter of the triangle with vertices at (1, 0),
(3, 5), and (−4, 4). Then draw a picture showing your answer. Hint: Let the
coordinates of the orthocenter be (x, y) and find two equations that x and y
must satisfy.

Exercise 8.4.8. Use vector methods to prove that the diagonals of a rhom-
bus are perpendicular to each other. Hint: It might be helpful to place the
coordinate system so that one vertex of the rhombus is at (0, 0).

Exercise 8.4.9. Use vector methods to prove that the sum of the squares of
the lengths of the diagonals of a parallelogram equals the sum of the squares of
the lengths of the four sides. Hint: See the hint for the preceding exercise.

8.5 Three-dimensional space

One of the great advantages of vector methods for the study of geometry is
that they work for three-dimensional geometry, not just for the two-dimensional
geometry that we have been studying. Moreover, they provide one approach
to understanding geometry in four and more dimensions. When treating 3-
dimensional geometry, vectors are ordered triples rather than ordered pairs.
For 4-dimensional geometry, vectors are ordered 4-tuples, and for n-dimensional
geometry, vectors are ordered n-tuples.

Lines, rays, and segments can be defined parametrically in n dimensions just
as in two dimensions. The concept of ‘parallelism’ requires some attention. We
say that two distinct lines are parallel if their direction indicators are multiples
of each other. The following exercise concerns three lines that are not parallel,
two of which also do not meet.

Exercise 8.5.1. For each pair of the three lines t(1, 2, 3), t(−3,−1,−3), and
(1, 1, 1) + t(2, 1, 2) decide if they meet and if so, where.

The norm of a vector P = (x, y, z) in 3-dimensional space is defined by

‖P‖ =
√
x2 + y2 + z2 ,

the distance between points P and Q equals ‖Q − P‖, and the dot product of
vectors D = (a, b, c) and E = (u, v, w) is defined by

D · E = au+ bv + cw .

As for two-dimensional geometry, ‖P‖2 = P · P .
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Exercise 8.5.2. Let A = (0 , 0 , 3), B = (2
√

2 , 0 , −1), C = (−
√

2 ,
√

6 , −1)
and D = (−

√
2 , −

√
6 , −1). Find the distances between each pair of these

points. Also find the average of these four points.

A tetrahedron is a polyhedron made up of four triangular faces, four vertices
and six edges, with three triangles meeting at each vertex. Recall that the
regular tetrahedron was one of the five platonic solids encountered in Chapter 4.
A median of a tetrahedron is a line through one vertex and the centroid of the
opposite face.

Exercise 8.5.3. Prove that all four medians of an arbitrary (not necessarily
regular) tetrahedron meet at the average of the four vertices of the tetrahedron.
This point is called the centroid of the tetrahedron.

A parallelepiped is a polyhedron with six parallelogram faces, eight vertices
and twelve edges, with three parallelograms meeting at each vertex. Further-
more, opposite parallelograms lie in parallel planes. The cube, one of the five
platonic solids in Chapter 4, is a parallelepiped.

By placing the (0, 0, 0) at one vertex of a parallelepiped and naming the
vertices adjacent to that vertex as U and V and W , the names of the other
four vertices become U + V , V +W , W + U , and U + V +W . A diagonal of a
parallelepiped is a segment connecting two vertices and not lying in any face of
the parallelepiped.

Exercise 8.5.4. How many diagonals does a parallelepiped have?

Exercise 8.5.5. Prove that all the diagonals of a parallelepiped bisect each
other.

8.6 Pythagorean triples

Exercise 8.1.5 makes it clear that if the lengths of two sides of a right triangle
are integers, it is possible that the length of the third side is an integer, and it
is also possible that it is irrational. We will focus the remainder of this section
on right triangles whose three side lengths are all integers. A triple (a, b, c) of
positive integers for which c2 = a2 + b2 is called a Pythagorean triple.

Exercise 8.6.1. Which of the following triples are Pythagorean triples?

i. (7, 24, 25)

ii. (6, 8, 10)

iii. (7, 4, 8)

iv. (21, 20, 29)

v. (105, 100, 145)
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Exercise 8.6.2. From which of the Pythagorean triples in the preceding exer-
cise can other Pythagorean triples be obtained by dividing each member of the
Pythagorean triple by the same integer?

The preceding exercise indicates why it is natural to focus attention on
Pythagorean triples (a, b, c) having the additional property that GCD(a, b, c) =
1. Such a Pythagorean triple is said to be primitive.

Exercise 8.6.3. Let (a, b, c) be a Pythagorean triple. Prove that

GCD(a, b, c) = GCD(a, b) = GCD(a, c) = GCD(b, c) .

Exercise 8.6.4. Prove that if (a, b, c) is a Pythagorean triple, then(a
c

)2

+
(b
c

)2

= 1 .

Moreover, use the preceding exercise to show that if (a, b, c) is primitive, then
a
c and b

c are fractions in lowest terms.

Recall that the equation of the circle of radius 1 centered at (0, 0) has the
equation x2 + y2 = 1. The preceding exercise shows how to obtain a point
on the quarter circle x2 + y2 = 1, x > 0, y > 0, from a Pythagorean triple,
a point with the additional property of being a rational point, that is, a point
both of whose coordinates are rational. Moreover, no reduction to lowest terms
is required if the Pythagorean triple is primitive. Conversely, according to the
following exercise both coordinates of any rational point on the quarter circle
x2 + y2 = 1, x > 0, y > 0, have the same denominator when written in lowest
terms and a primitive Pythagorean triple can be obtained from it by using the
numerators as the first two members of the triple and the common denominator
as the third member.

Exercise 8.6.5. Substantiate the assertions made in the preceding sentence by
first describing how to get some Pythagorean triple from any rational point on
the quarter circle x2 + y2 = 1, x > 0, y > 0. Then use Exercise 8.6.3 to prove
that both coordinates of the rational point have the same denominator when
written in lowest terms.

The preceding exercises and discussion show that the problem of describ-
ing all primitive Pythagorean triples is essentially the same as the problem of
describing all rational points on the quarter circle x2 + y2 = 1, x > 0, y > 0.
We will proceed to describe all such rational points by a clever device, the first
discoverer of which must have felt very proud. A one-to-one correspondence
between rational points on the quarter circle x2 + y2 = 1, x > 0, y > 0, and
rational numbers between 0 and 1 will be obtained.

Here is how to obtain the rational number t corresponding to a rational point
(a
c ,

b
c ) on the quarter circle x2 + y2 = 1, x > 0, y > 0. Set

t =
a

b+ c
.
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It is obvious that t is rational and positive. Furthermore, since a, b and c
form the three sides of a triangle, it follows that t < 1. Therefore t is a rational
number between 0 and 1.

The following exercise shows that the process can be reversed.

Exercise 8.6.6. Let (a, b, c) be a primitive Pythagorean triple. Substitute a
b+c

for t in the formula (
2t

1+t2 ,
1−t2
1+t2

)
, (8.4)

and simplify to show that the rational point (a
c ,

b
c ) is obtained.

Suppose that we start with a rational t between 0 and 1 that we do not
know in advance comes from a rational point on the quarter circle x2 + y2 =
1, x > 0, y > 0. Clearly, (8.4) gives a rational point in the first quadrant. The
following exercise completes the proof that it is on the quarter circle.

Exercise 8.6.7. Prove the following algebraic identity:(
2t

1+t2

)2
+
(

1−t2
1+t2

)2
= 1 .

Exercise 8.6.8. Find many rational points on the quarter circle x2 + y2 =
1, x > 0, y > 0, and the corresponding primitive Pythagorean triples by using
the following values for t in (8.4):

i. 1/2

ii. 1/3

iii. 1/5

iv. 2/3

v. 2/7

vi. 3/8

vii. 3/20

Hint: Do not use your calculator for any divisions. Do not let decimal repre-
sentations get into your work.

Exercise 8.6.9. The formula (8.4) with the restriction 0 < t < 1 can be viewed
as a parametric representation of the quarter circle x2 + y2, x > 0, y > 0. If
this representation is regarded as representing travel, does the travel proceed
in the clockwise direction or in the counterclockwise direction? Explain. If the
restriction 0 < t < 1 is omitted, what curve is then represented parametrically
by (8.4)?

Exercise 8.6.10. The triple (5, 12, 13) is Pythagorean and primitive. Use it to
find several Pythagorean triples that are not primitive.
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Exercise 8.6.11. Check that each of the triples (a, b, c) is primitive Pythago-
rean:

i. (7, 24, 25)

ii. (16, 63, 65)

iii. (20, 21, 29)

iv. (180, 19, 181)

Then for each, calculate the corresponding rational number between 0 and 1.

Exercise 8.6.12. Find the side lengths of some right triangle whose side lengths
are whole numbers having greatest common divisor equal to 1 and the length
of whose hypotenuse has at least four digits.

You might enjoy reading the short article about Pythagorean triples begin-
ning on page 160 of Volume 1 (1875) of the above-mentioned The New Eng-
land Journal of Education. On the positive side, a relationship with triangular
numbers is described. On the negative side, the author seems unaware of the
comprehensive solution that probably was obtained by the Pythagorean school
over 2000 years ago.





Chapter 9

Trees

The special kind of graph called a tree plays an important role in many areas of
mathematics and in many fields outside mathematics. In this chapter, we will
learn about two important algorithms associated with trees. The first, called
the Prüfer correspondence, is used to count trees. The second is used to find
the minimal spanning tree in a graph.

9.1 Counting Trees

A commuter airline wishes to establish a network of three towns, Emily, Crosby
and Brainerd. To accomplish this, it will link certain pairs of towns with nonstop
service. However, it wants to do this so that:

• It is possible to travel between every pair of towns (perhaps changing
planes).

• It has as few nonstop flights as necessary.

For example, it could establish nonstop service between Emily and Crosby
and between Emily and Brainerd. Then to travel between Brainerd and Crosby,
one would have to change planes in Emily. Or it could establish nonstop service
between Emily and Crosby and between Crosby and Brainerd. Or it could
establish nonstop service between Emily and Brainerd and between Brainerd
and Crosby. These are the only three possibilities. We show them in Figure 9.1
below. Note that in each case, two nonstop flights are required.

These graphs are each trees as defined in Chapter 4. That is, they are
connected graphs with no cycles, no loops and no multiple edges. We will call
such a network of cities a tree network.

If the airline network had only two cities, then there is only one possible tree
network and one nonstop flight, as shown in Figure 9.2

In Figure 9.3 we show two such tree networks for four cities.

185
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Emily

CrosbyBrainerd

Emily

CrosbyBrainerd

Emily

CrosbyBrainerd

Figure 9.1: Three tree networks with three cities

Emily

Crosby

Figure 9.2: Two-city tree network

Emily

CrosbyBrainerd
Aitken

Emily

CrosbyBrainerd
Aitken

Figure 9.3: Two tree networks with four cities
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Exercise 9.1.1. List all possible tree networks between the four towns, Emily,
Crosby, Brainerd and Aitken. How many nonstop flights are there in each of
these tree networks?

Exercise 9.1.2. Find at least six different tree networks between the five towns,
Emily, Crosby, Brainerd, Aitken and Duluth. How many nonstop flights will
each tree network require?

For five towns there are in fact 125 different tree networks.

Exercise 9.1.3. Make a conjecture for the number of tree networks between
n towns. How many nonstop flights will each tree network require? For the
second part of this exercise, recall from Chapter 4 that a tree with n vertices
has n− 1 edges.

We are now going to describe a way to “take apart” one of these tree net-
works. When we are finished, we will have a list of cities, instead of a tree
network of connections between cities. But we will still be able to reconstruct
our original tree network! The method for disassembling the tree network has
much in common with the idea of “pruning,” described in Chapter 4.

Let’s look at the particular tree network on the five cities, Aitken, Brainerd,
Crosby, Duluth and Emily shown in Figure 9.4.

Emily

CrosbyBrainerd
Aitken

Duluth

Figure 9.4: A five-city tree network

We know that this tree network is a tree, so there are terminal vertices, that
is, towns connected to only one other town. Let’s call these towns terminal
towns. Let’s find the alphabetically last terminal town: Duluth. We remove
Duluth from the tree network and we write down in our list the town that
was connected to Duluth: Emily. We now have a new tree network, shown in
Figure 9.5.

Our list of cities so far consists of just Emily.
Now we repeat this process on the new tree network. The alphabetically

last terminal town in the tree network in Figure 9.5 is now Emily. We remove
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Emily

CrosbyBrainerd
Aitken

Figure 9.5: The reduced tree network

Emily and write down Crosby (the town Emily connects to). The new network
is shown in Figure 9.6.

CrosbyBrainerd
Aitken

Figure 9.6: Further reduced tree network

The list of towns is now (Emily, Crosby).
We do this again with Figure 9.6, removing Brainerd and writing down

Crosby. We now have the tree network in Figure 9.7 and the list of towns
(Emily, Crosby, Crosby).

Crosby
Aitken

Figure 9.7: Final reduced tree network

We now have enough to reconstruct the entire network. In fact, all we need
is the list (Emily, Crosby, Crosby). Here is why. Notice that the degree of each
town is exactly one more than the number of times that town appears in the
list. (Recall from Chapter 4 that the degree of a vertex is the number of edges
at that vertex.) For example, Emily appears once in the list and has degree
two. Aitken doesn’t appear in the list and has degree one.

Exercise 9.1.4. Explain why the degree of each town is exactly one more than
the number of times that town appears in the list.



9.1. COUNTING TREES 189

So let’s begin by drawing the towns and indicating their degrees, as in Fig-
ure 9.8.

Emily

CrosbyBrainerd
Aitken

Duluth

Figure 9.8: Degrees of cities

The alphabetically last terminal town (degree equal to 1) will be Duluth and
from the way we constructed the list we know it must be connected to the first
town in the list: Emily. So let’s draw that connection in Figure 9.9.

Emily

CrosbyBrainerd
Aitken

Duluth

Figure 9.9: First edge

This uses up one of Emily’s two connections. Emily now has one free con-
nection, so it is now a terminal town, in fact, the alphabetically last terminal
town. It must be connected to the next town in the list, Crosby. We draw that
connection in Figure 9.10.

That reduces Crosby’s free connections to two, so the alphabetically last
terminal town is Brainerd, and it connects to the last town in the list, Crosby,
as shown in Figure 9.11.

There are still two terminal towns left: Crosby (whose degree was reduced
from three to two to one) and Aitken. So they must be connected, giving
Figure 9.12, which is the tree network we started with.
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Emily

CrosbyBrainerd
Aitken

Duluth

Figure 9.10: Two edges

Emily

CrosbyBrainerd
Aitken

Duluth

Figure 9.11: Three edges

Emily

CrosbyBrainerd
Aitken

Duluth

Figure 9.12: All edges restored
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Here is another example, using six towns, Aitken, Brainerd, Crosby, Duluth,
Emily, and Fargo. We start with a list of four towns (remember that when we
stripped down the network, we stopped when two towns were left): (Crosby,
Fargo, Emily, Fargo). Since Fargo appears twice in the list, Fargo must have
degree three in the tree. Similarly, Brainerd has degree one, and so on. Our
starting tree network is shown in Figure 9.13.

Emily

CrosbyBrainerd
Aitken

Duluth

Fargo

Figure 9.13: Towns with degrees

The last terminal town is Duluth, which must connect to Crosby, as shown
in Figure 9.14.

Emily

CrosbyBrainerd
Aitken

Duluth

Fargo

Figure 9.14: First edge

Crosby is now a terminal town. It is also the last terminal town. Crosby
must connect to Fargo, which now has degree two, as shown in Figure 9.15.

Now the last terminal town is Brainerd, which must connect to Emily. Emily
now has degree one, shown in Figure 9.16.
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Emily

CrosbyBrainerd
Aitken

Duluth

Fargo

Figure 9.15: Second edge

Emily

CrosbyBrainerd
Aitken

Duluth

Fargo

Figure 9.16: Third edge
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The last terminal town is now Emily, and it connects to Fargo. Fargo now
has degree one. See Figure 9.17.

Emily

CrosbyBrainerd
Aitken

Duluth

Fargo

Figure 9.17: Fourth edge

The only two terminal towns left are Fargo and Aitken, so we connect them,
as shown in Figure 9.18.

Emily

CrosbyBrainerd
Aitken

Duluth

Fargo

Figure 9.18: Final tree network

Exercise 9.1.5. Figure 9.19 shows a tree network on 8 towns. Construct the
corresponding list of six towns.

Exercise 9.1.6. Figure 9.20 shows another tree network on 8 towns. Construct
the corresponding list of six towns.

Exercise 9.1.7. Figure 9.21 shows yet another tree network on 8 towns. Con-
struct the corresponding list of six towns.
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Emily

CrosbyBrainerd
Aitken

Duluth

Fargo

Hibbing

Garrison

Figure 9.19: Another tree network
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Emily

CrosbyBrainerd
Aitken

Duluth

Fargo

Hibbing

Garrison

Figure 9.20: Still another tree network
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Emily

CrosbyBrainerd
Aitken

Duluth

Fargo

Hibbing

Garrison

Figure 9.21: Yet another tree network
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Exercise 9.1.8. Figure 9.22 shows another tree network on 8 towns. Construct
the corresponding list of six towns.

Emily

CrosbyBrainerd
Aitken

Duluth

Fargo

Hibbing

Garrison

Figure 9.22: Another tree network

Exercise 9.1.9. Here is a list of six towns: (Emily, Fargo, Fargo, Hibbing,
Duluth, Fargo). Construct the corresponding tree network on the eight towns,
Aitken, Brainerd, Crosby, Duluth, Emily, Fargo, Garrison and Hibbing.

Exercise 9.1.10. Here is a list of seven towns: (Hibbing, Hibbing, Fargo,
Hibbing, Emily, Fargo, Isle). Construct the corresponding tree network on the
nine towns, Aitken, Brainerd, Crosby, Duluth, Emily, Fargo, Garrison, Hibbing
and Isle.

Exercise 9.1.11. Here is a list of six towns: (Duluth, Brainerd, Fargo, Aitken,
Garrison, Fargo). Construct the corresponding tree network on the eight towns,
Aitken, Brainerd, Crosby, Duluth, Emily, Fargo, Garrison and Hibbing.
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Exercise 9.1.12. How many tree networks are there on the eight towns Aitken,
Brainerd, Crosby, Duluth, Emily, Fargo, Garrison and Hibbing? Hint: count
lists of towns instead of tree networks.

Exercise 9.1.13. How many of the tree networks on eight towns Aitken, Brain-
erd, Crosby, Duluth, Emily, Fargo, Garrison and Hibbing are there in which
Emily has degree 3? Hint: if Emily has degree 3, how many times does it
appear in the list?

Exercise 9.1.14. How many of the tree networks on the eight towns Aitken,
Brainerd, Crosby, Duluth, Emily, Fargo, Garrison and Hibbing are there in
which Emily and Garrison have degree 3, Crosby and Brainerd have degree 2,
and the remaining towns are terminal towns?

Exercise 9.1.15. How many of the tree networks on the eight towns Aitken,
Brainerd, Crosby, Duluth, Emily, Fargo, Garrison and Hibbing are there in
which two towns have degree 3, two towns have degree 2, and the remaining
four towns are terminal towns?

Exercise 9.1.16. How many of the tree networks on the eight towns Aitken,
Brainerd, Crosby, Duluth, Emily, Fargo, Garrison and Hibbing are there in
which Emily has degree at least 3?

Exercise 9.1.17. How many of the tree networks on the eight towns Aitken,
Brainerd, Crosby, Duluth, Emily, Fargo, Garrison and Hibbing are there in
which Emily and Garrison each have degree at least 3?

Tree networks are called labeled trees because the vertices have labels (the
names of the towns, in our case). The number of labeled trees is given by
Cayley’s formula.

Theorem 18 (Cayley’s Formula). The number of labeled trees with n
vertices is nn−2.

The correspondence between labeled trees and lists of vertices is called the
Prüfer correspondence.

Exercise 9.1.18. Use the ideas above to prove Cayley’s formula. Hint: count
label-lists instead of trees.

Exercise 9.1.19. Use the Prüfer correspondence to find a formula for the num-
ber of labeled trees on n vertices where one particular vertex has degree k.

9.2 Minimum Spanning Trees

Airlines pick their tree networks usually based around a hub city where their
facilities are located. In other contexts, networks are chosen to minimize the
total distance within the network. For example, we might wish to lay out an
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electrical network which minimizes the amount of wire we use. Here is another
example.

Figure 9.23 shows a street map of Snowtown, Minnesota. The numbers on
the edges reflect the relative cost of plowing that street after a snowstorm.

60

90
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30

20
40

25
35

10

10

Figure 9.23: Snowtown, Minnesota

After a snowstorm, the snowplows only plow enough of the streets so that
every intersection is reachable from every other intersection. For example, Fig-
ure 9.24 shows one possible way the streets could be plowed. The total cost of
plowing the streets in this way is 192.

Exercise 9.2.1. Find another way of plowing the streets which is cheaper than
192.

Exercise 9.2.2. Find the cheapest way of plowing the streets so that every
intersection is reachable from every other intersection.

A spanning tree is a subgraph of a connected graph which is a tree. For
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Figure 9.24: Streets plowed in Snowtown, Minnesota
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example, the snowplowed streets in Figure 9.24 form a spanning tree of the
graph in Figure 9.23. Your solutions to Exercise 9.2.1 and Exercise 9.2.2 were
also spanning trees.

There are several methods for finding a cheapest (or minimum cost) spanning
tree. The most direct is called the greedy algorithm. This algorithm proceeds
as follows. First, the cheapest edge is found and put into the spanning tree.
Then, the next cheapest edge is added (assuming its addition does not create a
cycle). Then the next cheapest, again assuming its addition does not create a
cycle. This continues until a tree is formed.

For example, in Figure 9.25, the edges with costs 1, 2, 3, 5 and 9 are added,
in that order.
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F

Figure 9.25: A graph with costs

Exercise 9.2.3. Apply the greedy algorithm to Figure 9.23. You should get
the same spanning tree that you obtained in Exercise 9.2.2.

Although it may seem reasonable that the greedy algorithm produces a min-
imum cost spanning tree, this does requires proof. While we will not go through
this proof, the following exercise gives an idea of the kind of arguments involved.

Exercise 9.2.4. If all the edges in a graph have different costs, prove that
the minimum cost spanning tree must use the cheapest edge. Hint: argue
by contradiction. Suppose the minimum cost spanning tree does not use the
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cheapest edge. Show that some edge in the minimum cost spanning tree can be
replaced by the cheapest edge to obtain an even cheaper spanning tree.

Exercise 9.2.5. Use the greedy algorithm to find a minimum cost spanning
tree in the graph in Figure 9.26.
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22

Figure 9.26: Another graph with costs

Exercise 9.2.6. Starting with the complete graph Kn, with vertices labeled 1,
2, . . . , n, place costs on the edges as follows. If e is the edge between vertex i
and vertex j, then the cost of e is |i− j|. For example, K4 with costs is shown
in Figure 9.27. Describe the minimum spanning tree for Kn with these weights.

Exercise 9.2.7. Starting with the complete graph Kn, with vertices labeled 1,
2, . . . , n, place costs on the edges as follows. If e is the edge between vertex i
and vertex j, then the cost of e is i+ j. For example, K4 with costs is shown in
Figure 9.28. Describe the minimum spanning tree for Kn with these weights.

9.3 Rooted Trees and Forests

If we decide that one of the vertices of a tree is special, the tree becomes rooted.
The special vertex is called the root. Some books draw rooted trees with the
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Figure 9.27: K4 with costs
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Figure 9.28: Another K4 with costs
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root at the bottom (like a real tree). Others “grow” their trees from left to right.
We will place the root at the top and grow the tree downward. An example is
shown in Figure 9.29.

Figure 9.29: Rooted tree

You are probably already familiar with such trees. Family trees are an
example of rooted trees. In fact, we use family terminology when we refer to
vertices in a rooted tree. Thus, we call vertices children, parents, or siblings of
other vertices.

We also use “tree” terminology: leaves and branches. A collection of rooted
trees is called a forest.

One of the most familiar examples of rooted trees is outline structures. Con-
sider, for example, this partial outline of mushrooms:

I Non-gilled
A Sac Fungi

1 Morels
a Morchella Esculenta
b Morchella Conica
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2 Lorchels
3 Cup Fungi

B Club Fungi
1 Chanterelles
2 Boletes

a Boletes Edulis
b Boletes Mirabilis
c Slippery Jack

II Gilled
A Club Fungi

1 Amanitas
a Amanita Francheti
b Amanita Mirabilis
c Amanita Phalloides
d Amanita Muscaria

2 Agaricus
3 Inkycaps

III Puffballs
A Gastromycetes

1 Stinkhorns
2 Puffballs

This corresponds to the rooted tree in Figure 9.30.
This leads to the following question about rooted trees: are the two trees in

Figure 9.31 the “same” or “different?”
For outline structures, usually we want these trees to be different. Such trees

are called planar rooted trees. In some other applications, we consider them the
same, and then they are called simply rooted trees. In Figure 9.32 are shown
all the planar rooted trees with four vertices.

Exercise 9.3.1. Draw all the planar rooted trees with five vertices.

Exercise 9.3.2. Show that the number of planar rooted trees on n vertices is
Cn−1, the Catalan number given in Chapter 3. Hint: establish a one-to-one
correspondence between planar rooted trees and outlines.

Planar forests consist of one or more planar rooted trees, with the trees
drawn left-to-right, and where a different order of trees gives a different planar
forest. One example of a planar forest is shown in Figure 9.33. The planar forest
in Figure 9.34 is different, even though it has the same planar rooted trees in
it.

Exercise 9.3.3. Show that the number of planar forests on n vertices is the
same as the number of planar rooted trees on n+ 1 vertices. Hint: remove the
root of the planar rooted tree.

If all the vertices of a rooted tree have labels (see Figure 9.35), the tree is
called a labeled rooted tree.



206 CHAPTER 9. TREES

Non-gilled

Sac Fungi

M
o
re

ls
M

o
rc

h
el

la
 E

sc
u

le
n

ta

M
o
rc

h
el

la
 C

o
n

ic
a

L
o
rc

h
el

s

C
u

p
 F

u
n

g
i

C
h

a
n

te
re

ll
es

B
o
le

te
s

B
o
le

te
s 

E
d

u
li

s

B
o
le

te
s 

M
ir

a
b

il
is

S
li

p
p

er
y
 J

a
ck

Gilled

Club Fungi Club Fungi
A

m
a
n

it
a
s

A
m

a
n

it
a
 F

ra
n

ch
et

i

A
m

a
n

it
a
 M

ir
a
b

il
is

A
m

a
n

it
a
 P

h
a
ll

o
id

es

A
m

a
n

it
a
 M

u
sc

a
ri

a

A
g
a
ri

cu
s

In
k

y
ca

p
s

P
u

ff
b

a
ll

s

Gastromycetes

S
ti

n
k

h
o
rn

s

Puffballs

Figure 9.30: Tree of mushrooms



9.3. ROOTED TREES AND FORESTS 207

Figure 9.31: Same tree?

Exercise 9.3.4. Use Cayley’s formula (Theorem 18) for labeled trees to show
that the number of labeled rooted trees on n vertices is nn−1.

A labeled forest is a collection of one or more labeled rooted trees, where all
the labels are different. An example of a labeled forest is shown in Figure 9.36.
Unlike planar forests, the order of the trees in a labeled forest is not important.

Exercise 9.3.5. Use Cayley’s formula (Theorem 18) for labeled trees to show
that the number of labeled forests on n vertices is (n+ 1)n−1. Hint: establish a
one-to-one correspondence between labeled trees and labeled forests by removing
the vertex with the largest label.

Exercise 9.3.6. How many labeled forests are there with 12 vertices and 3
trees?

A special kind of planar rooted tree is a binary tree. Every vertex of a binary
tree has either zero or two children. Binary trees appear in many computer
science settings. For example, they organize data keys for rapid access and
sorting. Such trees are sometimes called “search trees.” You are probably most
familiar with binary trees in tournament settings. For instance, the 1994 Super
bowl Tournament was described by the binary tree in Figure 9.37

Exercise 9.3.7. Show that the number of leaves in a binary tree is one more
than the number of non-leaves. Hint: in a tournament, every game has a loser
and every team except one loses exactly one game.

Exercise 9.3.8. Explain why binary trees always have an odd number of ver-
tices.

Figure 9.38 shows all the binary trees with seven vertices.
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Figure 9.32: Planar rooted trees
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Figure 9.33: A planar forest

Figure 9.34: A different planar forest
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Figure 9.35: Labeled rooted tree
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Figure 9.36: A labeled forest
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Figure 9.37: Superbowl tournament

Exercise 9.3.9. Draw all the binary trees with nine vertices.

Exercise 9.3.10. Show that the number of binary trees with 2n + 1 vertices
is Cn, a Catalan number. Hint: establish a one-to-one correspondence between
binary trees and polygon triangulations (described in Chapter 3).

Rooted trees provide a good way of organizing information for problem-
solving. For example, suppose we wish to solve this problem: we want to form a
committee of five people, by choosing from four women and six men. We want
the committee to have at least two women, and Fred and Deb will not serve on
the committee together. This situation is described in Figure 9.39.

By summing the number of possibilities at each leaf, we get our answer.

Exercise 9.3.11. Use the tree in Figure 9.40 to help you solve this counting
problem: A certain math class has 12 women and 8 men. Two of the women
and two of the men are left-handed. How many ways can you select 6 students
so that exactly one is left-handed and at least four are women?
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Figure 9.38: Binary trees
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Figure 9.39: A counting problem
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Chapter 10

Real and Complex Numbers

In this chapter we present some of the important properties of the real and com-
plex numbers. We include some of the things which distinguish the real numbers
from the integers and the rationals. We describe various sizes of “infinity.” We
show how to extend number systems into larger systems. Finally we state some
classical non-constructibility results.

10.1 Irrational Numbers

Let’s start by reviewing some of the results from Chapter 5. In that chapter we
learned how the integer number system was expanded to include quotients. We
called that new number system the rational numbers, and we used Q to denote
them. In that chapter, we learned that rational numbers can be represented in
one of two ways:

i. A number is a rational number if it can be written in the form a/b, where
a and b are integers.

ii. A rational number can be represented as a repeating or terminating deci-
mal.

We also saw in Chapter 5 that the rational numbers satisfied a list of axioms.
Each number system which satisfies Axioms A-1 to A-5, M-1 to M-5 and D-1 is
called a field. We have already seen several examples of fields. For example, Q
is a field. Also, expressions of the form polynomial divided by polynomial make
up a field. The integers and polynomials (even with real coefficients) are not
fields—they both lack Axiom M-5, the multiplicative inverse axiom.

Exercise 10.1.1. Complete the following: arithmetic mod n is a field if and
only if . . . .

Fields which also satisfy the order axioms O-1 to O-4 are called ordered
fields. The rationals are an ordered field.

215
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Exercise 10.1.2. Find a rational number between 3/4 and

3/4 + 1/1000000000000000.

Exercise 10.1.3. Show that between any two rational numbers there is another
rational number.

Exercise 10.1.3 shows that the rational numbers are “dense.” Nevertheless,
it is easy to construct numbers which are not rational.

Suppose we take the point of view that we want our number system to consist
of all possible (infinite or finite) decimal representations. Let

x = 0.12112111211112 . . . ,

where the “. . . ” means that the strings of 1’s are separated by single 2’s, and
that the next string of 1’s is one longer than the preceding string.

Exercise 10.1.4. By showing that x does not have a repeating sequence and
does not terminate, explain why x is not rational.

Exercise 10.1.5. Find at least two other numbers which are not rational.

Exercise 10.1.6. Find a number which is not rational and which lies between
3/4 and

3/4 + 1/1000000000000000.

We will call all the numbers which have a representation as an infinite or
finite decimal the real numbers. Be very careful with the word “real.” It has a
specific mathematical meaning when used in this context. We denote the set of
real numbers with R.

Real numbers which are not rational are called irrational. Since we can
add, subtract, multiply and divide (by nonzero amounts) real numbers, the
real numbers form a field, in fact, an ordered field, which include the rational
numbers as a subfield. However, the irrationals do not form a subfield, as will
will note shortly.

If we write I to denote the irrational numbers, then, symbolically,

R = Q ∪ I.

Exercise 10.1.7. What kind of numbers do calculators produce, rational or
irrational?

That there are real numbers which are not rational is transparent from our
definition of reals as numbers having a decimal representation, and from the
description of rationals as those numbers with repeating or terminating decimal
representations. Not surprisingly, from this point of view, there are many more
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irrationals than rationals, a fact which will be proved in Section 10.7. But also
surprisingly, showing specific numbers are irrational can be quite difficult.

The mathematical constant π was not shown to be irrational until the 18th
century, and its proof only appears in advanced mathematics courses. The
natural log base, e, is also irrational, a fact which is sometimes proved in a
calculus class.

An important class of irrational numbers are certain roots, and more gener-
ally, zeros of polynomials. For instance,

√
2 is irrational. This fact has a famous

proof, which we now outline.
Let’s look at the equation x2 = 2. If x were a rational number, say x = m

n ,
then m2 = 2n2. Let’s look again at an exercise from Chapter 5.

Exercise 10.1.8. Suppose m and n are two integers, both ≥ 1. Is it possible
for m2 = 2n2? Explain why this means x cannot be rational.

Exercise 10.1.9. Use a similar argument to show
√

3 is not rational. Show 3
√

2
is not rational.

Exercise 10.1.10. Show
√

2 +
√

3 is not rational. Hint: if
√

2 +
√

3 were
rational, then its square would be rational.

As noted earlier, both the rationals and the reals are fields.

Exercise 10.1.11. Is the sum of two irrationals always irrational? If they are,
give a reason. If not, give an example of two irrationals which add to a rational.

Exercise 10.1.12. Is the product of two irrationals always irrational? If they
are, give a reason. If not, give an example of two irrationals which multiply to
a rational.

Exercise 10.1.13. Do the irrationals form a subfield of the reals? Why or why
not?

Exercise 10.1.14. Is the sum of a rational and an irrational (a) always rational,
(b) always irrational, or (c) either rational or irrational. If your answer is (a)
or (b), give a reason. If it is (c), give examples of each case.

Exercise 10.1.15. Is the product of a non-zero rational and an irrational (a)
always rational, (b) always irrational, or (c) either rational or irrational. If your
answer is (a) or (b), give a reason. If it is (c), give examples of each case.

Exercise 10.1.16. Make a list of everything that you can think of that the real
numbers and the rational numbers have in common. Then make a list of all the
things about the reals and the rationals which are different. For example, “both
are fields” should be on your first list, while “rationals can be represented as an
integer divided by an integer, but not all reals can” should be on your second
list.
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10.2 Rational Approximations

As was noted in Exercise 10.1.7, calculators produce rational numbers. There-
fore, when

√
2 is produced by a calculator, what is displayed is not the square

root of 2, but a rational approximation to the square root of 2.
The reason we can find rational approximations to irrational numbers is

because of the “density” of the rationals that we observed earlier.

Exercise 10.2.1. Construct a rational number between
√

2 and
√

2 + 10−5.

Exercise 10.2.2. Show that between every two distinct real numbers there is
a rational number. Hint: use the fact from Chapter 5 that rational numbers
have repeating or terminating decimal expansions.

Methods for approximating irrationals with rationals exploit Exercise 10.2.2.
By repeatedly applying this exercise, we can form a sequence of rational numbers
which get successively closer to a given irrational number.

For example, there is an old-fashioned algorithm, similar to long division,
for approximating square roots. Each step of this algorithm produces one more
digit in the decimal expansion of the square root. We will not discuss this
algorithm further.

Here is another method for approximating square roots. We will describe its
use to approximate

√
2.

Start with a rational number which is “close” to
√

2. For instance, begin
with 3/2. Find that number x such that 3

2 · x = 2. That is, divide 3/2 into 2.

We get x = 4/3, which is also close to
√

2. Now take the average of 4/3 and
3/2. That is 17/12. Notice that 17/12 is a better approximation to

√
2 than

3/2. That is, 2 < (17/12)2 < (3/2)2.

Exercise 10.2.3. Arithmetically verify that 2 < (17/12)2 < (3/2)2.

Now let’s repeat this process, using 17/12 as the starting approximation.

Exercise 10.2.4. Compute

x =
2

17/12
.

Do not use your calculator! Your answer should be a rational number of the
form integer/integer.

Exercise 10.2.5. Find the average of x and 17/12. Again, don’t use your
calculator. Your answer should be another rational number y.

Exercise 10.2.6. Verify that

√
2 < y <

17

12

by showing

2 < y2 < (
17

12
)2 .
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More generally, suppose a is a positive rational number such that 2 < a2.
The number a may be very “close” to

√
2. Let b be 2/a (so that a · b = 2). If

we think of a as an approximation to
√

2, then b is also an approximation to√
2, but “on the other side,” i.e., b2 < 2. Notice that b is also rational. Now let

c be the average of a and b: c = (a+ b)/2. Again, c is rational.

Exercise 10.2.7. Using

c =
a+ b

2

and

b =
2

a
,

show

c2 − 2 =

(
a− b

2

)2

.

Exercise 10.2.8. Again using

c =
a+ b

2

and

b =
2

a
,

show

a2 − c2 =
1

4
(a− b)(3a+ b).

From Exercise 10.2.7 it follows that c2 − 2 is positive, so that c2 > 2. From
Exercise 10.2.8 it follows that a2 − c2 is positive, so that c2 < a2. Therefore,
the rational number c is a “better” approximation to

√
2 than a was.

We may now repeat this, letting c play the role of a. We get a sequence of
rational numbers which get closer and closer to

√
2. That this sequence actually

converges to
√

2 requires further calculations, which we omit here.
The basic idea behind this algorithm is that we can get as close as we like

to
√

2 by a sequence of rationals.

This method is based on an important algorithm for numerical approxima-
tion, called Newton’s method.

Exercise 10.2.9. Use a calculator to approximate
√

2 by, beginning with 2,
successively divide into 2 and taking the average. So the first step would be
(2 + 2/2)/2 = 3/2 and the second step would be (3/2 + 4/3)/2 = 17/12. The
third step will give the rational number y you computed in Exercise 10.2.5. How
many steps does it take before

√
2 has been computed to the accuracy of your

calculator?

Exercise 10.2.10. Write down the number your calculator tells you is
√

2.
Now find a rational number which is closer to

√
2 than this number.
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10.3 The Intermediate Value Theorem

Some mathematics courses take an axiomatic point of view in the development
of the real numbers. Since both the rationals and the reals satisfy all the axioms
in Chapter 5, there must be some other axiom which distinguishes them. This
axiom is called the Least Upper Bound Axiom. (An upper bound of a set of
numbers is a number which is larger than all the numbers in the set.)

L-1 (LUB Axiom). Every collection of real numbers with an upper bound has
a least upper bound.

Notice that the rational numbers do not satisfy Axiom L-1. For example, let
S be the set of all rational numbers which are less than

√
2. All such numbers

are certainly less than 1.5, so S has an upper bound. However, it has no least
upper bound among rationals, for suppose m is such a rational least upper
bound. Then by Exercise 10.2.2, between m and

√
2 there is another rational

number. This rational number is larger than m but less than
√

2, so m is not
the least upper bound of S. However, if we look for a least upper bound outside
the rationals, we can find it: namely,

√
2.

Our interest in the least upper bound axiom is limited to one of its important
consequences, the intermediate value theorem. We will omit its proof, which is
quite difficult.

Theorem 19 (The Intermediate Value Theorem). If f is a continuous
real-valued function on the real interval [a, b], and if f(a) < m and f(b) >
m, then there is some number c such that a < c < b and f(c) = m.

Theorem 19 states that continuous real-valued functions on closed intervals
take on all the intermediate values between f(a) and f(b). Although this theo-
rem seems very natural and almost obvious, observe that if we limit ourselves to
rational numbers, it is not true! The function x2 − 2 is positive for all rational
numbers bigger than

√
2 and negative for all rational numbers between 0 and√

2. However, there is no rational number c such that c2 − 2 = 0. Therefore,
a fundamental piece of the proof of the intermediate value theorem is the least
upper bound property of the real numbers.

Let’s look at a couple of consequences of Theorem 19. The first is that it
provides a “root-finder” for real-valued functions. For example, consider the
polynomial x3 − 6. When x = 1, the value of this polynomial is −5. When
x = 2, its value is 2. Since −5 < 0 while 2 > 0, the intermediate value theorem
tells us that there is some value c, 1 < c < 2, such that c3 − 6 = 0.

Exercise 10.3.1. Use the intermediate value theorem to show the polynomial
x5 − x4 − x2 + 2 has at least one real zero between −1 and 0.

Exercise 10.3.2. Use your calculator and the intermediate value theorem to
show the function 2−x +

√
x+ 3 − 3 has at least one real zero between −0.55

and −0.5 and at least one real zero between 5.5 and 6.
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Exercise 10.3.3. Use your calculator and the intermediate value theorem to
show the function (ex/x)− 2x has at least one real zero between 1 and 2 and at
least one real zero between 5 and 6. (e is the base of natural logarithms. You
should find the function ex on your calculator.)

Exercise 10.3.4. For the zero of the function (ex/x) − 2x between 1 and 2
discovered in the previous exercise, determine if that zero is between 1 and 1.5
or between 1.5 and 2. If the former, then determine if it is between 1 and 1.25
or between 1.25 and 1.5. If the latter, determine if it is between 1.5 and 1.75 or
if it is between 1.75 and 2.

Exercise 10.3.5. Use the intermediate value theorem to prove that every poly-
nomial p(x) with real coefficients and of odd degree has at least one real zero.
Hint: assume that the coefficient of the highest power term of p(x) has positive
sign. What happens to p(x) when x grows large and positive? What happens
to p(x) when x grows large and negative?

Exercise 10.3.6. What goes wrong with the argument in Exercise 10.3.5 when
p(x) has even degree? Give an example of a polynomial with even degree which
does not have any real zeros.

The intermediate value theorem can be used to show the existence of certain
points and lines related to convex sets.

A set in the plane is called a convex set if, for every two points P and Q in
the set, the line segment PQ joining them is also in the set. The interiors of
circles, ellipses, triangles, parallelograms and regular polygons are all examples
of convex sets. Figure 10.1 shows an example of a convex set and a set which is
not convex.

A set in the plane is called a bounded set if there is some circle which encloses
it. For example, the half-plane described by x > 0 is not bounded.

Suppose K is a bounded convex set and l is a line in the plane. We are going
to show that there is a line parallel to l which cuts K into two pieces of equal
area.

Place K in the first quadrant of a Cartesian coordinate system and orient
the coordinate system so that l is parallel to the y-axis. Let b be the value of x
such that all of K lies to the left of the vertical line through b. Now for each x,
draw a vertical line through x and let f(x) be the area of K to the left of this
line. See Figure 10.2

Exercise 10.3.7. What is f(0)? What is f(b)? Use the intermediate value
theorem to show that there is a c, 0 < c < b, such that f(c) is half the area of
K.

Exercise 10.3.8. Jed and Jethro are two hermits standing on opposite sides of
a convex lake. The distance around the lake between the two hermits is the same
in either direction. Jed and Jethro begin walking around the lake clockwise at
the same speed. Use the intermediate value theorem to show there is a point
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P

Q

P

Q

Figure 10.1: A convex set and a non-convex set

at which the line across the lake between Jed and Jethro cuts the lake into two
pieces of equal area.

10.4 Complex Numbers

In this section we address the problem of solving polynomial equations.
We start with the simple equation x2 + 1 = 0, which has no real solution.

What we do to resolve this issue is remarkable and will be used in a later chapter
on finite fields: we invent a solution! Let i stand for the solution to this equation.
This i is sometimes called an imaginary number, although it exists as surely as√

2 exists.
Next we form all possible expressions of the form a + bi where a and b are

real numbers. There is an arithmetic for these expressions: we multiply and
add just like polynomials in the variable i, except that whenever we encounter
i2, we replace it with −1. For example, (1 + i) · (2− i) = 2 + i− i2 = 3 + i.

Exercise 10.4.1. Compute (2− 4i)(−3− i) and (1.2− 3i
4 )(3.5 + i

2 ).

Exercise 10.4.2. Compute ( 2
3 + i

√
3)(
√

5 + (7.61)i).

Exercise 10.4.3. Let z = 3 + 4i. Show that z2 = −7 + 24i. Find z3 and z4.
Find a connection between these complex numbers and Pythagorean triples.

From these exercises, we can see that these new numbers are closed under
addition and multiplication. It is also straightforward to show that they satisfy
the commutative, associative and distributive axioms.
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bx
x

y

f(x)

Figure 10.2: Slicing a convex set
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Exercise 10.4.4. What is the additive identity for these numbers? What is
the multiplicative identity? What is the additive inverse of the number 2− 6i?
What is the additive inverse of the number a+ bi?

We shall see below that these numbers also have multiplicative inverses, and
thus satisfy all the axioms of a field described in Chapter 5. These numbers are
called complex numbers. A common notation for the set of complex numbers
is C. The reals are a subfield of the complex numbers—they are the complex
numbers a+ bi where b = 0.

*Exercise 10.4.5. Show the complex field is not an ordered field. Hint: assume
it is. By trichotomy, i < 0, i = 0, or i > 0. In the first case, −i > 0. What
happens if you multiply i < 0 by −i? In the second case, what happens if you
multiply i = 0 by i? And in the third case, what happens if you multiply i > 0
by i?

Division, i.e., finding multiplicative inverses, in the complex field is a little
tricky. It is accomplished by multiplying the numerator and denominator by
the complex conjugate of the denominator. If a+ bi is a complex number, then
a− bi is its complex conjugate. For example, the complex conjugate of 3− 5i is
3 + 5i.

Exercise 10.4.6. Find the complex conjugates of 1− i. Of i. Of −2− 6i.

Multiplying a complex number by its complex conjugate yields a real num-
ber. For example, (3−5i) ·(3+5i) = 9−25i2 = 9+25 = 34. So we can compute
the multiplicative inverse of 3− 5i by multiplying numerator and denominator
by 3 + 5i:

1

3− 5i
=

3 + 5i

(3− 5i)(3 + 5i)

=
3 + 5i

34

=
3

34
+

5

34
i.

In each of the following exercises, your answer should be of the form A+Bi
where A and B are real numbers.

Exercise 10.4.7. Compute
2− 4i

−3− i
and

1.2− 3i
4

3.5 + i
2

.



10.5. ZEROS OF POLYNOMIALS 225

Exercise 10.4.8. Compute √
2 + 3

2i√
5−

√
2i
3

.

Exercise 10.4.9. Compute

2− i
1 + i

+
2 +
√

3i

6−
√

2i
.

Exercise 10.4.10. Compute i3, i4, i5 and i6.

Exercise 10.4.11. Compute (1 + i)5.

Exercise 10.4.12. Show that the complex conjugate of the complex conjugate
is the original complex number.

Pairs of numbers which are complex conjugates of one another are called
complex conjugate pairs.

10.5 Zeros of Polynomials

In this section, we will discuss the relationship between the zeros of a polynomial
and the kind of coefficients of the polynomial.

First, let’s do a short review of some basic facts about polynomials. Recall
that a polynomial p(x) has the form

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, (10.1)

with an 6= 0. For example,

2x3 − x2 − 4x+ 3/2 (10.2)

is a polynomial. The numbers an, an−1, . . . , a1, a0 in Equation 10.1 are called
the coefficients. In expression (10.2), 2, −1, −4 and 3/2 are the coefficients. We
call a polynomial rational, real or complex, according to whether the coefficients
are all rational, all real or all complex. Rational polynomials will also be real
and complex. Real polynomials will also be complex polynomials. The example
polynomial is a rational polynomial. The number n in Equation 10.1 is called
the degree of the polynomial. In expression (10.2), the degree is 3.

Suppose p(x) = q(x)r(x), where q(x) and r(x) are two polynomials with
coefficients in the same number system as p(x), and where the degrees of q and
r are both at least 1. We then say p(x) factors over that number system into
q(x) and r(x). Expression (10.2) factors over the rationals into x2 +x−1/2 and
2x− 3.

As a somewhat more complicated example, the polynomial

x4 − x2 − 2
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factors into
(x2 − 2)(x2 + 1) over the rationals,

into
(x−

√
2)(x+

√
2)(x2 + 1) over the reals,

and into

(x−
√

2)(x+
√

2)(x− i)(x+ i) over the complex numbers.

A factor of degree 1 is called a linear factor and a polynomial of degree
1 is called a linear polynomial. Polynomials of degree 2 are called quadratic
polynomials. Polynomials of degrees 3, 4 and 5 are called cubic, quartic and
quintic, respectively. (Polynomials of degree 0 are called constant polynomials,
and are really just the field elements.)

A zero of a polynomial, p(x), is a number a such that p(a) = 0. Zeros of
polynomials are also called roots. In expression (10.2), 3/2 is a zero because
2(3/2)3 − (3/2)2 − 4(3/2) + 3/2 = 0. If a factor of a polynomial has the zero
a, then the polynomial has the zero a. Since linear polynomials have exactly
one zero, which is easily computed, finding linear factors of a polynomial is
equivalent to finding zeros of the polynomial. That is, a is a zero of p(x) if and
only if (x− a) is a linear factor of p(x).

One consequence of this is that a polynomial of degree n with coefficients in
some field will never have more than n zeros in that field. This is because the
polynomial cannot have more than n distinct (up to constant multiple) linear
factors.

Exercise 10.5.1. Let
p(x) = x4 − x2 − 4x− 4.

What is the degree of p(x)? Is p(x) rational? Is it real? Is it complex? Find at
least one linear factor of p(x) over the rationals and at least one rational zero
of p(x).

If a polynomial is complex, then an important theorem, called the the “Fun-
damental Theorem of Algebra,” states that the polynomial factors completely
into linear factors.

Theorem 20 (The Fundamental Theorem of Algebra). If p(x) is a com-
plex polynomial of degree n, then p(x) factors into n complex linear fac-
tors.

For example, the polynomial x2 − ix − 1 + i factors into (x − 1)(x + 1 −
i). This example was concocted by picking two linear factors and multiplying
them together. It is generally quite hard to start with an arbitrary complex
polynomial and find the linear factorization.

The Fundamental Theorem of Algebra is a very deep result whose proof is
quite difficult.
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If the polynomial is real, then the zeros will either be real or will come in
complex conjugate pairs. We will outline a proof of this fact shortly. First, let’s
look at what happens in the special case that the polynomial is real quadratic.

If p(x) is a real quadratic polynomial, p(x) = ax2 + bx + c, then the well-
known quadratic formula tells us how to find the zeros:

x =
−b±

√
b2 − 4ac

2a
.

The number under the square root symbol is called the discriminant. If the
discriminant is positive, p(x) has two distinct real zeros. If the discriminant is
zero, p(x) has one real zero. If the discriminant is negative, p(x) has a complex
conjugate pair of zeros.

Exercise 10.5.2. Solve the following equations:

i. 2x2 − 4x+ 5 = 0.

ii. 2x2 = 3x− 1.

iii. 3x2 − 2x+ 1/3 = 0.

Exercise 10.5.3. Find all the zeros of the polynomial:

2x3 − x2 − 4x+ 3/2.

Factor this polynomial into a product of three linear factors.

Is there a formula for the roots of cubic polynomials? For quartic poly-
nomials? For quintic polynomials? The answers to these questions are quite
surprising and took mathematicians hundreds of years to resolve. There is in-
deed a formula for cubic polynomials, considerably more complicated than the
quadratic formula. This formula has been known since the sixteenth century.
There is also a formula for quartic polynomials. This formula has been known
since the seventeenth century. However, no formula (using only addition, sub-
traction, multiplication, division and roots) is possible for the general degree five
or higher polynomial. This famous result was proved in the early nineteenth
century by Abel.

The following exercises give a proof of the fact that real polynomials have
zeros which are real or complex conjugate pairs. First, we need a bit of notation.

If z is a complex number, then let z stand for its complex conjugate. A
complex number and its conjugate have certain properties:

P-1 If a is real then a is real.

P-2 zz is real.

P-3 z = z.
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P-4 If z and w are complex numbers, then z + w = z + w.

P-5 If z and w are complex numbers, then zw = z · w.

Property P-1 is obvious. Property P-2 is the property we used to find the
multiplicative inverse of complex numbers. Property P-3 is the same as Exer-
cise 10.4.12. For property P-4, suppose z = a+ bi and w = c+ di. Then

z + w = (a+ c) + (b+ d)i

= (a+ c)− (b+ d)i

and

z + w = a+ bi+ c+ di

= a− bi+ c− di
= (a+ c)− (b+ d)i.

Exercise 10.5.4. Prove property P-5 above. (Hint: let z = a+bi and w = c+di,
then do the algebra.)

These properties can be used to verify that the complex roots of polyno-
mials with real coefficients come in complex conjugate pairs. For example, the
polynomial

p(x) = x5 − 4x4 + 6x3 − 3x2 + x+ 5

has one complex root 2− i.

Exercise 10.5.5. Algebraically verify that

(2− i)5 − 4(2− i)4 + 6(2− i)3 − 3(2− i)2 + (2− i) + 5 = 0.

Now take the complex conjugate of this equation. We get

(2− i)5 − 4(2− i)4 + 6(2− i)3 − 3(2− i)2 + (2− i) + 5 = 0.

Use properties P-1, P-4 and P-5 to distribute the complex conjugate through
the sum on the left side and use property P-1 on the right side:

(2 + i)5 − 4(2 + i)4 + 6(2 + i)3 − 3(2 + i)2 + (2 + i) + 5 = 0.

But the left side is now p(2 + i), so 2 + i is also a solution to p(x) = 0.

The next three exercises ask you to do this calculation in general. Suppose
p(z) is a polynomial in z with real coefficients:

p(z) = anz
n + an−1z

n−1 + · · ·+ a1z + a0.

Exercise 10.5.6. Use properties P-1, P-4 and P-5 to show p(z) = p(z).
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Polynomial over rationals over reals over complex

x2 − 2 irreducible not irreducible not irreducible
x2 − 1 not irreducible not irreducible not irreducible

Table 10.1: Irreducible polynomials?

Exercise 10.5.7. Suppose p(z) = 0. Use Exercise 10.5.6 and property P-1 to
show p(z) = 0.

Exercise 10.5.8. Conclude that the roots of p(z) are either real or come in
complex conjugate pairs.

We write this last exercise as the following theorem.

Theorem 21. If p(z) is a polynomial with real coefficients, then the roots
of p(z) are either real or come in complex conjugate pairs.

Exercise 10.5.9. Suppose p(x) is a real polynomial and suppose p(2−3i) = 0.
What is p(2 + 3i)?

Exercise 10.5.10. Prove that any real polynomial factors into a product of
real linear and real quadratic polynomials. Hint: Recall that if a and b are two
zeros of p(x), then (x − a)(x − b) is a factor of p(x). What kind of coefficients
does the polynomial (x− a)(x− a) have? What is its degree?

10.6 Algebraic Extensions and Zeros of Polyno-
mials

Let’s look at the construction of the complex numbers from another viewpoint.
We started with a field (the real numbers) and a polynomial with real coefficients
which did not factor (x2 +1). We “invented” a root of this polynomial (i) which
we “adjoined” to the field (i. e., we formed all expressions like a+ bi). Then we
did arithmetic using forms like a+ bi as polynomials in i, except we replaced i2

with −1 (or, equivalently, i2 + 1 with 0).
This same construction can be done for any field and for any polynomial

with coefficients in the field and which does not factor over the field!
To do this construction, we start with a polynomial which does not have

any polynomial factors with coefficients in our field. Such a polynomial is called
irreducible over the field. For example, x2 − 2 is irreducible over the rationals
(but not over the reals, since x2−2 = (x−

√
2)(x+

√
2)). The polynomial x2−1

is not irreducible over the rationals or the reals (since x2 − 1 = (x− 1)(x+ 1)).
We summarize in Table 10.1.

Exercise 10.6.1. Fill in a table similar to Table 10.1 for each of the following
polynomials: x2 + 1, x2 + 3x+ 2, x2 + 4x+ 1, x4 + 2x2 + 1, x3 + x+ 1.
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Let’s continue with our example, using the polynomial x2 − 2. Let’s look at
all expressions of the form a+ b

√
2 where a and b are rational. We will call this

set of numbers F . Two examples of elements of F are
√

2 and 3− 5
√

2.

Exercise 10.6.2. Give three more examples of elements of F .

We will now do arithmetic in F . For instance, to add two elements of F ,
a+ b

√
2 and c+ d

√
2, we compute (a+ c) + (b+ d)

√
2. Since a and c are both

rational, then a+ c is rational. Similarly, b+d is rational, so (a+ c) + (b+d)
√

2
is in F .

Subtraction is done in a similar manner.

Exercise 10.6.3. Perform the arithmetic:

i. (4− 6
√

2) + (7 + 3
√

2).

ii. (1.3− 4
3

√
2) + (− 2

7 + 3.3
√

2).

iii. (2.2− 5
3

√
2)− (− 2

7 + 3
√

2).

To multiply, just use the fact that
√

2 ·
√

2 = 2 (just as we used the fact that
i · i = −1 for complex numbers). For instance, (2−

√
2) · (−1−3

√
2) = 4−5

√
2.

Exercise 10.6.4. Perform the arithmetic:

i. (4− 6
√

2) · (7 + 3
√

2).

ii. (1.3− 4
3

√
2) · (− 2

7 + 3.3
√

2).

iii. (2.2− 5
3

√
2) · (− 2

7 + 3
√

2).

The additive identity 0 and the multiplicative identity 1 are both in F (0 =
0 + 0

√
2 and 1 = 1 + 0

√
2).

To divide, we perform a step much like finding the complex conjugate. For
instance,

2−
√

2

−1− 3
√

2
=

2−
√

2

−1− 3
√

2
· −1 + 3

√
2

−1 + 3
√

2

=
−8 + 7

√
2

−17

=
8

17
− 7

17
·
√

2.

This process is sometimes called rationalizing the denominator.

Exercise 10.6.5. Perform the arithmetic:

i.
1

2
√

2
.
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ii.
2− 3

√
2

−7 +
√

2
.

iii.
1− 5

3

√
2

− 2
5 + 2

√
2
.

Exercise 10.6.6. Find the multiplicative inverse of 1 −
√

2 in F . Find the
multiplicative inverse of 2 + 3

√
2 in F . More generally, find the multiplicative

inverse of a+ b
√

2 in F , where a and b are rational.

Fields which contain a smaller subfield are called extensions. The complex
numbers are an extension of the reals; the field F described above is an extension
of the rationals.

The fields we described above are special kinds of extensions, called simple
algebraic extensions. That simply means they are constructed according to the
recipe described above. The notation used to name them is F(a), where F is the
name of the starting field and a is the root adjoined. For example, the complex
numbers are R(i) and the field F above is Q(

√
2).

Exercise 10.6.7. Find rationals a and b such that

a(
√

2 +
√

3)3 − b(
√

2 +
√

3) =
√

2.

Conclude that
√

2 is an element of Q(
√

2 +
√

3).

Exercise 10.6.8. Find rationals a and b such that

a(
√

2 +
√

3)3 − b(
√

2 +
√

3) =
√

3.

Conclude that
√

3 is an element of Q(
√

2 +
√

3).

Suppose we start with the rationals, then “throw in”
√

2, forming Q(
√

2).
The polynomial x2 − 3 is irreducible over Q(

√
2), so we can “throw in”

√
3.

The new field, in our notation, is Q(
√

2)(
√

3). Certainly
√

2 +
√

3 is an element
of Q(

√
2)(
√

3). This means Q(
√

2 +
√

3) is a subfield of Q(
√

2)(
√

3). But
Exercise 10.6.7 and Exercise 10.6.8 show that Q(

√
2)(
√

3) is a subfield of Q(
√

2+√
3), so these two fields must be the same:

Q(
√

2)(
√

3) = Q(
√

2 +
√

3).

This is a special case of a remarkable theorem which states that every finite
sequence of simple algebraic extensions over the rationals is a simple algebraic
extension.

Field extensions have an integer associated with them, called the degree of
the extension. In the case of simple algebraic extensions, the degree is the
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degree of the corresponding irreducible polynomial. For example, the complex
numbers are an extension of the reals of degree 2, since they introduce i, a
root of a second degree polynomial x2 + 1. The field Q(

√
2) is an extension of

the rationals of degree 2, because it introduces
√

2, a root of the second degree
polynomial x2 − 2.

Let’s do another example of a field extension. We use as our polynomial
x3−2, which is irreducible over the rationals. As before, we extend the rational
field by adjoining a root of this polynomial. In fact, we will adjoin 3

√
2.

Exercise 10.6.9. What is the degree of Q( 3
√

2) over Q?

We now do some arithmetic in Q( 3
√

2). For example,

((
3
√

2)2 + 1) · (( 3
√

2)2 +
3
√

2− 1) = (
3
√

2)4 + (
3
√

2)3 +
3
√

2− 1

= 2
3
√

2 + 2 +
3
√

2− 1

= 3
3
√

2 + 1 .

Notice the substitution of 2 for ( 3
√

2)3 in the above calculation.

Exercise 10.6.10. Find rational numbers (a, b, c) such that

((
3
√

2)2 − 3
√

2− 3) · (( 3
√

2)2 +
3
√

2) = a(
3
√

2)2 + b
3
√

2 + c .

Now let’s try to find the multiplicative inverse of a number in Q( 3
√

2). For
example, what is the multiplicative inverse of 3

√
2 + 1? That is, we want to

“rationalize the denominator” of

1
3
√

2 + 1
.

We don’t know what this number is yet, but we do know it must be of the form
a( 3
√

2)2 + b 3
√

2 + c. That is, we want to find rational numbers (a, b, c) such that

1
3
√

2 + 1
= a(

3
√

2)2 + b
3
√

2 + c .

Multiplying left and right by 3
√

2 + 1, we have

1 = (
3
√

2 + 1) · (a(
3
√

2)2 + b
3
√

2 + c)

= a(
3
√

2)3 + b(
3
√

2)2 + c
3
√

2 + a(
3
√

2)2 + b
3
√

2 + c

= (a+ b)(
3
√

2)2 + (b+ c)
3
√

2 + (2a+ c)

The last expression is a quadratic polynomial in 3
√

2. In order for this polynomial
to be exactly 1, the coefficients of 3

√
2 and ( 3

√
2)2 must be zero and the constant

term must be 1. Therefore,

a + b = 0

b + c = 0

2a + c = 1 .
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Solving this system of three equations and three unknowns yields

a = 1/3

b = −1/3

c = 1/3 .

Therefore,
1

3
√

2 + 1
=

1

3
(

3
√

2)2 − 1

3
3
√

2 +
1

3
. (10.3)

Exercise 10.6.11. Use your calculator to check Equation (10.3).

Exercise 10.6.12. Find the multiplicative inverse in Q( 3
√

2) of ( 3
√

2)2 − 1.

Exercise 10.6.13. Rationalize the denominator:

( 3
√

2)2 + 2

( 3
√

2)2 − 1
.

Let’s do a final example of a field extension. The last polynomial in Exer-
cise 10.6.1 was irreducible over the rationals. Let α be the number such that
α3 + α+ 1 = 0. We now do arithmetic in Q(α). For example,

(α2 − 1) · (α+ 1) = α3 + α2 − α− 1

= −α− 1 + α2 − α− 1

= α2 − 2α− 2.

We will use this α for the next four exercises.

Exercise 10.6.14. What is the degree of Q(α) over Q?

Exercise 10.6.15. Find rational numbers (a, b, c) such that

(3α2 − 2α+ 1) · (α2 + 3) = aα2 + bα+ c .

Exercise 10.6.16. Find the multiplicative inverse in Q(α) of α2.

Exercise 10.6.17. Rationalize the denominator of

α− 1

α2

We can now see one way that some real numbers are “better” than others:
some real numbers are roots of polynomials with rational coefficients. Such
numbers are called algebraic numbers. For instance,

√
2 is algebraic because it

is a root of x2 − 2. Every rational a is algebraic because it is a root of x− a.

Exercise 10.6.18. Show that 1/2, 31/4 and 51/3 are all algebraic.
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The next exercises show that
√

2 +
√

3 is algebraic of degree 4 over Q.

Exercise 10.6.19. Write (
√

2+
√

3)2 as A+B
√

6 where A and B are rationals.

Exercise 10.6.20. Write (
√

2+
√

3)4 as A+B
√

6 where A and B are rationals.

Exercise 10.6.21. Use the previous two exercises to find rationals R and S
such that

R(
√

2 +
√

3)4 + S(
√

2 +
√

3)2 = 1.

The last exercise produces a polynomial Rx4 + Sx2 − 1 which has a zero at
(
√

2 +
√

3).

Exercise 10.6.22. Check that Rx4 + Sx2 − 1 is irreducible over the rationals.

Real numbers which are not algebraic are called transcendental. The two
most famous transcendental numbers are π and e. The proofs that they are
transcendental are not generally given in even undergraduate math classes!

10.7 Infinities

Recall that in Chapter 5, we discussed a kind of infinity called countable. There,
we saw that the integers, the rationals, and many other infinite sets were count-
able.

A beautiful argument due to Cantor shows that the reals are not countable.
In fact, it shows that the reals between 0 and 1 are not countable. This will be
our first example of an uncountable set.

Suppose we start with some sequence of real numbers between 0 and 1,
say {r1, r2, r3, r4, . . . }. Let’s write them in their decimal form. For example,
suppose our sequence begins:

r1 = 0.12321012 . . .

r2 = 0.33223344 . . .

r3 = 0.66666666 . . .

r4 = 0.20000000 . . .

r5 = 0.31313131 . . .

r6 = 0.12345112 . . .

r7 = 0.99888777 . . .

r8 = 0.46646466 . . .

...

Now let’s “construct” a special real s between 0 and 1. The first digit of s
after the decimal point will be 3 unless the first digit of r1 is 3, in which case it
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is 5. The second digit of s will be 3 unless the second digit of r2 is 3, in which
case it is 5. And so on. The nth digit of s will be 3 unless the nth digit of rn is
3, in which case it is 5. In our example, s = 0.35335333 · · · .

Exercise 10.7.1. Show that s is not in the sequence {r1, r2, r3, r4, . . . }, and so
conclude that no list of real numbers can contain all the reals.

Exercise 10.7.2. What roles did 3 and 5 play in this construction? Did we
have to use 3 and 5?

This argument shows that the reals are not countable (that is, uncountable).
An extension of this argument can be used to show that there are an infinite
number of sizes of infinity.

It is not too hard to show that algebraic numbers are countable. Thus the
transcendental numbers must be uncountable. One of the many paradoxes sur-
rounding sizes of sets is the fact that while the algebraic numbers are countable
and the transcendental numbers are uncountable, it is very hard to show specific
numbers are transcendental.

One of the questions which puzzled Cantor was this: could there be a level
of infinity between the countable rationals and the uncountable reals? Cantor
conjectured that no such set existed, but was not able to prove it. This con-
jecture was call the “Continuum Hypothesis” and was a celebrated problem in
mathematics until Cohen provided the surprising answer. What Cohen showed
was that neither the existence nor the nonexistence of such a set was inconsistent
with the axioms of set theory!

10.8 Constructible Numbers

The early Greek mathematicians felt that every number must be “constructible.”
That is, starting with a line segment of length one, and using only a straightedge
and a compass, one could construct a line segment of that length. For instance,√

2 is constructible by constructing a right triangle with sides of length one, as
shown in Figure 10.3. Then the hypotenuse will have length

√
2.

In this figure, two perpendicular lines, m and l, are constructed intersecting
at the point P . Then construct the arc r of radius one and center P , intersecting
m at A and intersecting l at B. The triangle PAB will have right angle at P
and two sides of unit length. Therefore, its hypotenuse, AB, will have length√

2.

Exercise 10.8.1. Describe the straightedge and compass construction of
√

5,√
3,
√

7, and 21/4.

One of the great achievements of modern algebra was the resolution of the
Greeks’ constructibility problems. Some of these problems were unsolved for
almost 2000 years. One of these problems was to “square a circle,” i. e., given
a circle, construct a square having the same area.

Exercise 10.8.2. Show that this problem amounts to constructing
√
π.
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Figure 10.3: Construction of
√

2

Exercise 10.8.3. Show that if you could construct π, then you could construct√
π.

It is not too hard to show that the Greeks’ straightedge and compass con-
structions create numbers in an extension field of degree 2. This comes from the
fact that circles are described by the quadratic equation (x−a)2 +(y−b)2 = r2.

When an extension of an extension is created, the degree of the second ex-
tension over the original field is the product of the degrees of the two extensions.
Therefore, if a number is constructible, it must live in an extension of the ra-
tionals of a degree which is a power of 2.

Exercise 10.8.4. Is the number α such that α3 + α + 1 = 0 discussed in
Section 10.6 constructible?

Therefore, each constructible number is certainly algebraic. Furthermore, if
it satisfies some irreducible polynomial over the rationals, that polynomial must
have degree equal to some power of 2.

In particular, π is not algebraic and therefore not constructible. The proof
that π is transcendental thus settled the 2000 year old problem of squaring a
circle.

Another of the Greeks’ construction problems was trisecting an angle. Was
it possible, with straightedge and compass, to trisect every angle?

In fact, we will show it’s impossible to trisect 60◦.
A 60◦ angle is easily constructible. Simply construct an equilateral triangle.

Such a triangle has three 60◦ angles.
If it is possible to trisect an angle, it should be possible to construct an angle

of 20◦.
The cosine of an angle α can be defined in the following way. Draw a right

triangle with one of its angles equal to α. The cosine of α is the ratio of the
length of the side adjacent to α to the length of the hypotenuse. In Figure 10.4,
cosα = a/b.

It is easy to see that if an angle is constructible, so is its cosine. This process
is sketched in Figure 10.5.
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Figure 10.5: Construction of the Cosine

Start with the angle α at P . One side is ray m and the other side is ray n.
Using P as center and radius one, draw an arc intersecting m at Q. Now drop a
perpendicular from Q down to n, intersecting n at R. The right triangle PQR
has hypotenuse length one. Therefore, the side PR will have length cosα.

Let’s let α = 20◦ and a = cosα. A trigonometric identity can then be used
to show 8a3 − 6a− 1 = 0.

Exercise 10.8.5. Show that the polynomial 8x3 − 6x − 1 is irreducible over
the rationals. By the discussion above, a is not constructible. Since a is not
constructible, α is not constructible, and so it is impossible to trisect 60◦.





Chapter 11

Probability and Statistics,
II

In this chapter we conclude our study of the interrelated topics, probability and
statistics. In particular, we concentrate on measuring the center and the spread
of a body of information. This chapter is highly dependent upon the material
in Chapter 7 and in Chapter 2. It is suggested that this material be reviewed
at this time.

11.1 Expectation

If a pair of fair dice is rolled 60 times, you would expect seven to come up about
ten times. However, that does not mean that seven will come up ten times every
time you roll the dice 60 times. Furthermore, if you roll the dice 50 times, seven
certainly will not come up 50

6 times!

If a fair coin is tossed 20 times, you would expect heads to turn up about
ten times. However, that does not mean that in every 20 tosses, you will get
exactly ten heads. And you certainly will not toss one and one-half heads in
three tosses!

In many probabilistic settings, the sample space is partitioned into disjoint
events, and a value is assigned to each event. This value is called a random
variable. The “weighted” average of this value is called the expectation. By
“weighted” average, we mean that the values of the various events are weighted
by their probabilities.

More precisely, suppose there are n outcomes, with probabilities p1, . . . , pn.
A random variable is a value assigned to each of the n outcomes. If the random
variable is X, then X1, . . . , Xn are the values assigned to the n outcomes.

The expectation of X, written E(X), is defined by

E(X) = p1X1 + p2X2 + · · ·+ pnXn . (11.1)

239
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Outcome 0 Heads 1 Head 2 Heads

Value of Random Variable 0 1 2
Probability 1

4
1
2

1
4

Table 11.1: A random variable distribution

The expectation is a kind of average, if an experiment is run many times
with the same probability distribution. In any particular experiment you should
not expect to achieve the expectation.

For instance, if a fair coin is tossed twice, heads appears twice with proba-
bility 1/4, heads appears exactly once with probability 1/2, and heads appears
not at all with probability 1/4. So the expected number of heads in two tosses
of a fair coin is

0 · 1

4
+ 1 · 1

2
+ 2 · 1

4
= 1 .

When computing expectations, it is sometimes useful to write down a table
listing the outcomes, the value of the random variable, and the probabilities. In
the above example, the table would look something like Table 11.1.

Exercise 11.1.1. What is the expected number of heads you would toss in
three tosses of a fair coin? Do the calculation described in the example above.

Exercise 11.1.2. What do you think is the expected number of heads you
would toss in ten tosses of a fair coin? In n tosses?

Exercise 11.1.3. Do the calculation to compute the expected number of times
you would roll seven in two rolls of a pair of fair dice.

Exercise 11.1.4. What do you think is the expected number of times you
would roll seven in 60 rolls of a pair of fair dice? In 50 rolls? In n rolls?

Expectation is used to describe potential winnings and losings from games.
But it is also a tool to determine public policy regarding the use of scarce
resources and as a method for making business decisions.

Here is an example. In the game of roulette, a wheel has 37 equally spaced
slots, numbered 0 to 36. A player bets $1 on one of the numbers. This bet is
collected by the croupier (a person working for the casino). The wheel is spun
and a ball comes to rest in one of the slots. If the ball comes to rest in the
player’s slot, she wins 36 times her bet ($36). Otherwise, she loses her $1.

If we assume that each slot is equally likely, the probability that the ball
comes to rest in her slot is 1

37 . Her winnings will be $35, since she has paid $1 to
play the game. Thus the weighted average is 1

37 ·35+ 36
37 · (−1) or approximately

−0.027. Table 11.2 shows the outcomes and probabilities. The value of the
random variable is called the “payoff” in this table.

Alternatively, she will win 1
37 ·36 which is approximately 0.973 in an “average

game.” Since it costs her $1 to play, she loses approximately 1.00−0.973 = 0.027.
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Outcome Player’s slot Another slot

Payoff 35 −1
Probability 1

37
36
37

Table 11.2: Another random variable distribution

Outcome 2 3 4, then 7 4, then 4 · · ·
Payoff −1 −1 −1 +1 · · ·
Probability 1

36
2
36

1
18

1
36 · · ·

Table 11.3: Craps payoff distribution

Exercise 11.1.5. Our player may also bet on “red” or “black.” The numbers
1 to 36 are divided evenly between these two colors. Suppose our player bets on
“red.” If a “red” number turns up, she wins twice her bet. If a “black” number
or 0 turns up, she wins nothing. If she bets $1, what are her expected winnings?

Exercise 11.1.6. In an alternate version of the game in Exercise 11.1.5, “red”
and “black” payoff as before, but if 0 turns up, the wheel is spun until a “red”
or “black” number appears. If it is “black,” the player loses; if it is “red,” she
wins only her original bet back. Now what are her expected winnings?

In the game of craps, a pair of dice is tossed. If the shooter rolls 7 or 11, she
wins. If she rolls 2, 3 or 12, she loses. Otherwise, she continues to roll until she
rolls either 7 or she repeats her first roll. If it is a 7, she loses; if she repeats,
she wins. Let’s assume that if she wins, she wins $1, and if she loses, she loses
$1. The next three exercises refer to this game.

Let’s start by making up the distribution table, Table 11.3. This table is not
complete. We have not put all the possible outcomes in, nor have we computed
all the probabilities.

Exercise 11.1.7. List all the possible outcomes in the game of craps. That is,
complete the first row of Table 11.3.

How were the probabilities 1/18 and 1/36 under the outcomes “first 4, even-
tually 7” and “first 4, eventually 4” computed? The probability of rolling 4 is
3/36 = 1/12. Now the shooter continues to roll until either a 4 or a 7 comes up.
There are 3 ways a 4 can come up and there are 6 ways a 7 can come up. (See
Table 7.1 in Chapter 7.) Therefore there are 9 ways that will stop the shooter
from rolling. Since 3 of these 9 ways ends with rolling 4, the probability that
she eventually will roll 4 is 3/9 = 1/3. Since 6 of these 9 ways ends with rolling
7, the probability that she will eventually roll 7 is 6/9 = 2/3.

Of course, all this is conditioned on the event that the shooter first rolled 4, so
using the conditional probability formula (see Equation (7.6) in Chapter 7), the
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Matches Powerball Payoff
5 Yes Jackpot
5 No $100,000
4 Yes $5,000
4 No $100
3 Yes $100
3 No $7
2 Yes $7
1 Yes $4
0 Yes $3

Table 11.4: Powerball Payoff

probability that she rolls 4, then eventually rolls 4 again, is (1/12)(1/3) = 1/36,
while the probability that she rolls 4, then eventually rolls 7, is (1/12)(2/3) =
1/18.

Exercise 11.1.8. Complete Table 11.3 by filling in all outcomes, probabilities
and payoffs.

Exercise 11.1.9. Compute the expected winnings.

Powerball is a Minnesota State Lottery game. In this game, the player
picks five numbers from 1 to 49. Then she picks another number, called the
Powerball Number, from 1 to 42. It costs $1 to play the game. Winners are
determined when five numbers from 1 to 49 are selected at random and one
Powerball Number, from 1 to 42, is selected at random. Prizes are determined
by Table 11.4. The Jackpot is divided among the winning tickets.

So, for example, the probability that a player gets 3 balls correct and also
gets the powerball correct is (

5
3

)(
44
2

)(
49
5

) · 1

42
.

This is because there are
(

5
3

)
ways that 3 of the players 5 balls can be selected

and
(

44
2

)
ways that 2 of the 44 balls the player did not select can be picked. In

all there are
(

49
5

)
ways that 5 balls can be selected. Finally, the probability of

getting the powerball correct is 1/42.
The following three exercises ask you to analyze this game.

Exercise 11.1.10. Compute the probability of each prize.

Exercise 11.1.11. Compute the expected winnings, assuming the Jackpot is
$10,000,000 and assuming it is not divided among winning tickets.

Exercise 11.1.12. The Jackpot prize is paid out in yearly equal installments
over 20 years. The Jackpot builds up each week if there are no winners and
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is divided if there are several winners. Comment on how these considerations
affect the expected winnings.

Exercise 11.1.13. Suppose Congress must choose between spending $2,000,000
on enforcing certain airline safety regulations which would reduce airline fatal-
ities by 10%, or spending $50,000 on enforcing certain automobile safety reg-
ulations which would reduce traffic fatalities by 0.1%. Suppose the number of
airline fatalities per year is 200 and the number of automobile fatalities per year
is 43,500. What do you think they should do?

Suppose an experiment is repeated independently n times. Suppose each
experiment has probability of success p (and probability of failure q = 1 − p).
From expression 7.4 in Chapter 7, the probability of exactly k successes in the
n trials, pn,k, is

pn,k =

(
n

k

)
pkqn−k . (11.2)

Now we will find the expected number of successes for such an experiment. First,
let’s set up an appropriate random variable. LetX be the random variable which
gives the number of successes of the experiment. So the probability that X is k
is given by Equation (11.2). Therefore, by Equation (11.1), the expectation of
X is given by

E(X) = 0 ·
(
n

0

)
p0qn + 1 ·

(
n

1

)
p1qn−1 + 2 ·

(
n

2

)
p2qn−2 + · · ·+ n ·

(
n

n

)
pnq0

= 1 ·
(
n

1

)
p1qn−1 + 2 ·

(
n

2

)
p2qn−2 + · · ·+ n ·

(
n

n

)
pnq0 .

Exercise 11.1.14. What happened to the first term in this sum?

Exercise 11.1.15. Show the following three identities:

1 ·
(
n

1

)
= n ·

(
n− 1

0

)
2 ·
(
n

2

)
= n ·

(
n− 1

1

)
3 ·
(
n

3

)
= n ·

(
n− 1

2

)
.

Exercise 11.1.16. More generally, show:

k ·
(
n

k

)
= n ·

(
n− 1

k − 1

)
.

(This exercise is the same as Exercise 2.3.35 from Chapter 2.)
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Exercise 11.1.17. Now use Exercise 11.1.16 to show

E(X) = n ·
(
n− 1

0

)
p1qn−1 + n ·

(
n− 1

1

)
p2qn−2 + · · ·+ n ·

(
n− 1

n− 1

)
pnq0 .

Exercise 11.1.18. Explain each of the steps in the following sequence of equal-
ities:

E(X) = np

((
n− 1

0

)
p0qn−1 +

(
n− 1

1

)
p1qn−2 +

(
n− 1

2

)
p2qn−3

+ · · ·+
(
n− 1

n− 1

)
pn−1q0

)
= np(q + p)n−1

= np · 1 = np .

Hint: use the binomial theorem (Theorem 1).

Therefore, from Exercise 11.1.18 we have the following.

If X is the number of successes in n independent trials, where p is the
probability of success in any given trial, then

E(X) = np . (11.3)

11.2 Central Measures

The expectation measures the “center” of a predetermined probability distri-
bution. However, it is also important to find some measure of the “center”
of numerical data. One common measure is the average of the values. This
measure is called the mean.

Table 11.5 gives the test scores for two tests from a group of 30 students
who took a math course for elementary education students.

Exercise 11.2.1. Find the mean for each of the two test scores in Table 11.5.

Exercise 11.2.2. A simple calculation device for computing the mean is to add
up the product of the value and the frequency of that value, then divide by the
number of values. Did you use this method in Exercise 11.2.1? If not, do so
now.

We must be very careful when computing averages of averages. Here is an
example. Suppose the governors of two upper midwestern states M and W
peruse the average salaries of professors at their respective state universities.
Here is what they find:

State M State W
Full Professor $80,000 $72,000
Associate Professor $60,000 $54,000
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Student Test 1 Test 2 Student Test 1 Test 2
1 18 48 16 54 63
2 98 65 17 82 82
3 89 40 18 83 55
4 84 85 19 77 94
5 92 88 20 80 59
6 86 51 21 91 43
7 82 75 22 95 83
8 93 78 23 84 64
9 61 61 24 83 21
10 98 94 25 98 86
11 91 81 26 100 88
12 97 83 27 98 81
13 98 93 28 94 40
14 91 74 29 98 100
15 90 75 30 100 96

Table 11.5: Test Scores

The governor of state M says “State W pays 10% less than my state, we
should cut salaries.”

The governor of state W notes that his state’s average salary of all tenured
professors (full and associate) is $4,000 more than state M, He says “we need
to cut salaries.”

Exercise 11.2.3. Construct data which support both positions.

At this point, let’s introduce a very useful notation to express complicated
sums. This notation is

n∑
i=k

ai .

This is shorthand for

ak + ak+1 + ak+2 + · · ·+ an−1 + an .

The
∑

means “sum.” The letter i, called the summation index, takes on all
the integer values from k (indicated in the i = k part below the sum symbol) to
n (indicated by the n on top of the sum symbol). The values k and n are called
the summation limits or the lower summation limit and upper summation limit.
In the example above, we used i as the summation index, but any letter could
be used. The expression following the sum symbol is evaluated for each of the
values of the summation index and then the values are added.

Here are a few examples of the summation notation, with some practice
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exercises. A simple example:

4∑
i=1

2i2 = 2 · 1 + 2 · 4 + 2 · 9 + 2 · 16 = 60 .

If F (t) is given by

F (t) =

5∑
k=3

tk/2 ,

then
F (2) = 23/2 + 24/2 + 25/2 = 4 + 6

√
2

and
F (x2) = x3 + x4 + x5 .

Finally, if

G(k) =

k2∑
j=2

j

(
j

2

)
,

then

G(2) = 2

(
2

2

)
+ 3

(
3

2

)
+ 4

(
4

2

)
= 35 .

Exercise 11.2.4. Compute

5∑
l=2

(
2l − 1

l

)
.

Exercise 11.2.5. Compute

5∑
r=1

(−1)r
2r − 1

r + 1
.

Exercise 11.2.6. Let

f(t) =

t∑
j=0

(
2j

j

)2

.

Find f(3).

Exercise 11.2.7. Let

g(y) =

4∑
t=1

(−1)t
y − t
y2 + t

.

Find g(4) and g(x2).

Exercise 11.2.8. Let

F (s) =

s∑
r=1

r(s− r + 1)

r + 1
.

Find F (4).
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Here is a collection of examples of the use of this notation from equations
and expressions from earlier chapters. From Chapter 1, the formula for the
triangular numbers can be written

n∑
j=1

j = n(n+ 1)/2 =

(
n+ 1

2

)
,

since the symbol
n∑

j=1

j

is shorthand for 1 + 2 + 3 + · · ·+ n. Also from Chapter 1, recall the formula for
the sum of the first n terms of a geometric sequence:

r0 + r1 + · · ·+ rn−1 =
rn − 1

r − 1
, r 6= 1 . (11.4)

Exercise 11.2.9. Express the left-hand side of Equation (11.4) using the sum-
mation notation.

From this same chapter, the infinite sum of the geometric sequence of powers
of 1/2 is expressed by

∞∑
i=0

(1/2)i = 2 .

Notice that the upper summation limit is∞. This means we take the finite sum
with upper summation limit N , then let N get big.

From Chapter 2, the binomial theorem can be written

(x+ y)n =

n∑
k=0

(
n

k

)
xkyn−k .

Exercise 11.2.10. Use the summation notation for the left-hand side of the
equation which expresses the fact that the alternating sum of binomial coeffi-
cients is 0: (

n

0

)
−
(
n

1

)
+

(
n

2

)
− · · · ±

(
n

n

)
= 0 .

From Chapter 3, the Catalan recursion is

Cn = C0Cn−1 + C1Cn−2 + · · ·+ Cn−2C1 + Cn−1C0 . (11.5)

Exercise 11.2.11. Use the summation notation to express the right-hand side
of Equation (11.5).
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From Chapter 5, the base 10 representation of N is written

N =

n∑
i=0

di10i .

The base b representation is

N =

n∑
i=0

dib
i .

In this chapter, the computation of the mean of a binomially distributed
random variable, which was done in Section 11.1, can be done as follows:

E(X) =

n∑
k=0

k

(
n

k

)
pkqn−k

=

n∑
k=1

k

(
n

k

)
pkqn−k

=

n∑
k=1

n

(
n− 1

k − 1

)
pkqn−k

=

n∑
k=1

np

(
n− 1

k − 1

)
pk−1qn−k

= np

n∑
k=1

(
n− 1

k − 1

)
pk−1qn−k

= np

n−1∑
k=0

(
n− 1

k

)
pkqn−1−k

= np(q + p)n−1

= np · 1 = np .

Exercise 11.2.12. Explain each step in this calculation.

The summation notation is quite general. For instance, the “handshake
theorem” from Chapter 4 can be written∑

v∈G
d(v) = 2E .

In this example, the sum is “over” vertices in the graph G; the number being
summed is d(v), the degree of the vertex; and the result is twice the number of
edges.

The summation notation gives an easy way of writing the mean. If

x1, x2, . . . , xn
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are the values of the data and x̄ is their mean, then we could write

x̄ =
x1 + x2 + · · ·+ xn

n
.

Instead, we use the summation notation.

The mean of the set of numbers x1, x2, . . . , xn is given by

x̄ =
1

n

n∑
i=1

xi , (11.6)

Exercise 11.2.13. Work through Exercise 11.2.1 again, using Equation (11.6)
for x̄, explaining what n and xi are.

Returning to our discussion of the mean, a disadvantage of the mean as a
central measure is that a small number of exceptionally large or exceptionally
small values can skew the mean so that it does not convey the true notion of
centrality. Some examples of the type of data for which this happens are salaries
and test scores.

Another central measure which compensates for this effect is the median.
The median is the “middle” value of the list of numbers. That is, first order the
list of number. If the list has odd length, the median is the middle number. If
the list has even length, the median is the mean of the two middle numbers.

Exercise 11.2.14. Find the medians for the two test scores above.

Exercise 11.2.15. If there are a few exceptionally large values and many small
values, will the median be larger than, equal to or less than the mean? Explain.

11.3 Measures of the Spread

Here are two sets of data: (4, 4, 4, 3, 5, 4) and (0, 8, 10, 4, 1, 1).

Exercise 11.3.1. Verify that the means of these two sets are equal.

The mean reduces a collection of numbers to a single number. In doing so,
much information is lost. In the above example, the first group of numbers are
bunched together. The second group is spread out.

Exercise 11.3.2. One thousand engineering students took a standard test.
The average score was 71.3 out of 100. One thousand left-handed engineering
students took the same test and scored 74.5 out of 100. Comment on the
assertion: “Left-handed engineering students will usually score higher on this
test than right-handed engineering students.”

To recover some of the information lost when we computed the mean, we
try to find a number to measure the “spread,” i.e., how far from the mean the
numbers are. One such measure might be to average the absolute value of the
differences between the mean and the numbers.
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Exercise 11.3.3. Do this for the two sets of data above. Why do we average
the absolute values and not the differences themselves?

While this is a simple and natural measure of the spread, it is not what is
typically used. Instead we use a slightly more complicated number. Why we
use this number instead will be explained in the next section.

Instead of averaging the absolute values of the differences, we average the
square of the differences between the mean and the numbers. Then we take the
square root. The resulting number is called the standard deviation. As we shall
see, it is an important number, almost as important as the mean or the median.

Exercise 11.3.4. Calculate the standard deviation for the two sets of data
above.

Again, the summation notation gives a shorthand way of writing the stan-
dard deviation. Using the notation in Section 11.2 and letting the Greek letter
σ be the standard deviation, we have the following.

The standard deviation of the set of data x1, x2, . . . , xn with mean x̄ is

σ =

√∑n
i=1(xi − x̄)2

n
. (11.7)

Exercise 11.3.5. Demonstrate the use of Equation (11.7) on the two sets of
data at the start of this section.

Suppose we square the data from the second set at the start of this section.
We get (0, 64, 100, 16, 1, 1). Now let’s average this group of numbers. We get
30.33 · · · . This is the mean of the squares. Now let’s compute the square of the
mean. That is 16. The difference is 14.33 · · · , which is σ2.

Exercise 11.3.6. Repeat this calculation for the other set of data at the start
of this section.

Exercise 11.3.7. Explain why this method of calculating σ works. That is,
use Equation (11.7) to show

σ2 =
1

n

n∑
i=1

x2
i − x̄2 .

The method of calculating σ just described can be written in an especially
elegant way.

If x2 is the mean of the squares, then

σ2 = x2 − x̄2 . (11.8)

That is, the square of the standard deviation is the difference of the mean
of the squares and the square of the mean.
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Exercise 11.3.8. Use Equation (11.8) to calculate the standard deviation for
the two sets of test scores in Table 11.5.

11.4 The Central Limit Theorem

The central limit theorem (actually, it’s a collection of theorems) simply says
that in a wide variety of common situations, numerical data tend to be dis-
tributed in a bell-shaped curve called a normal distribution. Such random vari-
ables are said to be normally distributed. For example, suppose we graph the
probability of rolling some number of 7’s in fifty rolls of a pair of fair dice. The
x-axis will be the number of 7’s rolled in 50 rolls; the y-axis the probability of
that many 7’s. This graph is drawn in Figure 11.1.
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0.175

0.2

Figure 11.1: Fifty Dice Rolls

Exercise 11.4.1. What is the sum of the probabilities of the 51 different out-
comes?

The normal distribution curve is the function

f(x) =
1√
2π
e−x

2/2 .

Notice that this amazing function contains both of the famous mathematical
constants e and π! Even before trying to draw this function, we can say a lot
about it.
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Exercise 11.4.2. What is f(0)? Can f(x) ever be negative? What happens
to f(x) when x grows very large? Show that f(x) = f(−x).

Also, the total area between this curve and the x-axis is one.

Exercise 11.4.3. If you have a graphing calculator, graph this function.

The graph of f(x) is shown in Figure 11.2. Except for some rescaling and
coordinate shifting, it is roughly the same curve as the probability distribution
of rolling 7’s.

-4 -2 2 4

0.1

0.2

0.3

0.4

Figure 11.2: Normal Distribution

In fact, a distribution that is normally distributed has the property that
one standard deviation becomes one unit of the normal curve in the following
sense: the proportion of the area below the distribution curve, above the x-
axis, and between the mean and one standard deviation away from the mean
is approximately the same as the area between x = 0 and x = 1 in the normal
curve. We thus say that the normal curve has mean 0 and standard deviation
1.

This relationship is important because the normal curve is very well under-
stood. The total area between the normal curve and the x-axis is 1. Since this
curve is symmetric about the y-axis, the area between the normal curve and the
x-axis and to the right (or to the left) of the y-axis is 1/2. Suppose we draw
a vertical line some distance z along the x-axis. Let A(z) be the area under
the curve between the y-axis (the mean) and the line x = z. This is shown in
Figure 11.3.
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Figure 11.3: Area Under Normal Curve

Table 11.6 gives A(z) for different values of z. Notice that A(z) represents
the area under the normal curve to the right of the y-axis. Then the symmetry
of the normal curve implies that 2A(z) would represent the area under the curve
and within z standard deviation units of the mean. Furthermore, for z above
the mean, 1/2 + A(z) would represent the area under the curve and below z
standard deviation units. The following three exercises illustrate these points.

Exercise 11.4.4. Suppose 25% of the area under the curve lies between the
mean and z standard deviation units above the mean. What is z?

Exercise 11.4.5. Now suppose 95% of the area under the normal curve lies
within z standard deviation units of the mean. What is z? What is z for 90%?

Exercise 11.4.6. Suppose 95% of the area under the normal curve lies below
z standard deviation units above the mean. What is z? What is z for 90%?

Translating a normal distribution to the normal curve is similar to converting
from Fahrenheit to Celsius. First compute how far from the mean a particular
value is. Then determine how many standard deviations this is by dividing this
distance by the standard deviation.

For example, suppose the mean for a particular test is 76 and the standard
deviation is 7 and suppose we assume the scores are normally distributed. Let’s
try to approximate the number of scores 90 and above.

First, take 89.5 − 76 = 13.5 and divide by 7 to get about 1.9. This is the
number of standard deviation units that 89.5 is away from the mean. From
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z A(z) z A(z) z A(z) z A(z) z A(z) z A(z) z A(z)

0.00 0.0000
0.01 0.0040 0.31 0.1217 0.61 0.2291 0.91 0.3186 1.21 0.3869 1.51 0.4345 1.81 0.4649
0.02 0.0080 0.32 0.1255 0.62 0.2324 0.92 0.3212 1.22 0.3888 1.52 0.4357 1.82 0.4656
0.03 0.0120 0.33 0.1293 0.63 0.2357 0.93 0.3238 1.23 0.3907 1.53 0.4370 1.83 0.4664
0.04 0.0160 0.34 0.1331 0.64 0.2389 0.94 0.3264 1.24 0.3925 1.54 0.4382 1.84 0.4671
0.05 0.0199 0.35 0.1368 0.65 0.2422 0.95 0.3289 1.25 0.3943 1.55 0.4394 1.85 0.4678
0.06 0.0239 0.36 0.1406 0.66 0.2454 0.96 0.3315 1.26 0.3962 1.56 0.4406 1.86 0.4686
0.07 0.0279 0.37 0.1443 0.67 0.2486 0.97 0.3340 1.27 0.3980 1.57 0.4418 1.87 0.4693
0.08 0.0319 0.38 0.1480 0.68 0.2517 0.98 0.3365 1.28 0.3997 1.58 0.4429 1.88 0.4699
0.09 0.0359 0.39 0.1517 0.69 0.2549 0.99 0.3389 1.29 0.4015 1.59 0.4441 1.89 0.4706
0.10 0.0398 0.40 0.1554 0.70 0.2580 1.00 0.3413 1.30 0.4032 1.60 0.4452 1.90 0.4713
0.11 0.0438 0.41 0.1591 0.71 0.2611 1.01 0.3438 1.31 0.4049 1.61 0.4463 1.91 0.4719
0.12 0.0478 0.42 0.1628 0.72 0.2642 1.02 0.3461 1.32 0.4066 1.62 0.4474 1.92 0.4726
0.13 0.0517 0.43 0.1664 0.73 0.2673 1.03 0.3485 1.33 0.4082 1.63 0.4484 1.93 0.4732
0.14 0.0557 0.44 0.1700 0.74 0.2703 1.04 0.3508 1.34 0.4099 1.64 0.4495 1.94 0.4738
0.15 0.0596 0.45 0.1736 0.75 0.2734 1.05 0.3531 1.35 0.4115 1.65 0.4505 1.95 0.4744
0.16 0.0636 0.46 0.1772 0.76 0.2764 1.06 0.3554 1.36 0.4131 1.66 0.4515 1.96 0.4750
0.17 0.0675 0.47 0.1808 0.77 0.2793 1.07 0.3577 1.37 0.4147 1.67 0.4525 1.97 0.4756
0.18 0.0714 0.48 0.1844 0.78 0.2823 1.08 0.3599 1.38 0.4162 1.68 0.4535 1.98 0.4761
0.19 0.0753 0.49 0.1879 0.79 0.2852 1.09 0.3621 1.39 0.4177 1.69 0.4545 1.99 0.4767
0.20 0.0793 0.50 0.1915 0.80 0.2881 1.10 0.3643 1.40 0.4192 1.70 0.4554 2.00 0.4773
0.21 0.0832 0.51 0.1950 0.81 0.2910 1.11 0.3665 1.41 0.4207 1.71 0.4564 2.01 0.4778
0.22 0.0871 0.52 0.1985 0.82 0.2939 1.12 0.3686 1.42 0.4222 1.72 0.4573 2.02 0.4783
0.23 0.0910 0.53 0.2019 0.83 0.2967 1.13 0.3708 1.43 0.4236 1.73 0.4582 2.03 0.4788
0.24 0.0948 0.54 0.2054 0.84 0.2995 1.14 0.3729 1.44 0.4251 1.74 0.4591 2.04 0.4793
0.25 0.0987 0.55 0.2088 0.85 0.3023 1.15 0.3749 1.45 0.4265 1.75 0.4599 2.05 0.4798
0.26 0.1026 0.56 0.2123 0.86 0.3051 1.16 0.3770 1.46 0.4279 1.76 0.4608 2.06 0.4803
0.27 0.1064 0.57 0.2157 0.87 0.3079 1.17 0.3790 1.47 0.4292 1.77 0.4616 2.07 0.4808
0.28 0.1103 0.58 0.2190 0.88 0.3106 1.18 0.3810 1.48 0.4306 1.78 0.4625 2.08 0.4812
0.29 0.1141 0.59 0.2224 0.89 0.3133 1.19 0.3830 1.49 0.4319 1.79 0.4633 2.09 0.4817
0.30 0.1179 0.60 0.2257 0.90 0.3159 1.20 0.3849 1.50 0.4332 1.80 0.4641 2.10 0.4821

z A(z) z A(z) z A(z) z A(z) z A(z) z A(z) z A(z)

2.11 0.4826 2.41 0.4920 2.71 0.49664 3.01 0.49869 3.31 0.499534 3.61 0.499847 3.91 0.499954
2.12 0.4830 2.42 0.4922 2.72 0.49674 3.02 0.49874 3.32 0.499550 3.62 0.499853 3.92 0.499956
2.13 0.4834 2.43 0.4925 2.73 0.49683 3.03 0.49878 3.33 0.499566 3.63 0.499858 3.93 0.499958
2.14 0.4838 2.44 0.4927 2.74 0.49693 3.04 0.49882 3.34 0.499581 3.64 0.499864 3.94 0.499959
2.15 0.4842 2.45 0.4929 2.75 0.49702 3.05 0.49886 3.35 0.499596 3.65 0.499869 3.95 0.499961
2.16 0.4846 2.46 0.4931 2.76 0.49711 3.06 0.49889 3.36 0.499610 3.66 0.499874 3.96 0.499963
2.17 0.4850 2.47 0.4932 2.77 0.49720 3.07 0.49893 3.37 0.499624 3.67 0.499879 3.97 0.499964
2.18 0.4854 2.48 0.4934 2.78 0.49728 3.08 0.49896 3.38 0.499638 3.68 0.499883 3.98 0.499966
2.19 0.4857 2.49 0.4936 2.79 0.49737 3.09 0.49900 3.39 0.499651 3.69 0.499888 3.99 0.499967
2.20 0.4861 2.50 0.4938 2.80 0.49745 3.10 0.49903 3.40 0.499663 3.70 0.499892 4.00 0.499968
2.21 0.4864 2.51 0.4940 2.81 0.49752 3.11 0.49906 3.41 0.499675 3.71 0.499896
2.22 0.4868 2.52 0.4941 2.82 0.49760 3.12 0.49910 3.42 0.499687 3.72 0.499900
2.23 0.4871 2.53 0.4943 2.83 0.49767 3.13 0.49913 3.43 0.499698 3.73 0.499904
2.24 0.4875 2.54 0.4945 2.84 0.49774 3.14 0.49916 3.44 0.499709 3.74 0.499908
2.25 0.4878 2.55 0.4946 2.85 0.49781 3.15 0.49918 3.45 0.499720 3.75 0.499912
2.26 0.4881 2.56 0.4948 2.86 0.49788 3.16 0.49921 3.46 0.499730 3.76 0.499915
2.27 0.4884 2.57 0.4949 2.87 0.49795 3.17 0.49924 3.47 0.499740 3.77 0.499918
2.28 0.4887 2.58 0.4951 2.88 0.49801 3.18 0.49926 3.48 0.499749 3.78 0.499922
2.29 0.4890 2.59 0.4952 2.89 0.49807 3.19 0.49929 3.49 0.499758 3.79 0.499925
2.30 0.4893 2.60 0.49534 2.90 0.49813 3.20 0.49931 3.50 0.499767 3.80 0.499928
2.31 0.4896 2.61 0.49547 2.91 0.49819 3.21 0.49934 3.51 0.499776 3.81 0.499931
2.32 0.4898 2.62 0.49560 2.92 0.49825 3.22 0.49936 3.52 0.499784 3.82 0.499933
2.33 0.4901 2.63 0.49573 2.93 0.49830 3.23 0.49938 3.53 0.499792 3.83 0.499936
2.34 0.4904 2.64 0.49585 2.94 0.49836 3.24 0.49940 3.54 0.499800 3.84 0.499938
2.35 0.4906 2.65 0.49597 2.95 0.49841 3.25 0.49942 3.55 0.499807 3.85 0.499941
2.36 0.4909 2.66 0.49609 2.96 0.49846 3.26 0.49944 3.56 0.499815 3.86 0.499943
2.37 0.4911 2.67 0.49621 2.97 0.49851 3.27 0.49946 3.57 0.499822 3.87 0.499946
2.38 0.4913 2.68 0.49632 2.98 0.49856 3.28 0.49948 3.58 0.499828 3.88 0.499948
2.39 0.4916 2.69 0.49643 2.99 0.49861 3.29 0.49950 3.59 0.499835 3.89 0.499950
2.40 0.4918 2.70 0.49653 3.00 0.49865 3.30 0.499517 3.60 0.499841 3.90 0.499952

Table 11.6: Values of A(z)
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Table 11.6 note that if z = 1.9, then A(z) = 0.4713. Thus, approximately 3% of
the area under the normal curve is greater than z = 1.9, and so approximately
3% of the scores will be 90 or above.

Exercise 11.4.7. Why do you think 89.5 was used in the above calculation
instead of 90?

Exercise 11.4.8. For the same test, about what percentage of the scores will
be 80 or above?

Exercise 11.4.9. The average height of a U. S. female is 66 inches and the
standard deviation is 4 inches. Assuming height is normally distributed, find
the height which 95% of the females exceed.

Exercise 11.4.10. Using the information from the previous exercise, estimate
the percentage of the females who are shorter than 6 feet tall.

Exercise 11.4.11. Again using the height statistics for U. S. females, estimate
the percentage of females between 5 feet and 6 feet tall.

Math and statistics books use various notations for the number of standard
deviation units away from the mean which corresponds to a particular outcome
in a normally distributed experiment. We will simply say “standard deviations.”

11.5 Applying the Central Limit Theorem

Let’s work through the calculations involved in three applications of the central
limit theorem. However, before we can do these examples, we need to know
what the standard deviation is for the binomial distribution of Section 7.3.
Fortunately, there is a well-known formula for this standard deviation. While
the derivation of this formula takes us somewhat far afield, we can outline the
steps. First, compute the mean. This will be the expected number of successes,
and this calculation was done in Exercise 11.1.18. This mean is np, where n is
the number of trials and p is the probability of success in each trial.

Next compute the mean of the squares. This requires more work. It is
p2n(n− 1) + np.

Exercise 11.5.1. Use Equation (11.8) to show the following.

The standard deviation for a sequence of n independent trials with prob-
ability of success p is

σ =
√
npq , (11.9)

where q = 1− p.

For our first example, let’s estimate the probability that if a pair of fair dice
are tossed 180 times, 30 of the tosses will be sevens. If p denotes the probability
of tossing seven, then p = 1

6 , q = 5
6 and n = 180.
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Exercise 11.5.2. Find the mean x̄ and the standard deviation σ for this ex-
periment.

The area under the normal curve that approximates the probability of rolling
30 sevens is the area between the values which correspond to 29.5 and 30.5.

To compute this area, we convert 30.5 to standard deviations.

Exercise 11.5.3. Show that 30.5 is 0.1 standard deviations above the mean.
Similarly, show that 29.5 is 0.1 standard deviations below the mean.

Exercise 11.5.4. Use Table 11.6 to find the area under the normal curve be-
tween x = −0.1 and x = +0.1.

Exercise 11.5.5. Use a calculator to compute the probability of rolling 30
sevens exactly. Use the formula in Exercise 7.3.7.

Exercise 11.5.6. Use Table 11.6 to estimate the probability of rolling 40 or
more sevens in the 180 tosses.

We all know that airlines regularly overbook flights. The reason they give
is that they can fill empty seats left by “no-shows.” Let’s see what kind of
calculation an airline might use to determine how many reservations to take.

Suppose a particular flight can carry 250 passengers. Suppose the airline
has historical data which show that any one passenger who has booked that
flight will actually take the flight with probability 0.9. How many seats can the
airline book and not have to “bump” passengers 80% of the time? Figure 11.4
describes the situation

Before we can solve this, we first find the mean and the standard deviation
as a function of the number of bookings. We assume that each passenger is
an “independent trial” in an experiment, where success means the passenger
takes the flight, and failure means the passenger is a no-show. We assume the
binomial model applies.

Exercise 11.5.7. Use Exercise 11.1.18 to find the mean, x̄, as a function of n,
the number of passengers booked.

Exercise 11.5.8. Use Equation (11.9) to find the standard deviation, σ, as a
function of n, the number of passengers booked.

Now that we know the mean and the standard deviation, we next find out the
number of standard deviations above the mean such that 80% of the outcomes
are smaller.

Exercise 11.5.9. Use Table 11.6 to find z so that 80% of the outcomes are
smaller than z.

Exercise 11.5.10. Using the solutions above for x̄, z and σ, find n by solving
the equation x̄ + zσ = 250. Explain why the solution to this equation is the n
we seek.
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Figure 11.4: Airline Booking

Exercise 11.5.11. Suppose a flight carries 150 passengers. Suppose the prob-
ability that someone who buys a ticket actually takes the flight is 0.95. How
many seats must be sold in order to avoid “bumping” 75% of the time?

Suppose that in a certain Minnesota lake, there are N walleyes. Suppose
that 500 of these have been marked and returned to the lake. Later, a sample
of 400 walleyes is collected and it is noted that 35 of these are marked.

Exercise 11.5.12. If the number of marked fish in the sample is in the same
proportion as the number of marked fish in the lake, how many fish would be
in the lake?

Let’s call the number you obtained in Exercise 11.5.12 the standard estimate.
It is very unlikely that the number of fish in the lake is exactly the standard
estimate. We would like to “bracket” the standard estimate with upper and
lower bounds, so that we know with some certainty that the number of fish in
the lake is between our two bounds.

Once again, we need to know the mean and the standard deviation. First,
we assume that our sample of 400 walleyes is 400 independent trials. This is
not precisely correct, since this is probably sampling without replacement. But
if the total number of fish is large, it is approximately correct. Second, we know
that the probability of choosing a marked fish is 500

N . Thus, the mean is 400· 500
N .

For the standard deviation, we can simplify calculations quite a bit by ap-

proximating the probability. If p = q = 1
2 , then σ =

√
npq =

√
400 · 1

2 ·
1
2 = 10.
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All other values of p and q give smaller σ, so if we approximate σ with 10, we
will get a more conservative estimate of the number of fish.

Now that we have the mean and the standard deviation, we find out how
many standard deviations on either side of the mean we must take to have a
large percentage of the outcomes occur within that range. Let’s make that large
percentage equal to 95%. Figure 11.5 describes the situation.

x
_

95%

z σ z σ

Figure 11.5: Fish in Lake

Exercise 11.5.13. Use Table 11.6 to find z such that 95% of the outcomes are
between −z and +z.

Since the mean is 400 · 500
N , it is 95% certain that the number N will be such

that

400 · 500

N
− zσ ≤ 35 ≤ 400 · 500

N
+ zσ . (11.10)

Exercise 11.5.14. Use Inequalities (11.10) and the approximation σ = 10 to
find upper and lower bounds on the number of walleyes in the lake.

Exercise 11.5.15. Our estimate used the approximation of p = q = 1
2 in the

calculation of σ. Improve the estimate by using p = 500
N and q = N−500

N . Solving
Inequalities (11.10) will now require solving quadratic equations.

You should note that the standard estimate lies between the two bounds
obtained in either of the previous two exercises.
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Exercise 11.5.16. Suppose only 100 fish have been marked, then a sample of
64 is taken and 10 in the sample are marked. Now estimate the number of fish in
the lake with 95% confidence, assuming the sampling is done with replacement
and approximating σ by letting p = q = 1

2 .

11.6 Odds

Probabilities are often stated in popular media as odds. The odds in favor of
an event is the ratio of the probability of the event to the probability of the
complement of the event. For instance, the probability of rolling seven with a
pair of dice is 1/6. The odds in favor of rolling a seven would be the ratio 1/6
to 5/6 or

1/6

5/6
=

1

5
.

Sometimes we write this as 1 : 5 or 1 to 5.
The odds against an event turns the ratio around: it is the ratio of the

probability of the complement to the probability of the event. In the dice
example above, the odds against rolling seven are 5 to 1.

To convert odds to probabilities is quite easy. If the odds against the Twins
winning the World Series this year are 150 to 1, that means the probability of
the Twins winning the World Series is 1

150+1 . If the odds against were 3 to 2,

then the probability would be 2
3+2 .

Gambling odds are usually written as odds against (even though they are
described, confusingly, as odds for). For example, at a racetrack, the odds listed
on the tote board are the odds against each horse. These odds, of course, are
not true probabilities. In fact, the sum of the corresponding probabilities will
not even be one. Instead, these odds are a description of the payoff. A horse
listed at 3 to 2 will pay $5 back on a $2 ticket if it wins.

Exercise 11.6.1. Suppose three horses are in a race, with odds listed as even
(1 to 1), 3 to 1 and 2 to 1. Find the probability associated with each of these
odds. What is the sum of these probabilities.

Exercise 11.6.2. Explain why the sum of the probabilities associated with the
odds for a sporting event must add to a number greater than one.

Table 11.7 lists the “odds” that a newspaper assigned to possible Oscar
winners.

Exercise 11.6.3. Compute the probabilities for each Oscar candidate.

Exercise 11.6.4. Suppose the newspaper accepted bets based on the odds
in Table 11.7. In which categories is it possible to formulate a series of bets
which will guarantee that you will win money? Pick one of these categories and
formulate such a series of bets.
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Picture Director Actor Actress Supp. Actor Supp. Actress
FG RZ TH JL ML DW

7 to 5 7 to 5 3 to 1 2 to 1 2 to 1 3 to 1
PF QT PN JF SLJ UT

3 to 1 3 to 1 4 to 1 3 to 1 3 to 1 4 to 1
QS RR JT WR PS HM

6 to 1 6 to 1 5 to 1 4 to 1 5 to 1 8 to 1
TSR WA MF SS CP RH
8 to 1 10 to 1 8 to 1 5 to 1 6 to 1 8 to 1

FWAAF KK NH MR GS JT
12 to 1 15 to 1 15 to 1 8 to 1 8 to 1 9 to 1

Table 11.7: Oscar Handicapping



Chapter 12

Finite Fields

In this chapter we describe one of the applications of finite fields. We will also
learn how to construct finite fields.

12.1 A Review of Modular Arithmetic

In Chapter 6 we learned about finite number systems called modular arithmetic.
Let’s review a few of the ideas from that chapter. We start with the definition:
for integers A and B and integer m ≥ 2,

A ≡ B mod m

means m divides B −A. For example, 23 ≡ 8 mod 5, −4 ≡ 26 mod 6, etc.

Exercise 12.1.1. Is 19 ≡ 5 mod 7? Is 19 ≡ 5 mod 5?

Exercise 12.1.2. Describe all the integers which are ≡ 1 mod 2.

We can then do arithmetic mod m by doing usual integer arithmetic and
“reducing” mod m at various stages. It usually doesn’t matter when we do the
reduction. We can wait until after all our calculations are completed, or we
can reduce after each calculation. “Reduction” amounts to dividing by m and
taking the remainder.

For example, to compute 9 · (13 · (7 + 19)− 26 · (4− 13)) in mod 5, we can
first reduce mod 5 to 4 · (3 · (2 + 4)− 1 · (4− 3)), then simplify to

4 · (3 · 1− 1 · 1) = 4 · (3− 1) = 4 · 2 = 8,

which reduces to 3 in mod 5. Or we could compute

9 · (13 · (7 + 19)− 26 · (4− 13)) = 5148,

and then reduce to 3.

261
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Exercise 12.1.3. Find an integer x such that

12 · (19− 5) + 362 ≡ x mod 7.

Exercise 12.1.4. Find an integer x such that

18 · 274 − 315 ≡ x mod 6.

Sometimes we use the fact that m− 1 ≡ −1 mod m.

Exercise 12.1.5. Compute (42− 17)50 in mod 13.

Notice that in the above examples, we avoided division. We saw in Chapter 6
that division in modular arithmetic is problematic. For instance, what is 2/4
in mod 6? Is it 2 (since 2 · 4 ≡ 2 mod 6)? Or is it 5 (since 5 · 4 ≡ 2 mod 6)?
Or what is 1/4 in mod 6? No integer when multiplied by 4, then divided by 6,
gives a remainder of 1.

We found in Chapter 6 that modular arithmetic was a field (that is, had a
well-defined division) if and only if the modulus was prime (see Exercise 6.3.12).
For this reason, we will stick to prime modulus for much of the remainder of
this chapter.

Also in Chapter 6 we introduced solving linear equations and linear sys-
tems. These solutions usually involved finding multiplicative inverses. For small
modulus, this can be done by trial and error (although a general method was
described in Chapter 6).

Exercise 12.1.6. Find the multiplicative inverse of 3 in mod 11. Find the
multiplicative inverse of 4 in mod 7.

Exercise 12.1.7. Solve: 3x+ 5 ≡ 4 mod 11.

Exercise 12.1.8. Solve the system

3x+ 5y ≡ 4 mod 11

2x+ 8y ≡ 6 mod 11.

Finally, we related planar Cartesian geometry with a kind of finite geometry
based on modular arithmetic. For instance, a “point” is just a pair (a, b) where
a and b are numbers in our arithmetic system. For example, for mod 7 there
are 7 · 7 points since there are 7 choices for a and 7 choices for b.

Exercise 12.1.9. How many points are there in mod p arithmetic?

To count lines, note that there are two kinds of lines: lines of the form

y = mx+ b,
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where m and b are chosen from the number system, and lines of the form

x = a,

where a is chosen from the number system. The second kind correspond to
vertical lines in our usual Cartesian system.

For example, for mod 7, there are 7 · 7 lines of the first kind (7 choices for
m and 7 choices for b) and there are 7 lines of the second kind (7 choices for a).

Exercise 12.1.10. How many lines are there in arithmetic mod p?

Exercise 12.1.11. How many points lie on the line y ≡ 4x+ 7 mod 11?

Exercise 12.1.12. If m and b are fixed, how many points lie on the line y ≡
mx+ b mod p?

Exercise 12.1.13. If a is fixed, how many points lie on the line x ≡ a mod p?

Exercise 12.1.14. How many lines pass through the point (6, 3) in mod 7
arithmetic?

Exercise 12.1.15. How many lines pass through the point (r, s) in mod p
arithmetic?

Exercise 12.1.16. Find all the lines which pass through the points (6, 3) and
(5, 5) in mod 7 arithmetic.

Exercise 12.1.17. If p is prime, how many lines pass through two points in
mod p arithmetic?

12.2 A Tournament

Nine students are finalists in a school’s spelling contest. These nine students
are:

Allison Bernard Christine
Debbie Edward Frank
Georgia Heather Isaac

You have been given the job of organizing a tournament among these nine
students. You have decided to choose them three at a time and have a small
contest among those three. If you arrange them in three groups of three, each
finalist would participate in one such contest. For instance, the three contests
might be given in Table 12.1.

Notice that while Allison competes against Bernie and Chris, she does not
compete against Deb or Ed or any of the other six students.

On the other hand, if you ran contests among every group of three students,
you would have to run

(
9
3

)
= 84 separate contests.

You decide to find some middle ground—some set of contests in which the
following three conditions are satisfied:
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Contest 1 Contest 2 Contest 3
Allison Deb Georgia
Bernie Ed Heather
Chris Frank Isaac

Table 12.1: Three Contests

i. Every student participates the same number of times;

ii. Every contest is among three students;

iii. Every pair of students is in the same number of contests.

In the example of three groups of three above, condition (i) condition (ii)
are satisfied, but not condition (iii). If every group of three students is used, all
three conditions are satisfied.

Exercise 12.2.1. If every group of three students is used, find the number of
contests each student is in.

Each contest contains
(

3
2

)
= 3 pairs of students and there are 84 contests,

so there are 3 · 84 = 252 student-pairs appearing in the contests. On the other
hand, there are

(
9
2

)
= 36 pairs of students. Therefore, each pair of students

must appear in 252/36 = 7 contests. Variations of this argument will be used
several times below.

More generally, let C stand for the number of contests. Since each contest
has 3 participants, there will be 3C names written down in the table of contests
and participants. On the other hand there are 9 different names.

Exercise 12.2.2. Show that the number of contests that each student partici-
pates in is C/3. Use this to explain why you shouldn’t run ten contests.

Exercise 12.2.3. Show that every pair of students will be in C/12 contests.

Therefore, you decide to arrange twelve contests, each among three students,
so that each student is in four contests and every pair of students is in one contest
together. These contests are described in Table 12.2.

Exercise 12.2.4. Verify that in these contests, every student is in four contests
and every pair of students is in one contest.

Is there a more “mathematical” construction of these contests, one that does
not rely on trial and error? You may have noticed already the similarity between
the preceding exercises and our enumeration of points, lines, points on a line
and lines through a point in Section 12.1.
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Contest 1 Contest 2 Contest 3 Contest 4
Allison Deb Georgia Allison
Bernie Ed Heather Deb
Chris Frank Isaac Georgia

Contest 5 Contest 6 Contest 7 Contest 8
Bernie Chris Allison Bernie
Ed Frank Ed Frank
Heather Isaac Isaac Georgia

Contest 9 Contest 10 Contest 11 Contest 12
Chris Allison Bernie Chris
Deb Frank Deb Ed
Heather Heather Isaac Georgia

Table 12.2: Twelve Contests

Student corresponds to point
Allison (0, 0)
Bernie (0, 1)
Chris (0, 2)
Deb (1, 0)
Ed (1, 1)
Frank (1, 2)
Georgia (2, 0)
Heather (2, 1)
Isaac (2, 2)

Table 12.3: Points-to-Students

If we use mod 3 arithmetic, then we know that the plane has nine points
and each line on the plane contains three points. There are a total of twelve
lines. Furthermore, every pair of points determines one line.

Therefore, the finite geometry of mod 3 arithmetic provides the precise mech-
anism for constructing our tournament! The nine points correspond to the nine
students; the twelve lines correspond to the twelve contests. Since each line
contains three points, each contest will have three students. Each point is on
four different lines, so each student will be in four contests. Two points are on
exactly one line, so every pair of students will be in exactly one contest.

Here is the precise translation. The points are given in Table 12.3.

And the lines are are given in Table 12.4.

Exercise 12.2.5. Construct a tournament with 25 participants and 30 “con-
tests” among five players, so that each player is in 6 contests and each pair of
players is in one contest. Base your construction on mod 5 arithmetic.
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Line equation: which contains corresponding to
Line 1 x = 0 (0, 0) (0, 1) (0, 2) A B C
Line 2 x = 1 (1, 0) (1, 1) (1, 2) D E F
Line 3 x = 2 (2, 0) (2, 1) (2, 2) G H I
Line 4 y = 0 (0, 0) (1, 0) (2, 0) A D G
Line 5 y = 1 (0, 1) (1, 1) (2, 1) B E H
Line 6 y = 2 (0, 2) (1, 2) (2, 2) C F I
Line 7 y = x (0, 0) (1, 1) (2, 2) A E I
Line 8 y = x+ 1 (0, 1) (1, 2) (2, 0) B F G
Line 9 y = x+ 2 (0, 2) (1, 0) (2, 1) C D H
Line 10 y = 2x (0, 0) (1, 2) (2, 1) A F H
Line 11 y = 2x+ 1 (0, 1) (1, 0) (2, 2) B D I
Line 12 y = 2x+ 2 (0, 2) (1, 1) (2, 0) C E G

Table 12.4: Lines-to-Contests

Exercise 12.2.6. Try constructing a tournament with 16 participants and 20
“contests” among four players, so that each player is in five contests and each
pair of players is in one contest, basing your construction on mod 4 arithmetic.
What goes wrong?

12.3 A Field with Four Elements

In this section we will construct a finite field with four elements. This field
cannot be arithmetic mod 4 because the number 2 in mod 4 does not have a
multiplicative inverse.

This missing multiplicative inverse was the defect you found in Exercise 12.2.6
above. Therefore, if we wish to construct the tournament described in Exer-
cise 12.2.6, we will have to go about it in a different way.

Let’s start by giving names to the four elements in this field. Let’s call them
0, 1, a and b. We know the field must have additive and multiplicative identities.
Those are 0 and 1 respectively. We must now describe how to do arithmetic in
this field. We do this by constructing addition and multiplication tables.

The partial construction of the addition table is given in Table 12.5. The
entries that have been filled in are the values we know from the additive identity
axiom.

The partial construction of the multiplication table is given in Table 12.6.
The entries that have been filled in are the values we know from the multiplica-
tive identity axiom and from the fact that 0 · x = 0 in every field.

Uniqueness of the additive inverse tells us that each row and each column of
the addition table is some permutation of all the elements of the field. Unique-
ness of the multiplicative inverse tells us that each row and each column (except
for the first row and first column) is some permutation of all the elements of
the field.
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+ 0 1 a b
0 0 1 a b
1 1 ? ? ?
a a ? ? ?
b b ? ? ?

Table 12.5: Addition Table

× 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a ? ?
b 0 b ? ?

Table 12.6: Multiplication Table

Exercise 12.3.1. Fill in the remaining values of the table. Use the facts above
plus the other field axioms (especially the distributive axiom) to help you.

Exercise 12.3.2. Construct a tournament with 16 participants and 20 “con-
tests” among four players, so that each player is in five contests and each pair of
players is in one contest, basing your construction on the field you constructed
in Exercise 12.3.1.

12.4 Constructing Finite Fields

The construction you performed in Exercise 12.3.1 is obviously too hard in
general. How are we to construct a field with, say, 64 elements by just fiddling
with the field axioms and making up multiplication and addition tables?

Fortunately there is a general method for constructing such fields, a method
that you have, in fact, already learned!

In Chapter 10, you learned that by finding an irreducible polynomial over the
rational numbers, you could build a larger field by incorporating a root of that
polynomial into the field. Thus we constructed fields such as in Section 10.6, or
the complex numbers themselves.

The same construction works if we start with a finite field instead of the
rationals or reals. For example, let’s start with the simplest of all fields, the
field with two elements. Let’s call this field F2.

Exercise 12.4.1. Show that x2 + x + 1 has no roots in F2. Conclude that
x2 + x+ 1 is irreducible over F2.

Now we invent a root of this polynomial. Let’s call it r. Since r is a root of
x2 + x+ 1, r2 + r + 1 = 0.
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Exercise 12.4.2. Show that r2 = r + 1 (remember, do your coefficient arith-
metic in mod 2).

Now incorporate r into F2 (just as we incorporated i into the reals to form
the complex numbers). We construct all expressions of the form ar+ b where a
and b are in F2. This gives us our four elements: 0, 1, r and r + 1. Using the
notation from Chapter 10, this is F2(r).

Exercise 12.4.3. Build the multiplication and addition tables for these four
elements. Be sure to use the fact that r2 = r+ 1 in the multiplication table and
that r + r = 2r ≡ 0 mod 2 in the addition table.

Exercise 12.4.4. Show that the field you constructed in Exercise 12.4.3 is the
same (except for a relabeling) as the field you constructed in Exercise 12.3.1.

Exercise 12.4.5. Find a cubic irreducible polynomial over F2. Use a root of
this polynomial to construct a field with eight elements. Build the addition and
multiplication tables.

Exercise 12.4.6. Find a quadratic irreducible polynomial over F3, mod 3 arith-
metic. Use a root of this polynomial to construct a field with nine elements.
Build the addition and multiplication tables.

It is not too hard to show that there are irreducible polynomials of every
degree over every finite field. The number of elements in the corresponding
extension field will be pn where p is the number of elements in the original field
and n is the degree of the polynomial.

Therefore, there are finite fields with q elements whenever q is a power of a
prime number.

But even more is known. If q is a power of a prime number, say q = pn, and
F is a field with q elements, then, except for a relabeling, F is the same as the
field we get by incorporating a root of some irreducible polynomial of degree n
over Fp, the mod p field.

Furthermore, if q is not a power of a prime number, then there is no finite
field with q elements.

In summary, the only finite fields are modular arithmetic with prime modu-
lus, or simple algebraic extensions thereof. The number of elements in such fields
is the prime modulus raised to a power equal to the degree of the extension.

Exercise 12.4.7. Find all q from 2 to 50 for which there is a finite field with
q elements.

Exercise 12.4.8. Describe in words how to go about constructing a field with
243 elements.
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Contest 1 Contest 2 Contest 3 Contest 4 Contest 5
A A A B B
B C B C C
D E F D E

Contest 6 Contest 7 Contest 8 Contest 9 Contest 10
C A D B A
D D E E C
F E F F F

Table 12.7: Another Tournament

12.5 Tournaments Revisited

Finite fields are not the only way to construct the kind of tournaments described
in Section 12.2. For instance, a tournament for six players (A, B, C, D, E,
F) with 10 contests, each contest involving three players, each player in five
contests, and each pair of players in two contests is given in Table 12.7

Exercise 12.5.1. Verify that these ten contests satisfy the conditions stated
above.

As we saw in the first section, certain divisibility conditions must be satisfied
before we can attempt to construct such a tournament.

Let N be the number of players, C be the number of contests, R be the
number of players per contest and D be the number of contests that each player
is in.

Exercise 12.5.2. Show that ND = CR.

Finally, let P be the number of contests each pair of players is in.

Exercise 12.5.3. Show that P (N − 1) = D(R− 1).

Exercise 12.5.4. Find N , D, R, C, and P for each of the tournaments in this
Chapter.

The conditions in Exercises 12.5.2 and 12.5.3 are not enough to define when
we can construct such tournaments. In fact, there is no known general rule.

Exercise 12.5.5. Arithmetically verify that N = 36, D = 7, C = 42, R = 6
and P = 1 satisfy the conditions in Exercises 12.5.2 and 12.5.3.

The parameters in Exercise 12.5.5 would be exactly what we would get if we
could construct a tournament using lines in a field with six elements. But no
such field exists and no such tournament exists!

Finally, we have been discussing tournaments, but these objects arise in other
contexts. For example, suppose we are responsible for taste-testing granolas.
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We want to test sixteen different brands and we have 20 different people to test
them.

Exercise 12.5.6. Describe how the 20 people can test the 16 brands so that
each person tests four brands, each brand is tested five times, and each pair of
brands is tested by the same person exactly once.



Chapter 13

Areas and Triangles

In this chapter we will learn how to compute areas of various geometric ob-
jects. We will learn some things about triangles and circles, and about the
Pythagorean Theorem.

13.1 Areas of Some Simple Figures

Let’s start with the simplest geometric figure we know: a rectangle. A rectangle
is a four-sided polygon (four-sided polygons are called quadrilaterals) such that
all the angles are right angles. It follows from theorems in plane geometry that
opposite sides have equal length. You no doubt learned the formula for the area
of a rectangle as “length times width.”

Exercise 13.1.1. Suppose a rectangle has length 6 units and width 4 units.
Give an argument why its area is 24 square units.

Exercise 13.1.2. Suppose a rectangle has length 8/3 units and width 5/8 units.
Give an argument why its area is 5/3 square units. Hint: describe the length as
8 “units” of size 1/3 and the width as 5 “units” of size 1/8. Now argue that the
rectangle contains 40 “rectangular units” all the same size. Then explain why
each of these “rectangular units” has size 1/24 square unit.

Exercise 13.1.3. Suppose a rectangle has length π and width π/3. Why do
you think the area of this rectangle is π2/3?

Now let’s move to some other polygons. A parallelogram is a quadrilateral
with opposite sides parallel. A theorem from plane geometry states that opposite
sides of a parallelogram are equal.

Exercise 13.1.4. Suppose A and B are two parallelograms, each with two sides
of length 6 and two sides of length 9. Do A and B have the same area?

Exercise 13.1.5. Suppose A is a parallelogram and has one side length a and
the other side length b. Is the area of A equal to ab? Why or why not?

271



272 CHAPTER 13. AREAS AND TRIANGLES

Let’s pick one side of the parallelogram to call its base. Its height is then the
perpendicular distance between the base and the opposite side.

Exercise 13.1.6. Using Figure 13.1, show that the area of a parallelogram of
height h and base b is bh.

A B

CD P Q

h

b

Figure 13.1: Area of parallelogram

A triangle is a three-sided polygon. If one side is called its base, then its
height is the perpendicular distance from the opposite vertex to the base (or
an extension of the base). Any triangle has three possible bases and three
corresponding heights.

Exercise 13.1.7. Using Figure 13.2, show that the area of a triangle of height
h and base b is bh/2.

A B

CD

h

b

b

Figure 13.2: Area of triangle

Exercise 13.1.8. Triangle ABC in Figure 13.2 is an acute triangle, that is, all
the angles are less than 90◦. Does the argument in the figure still work if the
triangle is obtuse, that is, has an angle of greater than 90◦?
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A trapezoid is a quadrilateral with one pair of opposite parallel sides. These
two parallel sides are called the two bases, and the perpendicular distance be-
tween them is the height.

Exercise 13.1.9. Using Figure 13.3, show that the area of a trapezoid of height
h and bases a and b is (a+ b)h/2.

A B

CD E

F

h

a

b a

b

Figure 13.3: Area of trapezoid

Exercise 13.1.10. Suppose a line is drawn connecting the two points 2/3 of
the way up two sides of a triangle (see Figure 13.4). That is, the length of
segment AC is 2/3 the length of segment AP , while the length of segment BD
is 2/3 the length of segment BP . It can be shown using theorems from plane
geometry that lines CD and AB are parallel, so that quadrilateral ABDC is a
trapezoid. Suppose the area of triangle ABP is 1 square unit. Find the area of
ABDC.

Exercise 13.1.11. If the perimeter of a triangle increases, does the area neces-
sarily increase? Either construct an example where this doesn’t happen or give
a reason why it does. Now repeat this question, replacing the word “triangle”
with “parallelogram,” “rectangle,” and “square,” respectively.

13.2 Areas of Similar Figures

Suppose X and X ′ are two polygons with the same number of sides. An angle-
side correspondence is a one-to-one correspondence between the vertices of X
and the vertices of X ′, in such a way that if AB is a side of X and A corresponds
to A′ in X ′ and B corresponds to B′ in X ′, then A′B′ is a side in X ′. See
Figure 13.5.

Two polygons are congruent if there is an angle-side correspondence between
them such that corresponding angles are equal and corresponding sides are
equal.

Another name for congruent polygons is isometric polygons. Isometric means
equal lengths; an isometry is a transformation from one geometric object into
another which preserves all distances. Figure 13.6 illustrates this idea. All the
quadrilaterals in this figure are congruent.
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A B

C D

P

Figure 13.4: Triangle with top removed

A

B

C

D
E

A

B

C

D

E

Figure 13.5: An angle-side correspondence
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a
b

c

d

a

b

c

d

a

b

c

d a

b

c

d

Figure 13.6: Congruent quadrilaterals
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The fact that the angles must be preserved is quite important. For example,
Figure 13.7 shows two parallelograms whose sides are equal but which are not
congruent.

Figure 13.7: Not congruent parallelograms

Three important theorems from plane geometry, called SAS, ASA and SSS,
respectively, tell when triangles are congruent. We will gather these three the-
orems into a single statement.

Theorem 22.

SAS: If the lengths of the two sides and the included angle of one triangle
equal the lengths of the two sides and the included angle of another
triangle, the two triangles are congruent.

ASA: If the two angles and the length of the included side of one triangle
equal the two angles and the length of the included side of another
triangle, the two triangles are congruent.

SSS: If the lengths of the three sides of one triangle equal the lengths of
the three sides of another triangle, the two triangles are congruent.

Exercise 13.2.1. Do you think the triangles in Figure 13.8 are congruent?
Why or why not?

Figure 13.8: Congruent triangles?

Exercise 13.2.2. If the three sides and the two included angles of one quadri-
lateral equal the three sides and the two included angles of another quadrilateral,
are they congruent? Why or why not?
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Exercise 13.2.3. If the three angles and the two included sides of one quadri-
lateral equal the three angles and the two included sides of another quadrilateral,
are they congruent? Why or why not?

Exercise 13.2.4. If the four sides of one quadrilateral equal the four sides of
another quadrilateral (in the same order), are they congruent? Why or why
not?

An important property of congruent polygons is that they have equal areas.

Exercise 13.2.5. Suppose two triangles have sides with lengths 12, 14 and 7.
Must their areas be the same? Why or why not? Hint: use SSS.

Suppose a is a line segment. We will denote the length of a by L(a). Also,
if P is a polygon, we will denote its area by A(P ).

Two polygons are similar if there is an angle-side correspondence such that
the angles are all equal and the sides are in equal ratio. That is, if a corresponds
to a′ and b to b′, then

L(a)

L(a′)
=
L(b)

L(b′)
.

We call this common ratio the similarity ratio.
Another theorem from plane geometry tells us when two triangles are similar.

Theorem 23. Two triangles are similar if two of the angles of one equal
two of the angles of the other.

Exercise 13.2.6. Are two quadrilaterals similar if the angles of one equal the
corresponding angles of the other? Why or why not?

Suppose T and T ′ are two triangles and suppose there is an angle-side cor-
respondence between T and T ′ such that the sides lengths are in equal ratio.
Construct a third triangle T ′′ as follows. Let two angles of T ′′ be two of the
angles of T , and let the side between these two angles have the same length as
the corresponding side in T ′. By ASA, this determines T ′′.

Exercise 13.2.7. Why is T ′′ similar to T?

Since T ′′ is similar to T , the ratio of its side lengths to the corresponding
side lengths of T is constant, so the side lengths of T ′′ are the same as the side
lengths of T ′.

Exercise 13.2.8. Why is T ′ congruent to T ′′?

Exercise 13.2.9. Why is T similar to T ′?

Summarizing these last three exercises, if T and T ′ are two triangles whose
side lengths are in equal ratio, then T and T ′ similar.

Let T be a right triangle and D be the triangle obtained by doubling all the
sides of T .
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Exercise 13.2.10. Is D a right triangle? Why or why not?

Exercise 13.2.11. Prove D is similar to T .

Exercise 13.2.12. Suppose h is any altitude in T and let k be the corresponding
altitude in D. Show k = 2h.

Exercise 13.2.13. Prove that A(D) = 4A(T ).

Exercise 13.2.14. Let R be formed from T by tripling all the sides of T . Prove
R is similar to T . Show that if h is any altitude of T and m is the corresponding
altitude of R, then m = 3h. Finally, show that A(R) = 9A(T ).

Exercise 13.2.15. Let S be formed from T by multiplying all the sides of T
by s. Prove S is similar to T . Show that if h is any altitude of T and p is the

corresponding altitude of S, then p = sh. Finally, show that A(S)
A(T ) = s2.

Exercise 13.2.15 illustrates a fundamental principal of similar geometric ob-
jects: linear dimensions grow linearly with the similarity ratio, while area di-
mensions grow quadratically.

Exercise 13.2.16. Let T and S be two similar triangles (not necessarily right)
with similarity ratio r. Show that the ratio of the altitudes of T to the corre-
sponding altitudes of S is also r. Show that the ratio of the perimeter of T to
the perimeter of S is r. Show that the ratio of A(T ) to A(S) is r2.

Exercise 13.2.17. Let T and S be two similar polygons with similarity ratio
r. Show that the ratio of the perimeter of T to the perimeter of S is r. Show
that the ratio of A(T ) to A(S) is r2.

13.3 The Pythagorean theorem

The Pythagorean Theorem is perhaps the most famous theorem in mathematics.

Theorem 24. If T is a right triangle with leg lengths a and b and hy-
potenuse length c, then a2 + b2 = c2. That is, the sum of the squares of
the two leg lengths equals the square of the hypotenuse length.

There are literally hundreds of proofs of the Pythagorean Theorem, some
dating back over 2000 years, and one due to President James Garfield. We will
give a couple of these proofs. Both are based on some simple geometry. First,
look at Figure 13.9.

Exercise 13.3.1. Prove that the angle α is a right angle.

Now look at Figure 13.10.

Exercise 13.3.2. Use Figure 13.10 to prove that a2 + b2 = c2. Hint: Why is
the quadrilateral PQRS a square? Why is A(PQRS) the same as the sum of
A(ABCD) and A(DEFG)?
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b

Figure 13.9: Two congruent right triangles
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Figure 13.10: First proof of the Pythagorean Theorem
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Another proof is based on Figures 13.11 and 13.12. In Figure 13.11, triangles
APB and PCD are congruent right triangles with sides a and b and hypotenuse
c.

a

b

c

P

A

B

C

D

c

Figure 13.11: Two congruent right triangles

Exercise 13.3.3. Show the angle APC is a right angle.

Now draw four congruent right triangles, as shown in Figure 13.12. From
the previous exercise, PQRS is a square.

Exercise 13.3.4. Prove that a2 + b2 = c2 by computing the total area of the
square in two ways.

Exercise 13.3.5. Prove the “converse” of the Pythagorean Theorem. That
is, suppose T is a triangle whose side lengths are a, b and c, and suppose
a2 + b2 = c2. Prove that T is a right triangle. Hint: Use SSS.

SSS tells us that any two triangles with the same side lengths must be
congruent, and therefore have the same area. We should then be able to compute
this area just using the lengths of the three sides. In fact, there is a beautiful
formula, called Heron’s formula, for the area of a triangle as a function of the
three side lengths.

Theorem 25. If a triangle T has side lengths a, b and c, then the area
of T is given by

A(T ) =
√
s(s− a)(s− b)(s− c) ,

where

s =
a+ b+ c

2
.
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c−
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Q

R

S

Figure 13.12: Second proof of the Pythagorean Theorem

The factors s− a, s− b and s− c have a simple form.

Exercise 13.3.6. Show the following:

s− a =
−a+ b+ c

2

s− b =
a− b+ c

2

s− c =
a+ b− c

2
.

There are a number of proofs of Heron’s formula. We will give the most
direct, which uses the Pythagorean theorem twice. We will use Figure 13.13.

In this figure, we wish to compute the area of triangle ABC, where a =
L(BC), b = L(AC), and c = L(AB). We draw a height h from vertex A to side
BC, intersecting BC at D. (We can assume this altitude intersects the opposite
side, since every triangle has at least one altitude which intersects the opposite
side.)

From Section 13.1 we know that the area of triangle ABC is ah/2.

Let x = L(DB), so that a− x = L(DC). We now have two right triangles,
ADC and ADB. We use the Pythagorean theorem twice to get

h2 + x2 = c2 (13.1)

and

h2 + (a− x)2 = b2 .
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b c

x

h

A

BC
Da x−

Figure 13.13: Heron’s formula
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Exercise 13.3.7. Subtract these two equations to obtain the following formula
for x:

x =
a2 + c2 − b2

2a
.

From Equation 13.1 we have

h2 = c2 − x2 = (c− x)(c+ x) .

Let’s eliminate x from one of these factors:

c− x = c− a2 + c2 − b2)

2a

=
2ac− a2 − c2 + b2

2a

=
b2 − (a− c)2

2a
.

Exercise 13.3.8. Performing a similar calculation, show

c+ x =
(a+ c)2 − b2

2a
.

Then put the results for c+ x and c− x together to obtain

h2 =
((a+ c)2 − b2)(b2 − (a− c)2)

4a2
. (13.2)

Since Heron’s formula involves a square root, let’s get rid of the root by
squaring the area.

Exercise 13.3.9. Using Equation 13.2 and the fact that A(T ) = ah/2, show

A(T )2 =
((a+ c)2 − b2)(b2 − (a− c)2)

16
. (13.3)

To complete the proof of Heron’s formula, we must show that the right hand
side of Equation 13.3 is the same as

s(s− a)(s− b)(s− c).

First, we write

s =
(a+ c) + b

2
. (13.4)

Exercise 13.3.10. Show that

s− b =
(a+ c)− b

2
. (13.5)

Exercise 13.3.11. From Equation 13.4 and Equation 13.5, show

s(s− b) =
(a+ c)2 − b2

4
. (13.6)
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Exercise 13.3.12. Now show

s− a =
b− (a− c)

2
(13.7)

and

s− c =
b+ (a− c)

2
. (13.8)

Exercise 13.3.13. From Equation 13.7 and Equation 13.8, show

(s− a)(s− c) =
b2 − (a− c)2

4
. (13.9)

Exercise 13.3.14. Multiply Equation 13.6 and Equation 13.9 together to ob-
tain

s(s− a)(s− b)(s− c) =
((a+ c)2 − b2)(b2 − (a− c)2)

16
.

Since this last expression is the same as the right hand side of Equation 13.3,
it follows that

A(T )2 = s(s− a)(s− b)(s− c) .

Exercise 13.3.15. What goes wrong with Heron’s formula if a + b < c? If
a+ b = c?

Exercise 13.3.16. Find the area of the triangle whose sides are 6, 9 and 13.

13.4 Pythagorean triples

You are probably already familiar with the famous “3-4-5 right triangle.” That
is, if the two sides of a right triangle are 3 and 4, respectively, then, by the
Pythagorean Theorem, the hypotenuse is 5. This right triangle has integral
sides. Three positive integers, (a, b, c), which satisfy a2 + b2 = c2 are called
Pythagorean triples. Such triples will correspond to right triangles with integral
sides.

Are there other Pythagorean triples? Certainly one way to construct them
is simply to multiply the numbers 3, 4 and 5 by the same number. For instance,
(6, 8, 10) is another Pythagorean triple.

Exercise 13.4.1. Suppose (a, b, c) is a Pythagorean triple. Prove that for any
positive integer k, (ka, kb, kc) is another Pythagorean triple.

Triples such as (6, 8, 10) are not interesting, since they are derived from other
triples. We call a Pythagorean triple (a, b, c) primitive if a, b and c do not have a
common factor. Thus, (3, 4, 5) is a primitive Pythagorean triple, while (6, 8, 10)
is not primitive.

Exercise 13.4.2. Suppose (a, b, c) is a Pythagorean triple. Show that if k
divides any two of a, b or c, then it divides the third.
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It follows from Exercise 13.4.2 that if (a, b, c) is any Pythagorean triple,
then GCD(a, b) = GCD(a, c) = GCD(b, c) = GCD(a, b, c). Therefore, primitive
Pythagorean triples are those Pythagorean triples for which all these GCD’s are
1.

Are there other primitive Pythagorean triples? You may be familiar with the
triple (5, 12, 13). In fact, there are an infinite number of primitive Pythagorean
triples. We will describe how to generate them in the rest of this section.

Exercise 13.4.3. Which of the following triples are Pythagorean triples and
which of these are primitive?

i. (40, 42, 58)

ii. (35, 12, 36)

iii. (7, 24, 25)

iv. (40, 9, 41).

Let’s first look at the primitive Pythagorean triples from Exercise 13.4.3
(and the triples (3, 4, 5) and (5, 12, 13)). Notice that in each case, exactly one of
the first two numbers in the triple is even, and the other two numbers are odd.
Let’s try to prove that.

Exercise 13.4.4. If (a, b, c) is a primitive Pythagorean triple, can a and b both
be even? Why or why not?

It might appear that both a and b could be odd. But this cannot happen in
any Pythagorean triple. Suppose a is odd. Then a ≡ 1 mod 4 or a ≡ 3 mod 4.
In both cases, a2 ≡ 1 mod 4. Similarly b2 ≡ 1 mod 4. So c2 ≡ 2 mod 4.

Exercise 13.4.5. Show c2 6≡ 2 mod 4 by considering the four possible mod 4
congruence classes for c.

We therefore conclude that exactly one of a and b is even and the other is
odd.

Exercise 13.4.6. If (a, b, c) is a Pythagorean triple, with one of a and b even
and the other odd, is c even or odd and why?

We reduced the set of Pythagorean triples to the primitive triples because
the non-primitive triples were “not different” from the primitive ones from which
they were derived. In a similar vein, the primitive triples (a, b, c) and (b, a, c)
are really the same. By applying the above exercises, we will always assume our
primitive triples have a odd and b even (and c odd).

We’re now ready to describe how to construct all primitive Pythagorean
triples.
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Theorem 26. Suppose r < s are two positive integers such that
GCD(r, s) = 1 and r and s are not both odd. Then (a, b, c) is a prim-
itive Pythagorean triple, where

a = s2 − r2 (13.10)

b = 2rs

c = s2 + r2.

Conversely, suppose (a, b, c) is a primitive Pythagorean triple with b even.
Then there exists a unique r and s with r < s, GCD(r, s) = 1, and r and s
not both odd, such that Equations (13.10) hold. Furthermore, if b/(c+ a)
is reduced to lowest terms, the resulting fraction is r/s.

For example, if we choose r = 4 and s = 5, then a = 9, b = 40 and c = 41.

Exercise 13.4.7. Verify that (9, 40, 41) is a primitive Pythagorean triple.

On the other hand, for the triple (3, 4, 5), r/s = 4/8 = 1/2, so r = 1 and
s = 2.

Exercise 13.4.8. Find the primitive Pythagorean triple which corresponds to
r = 3 and s = 8. Find the primitive Pythagorean triple which corresponds to
r = 5 and s = 6. Find the primitive Pythagorean triple which corresponds to
r = 2 and s = 7.

Exercise 13.4.9. Find r and s which correspond to the triple (5, 12, 13). Find
the r and s which correspond to the triple (45, 28, 53).

Exercise 13.4.10. Find two different primitive Pythagorean triples with the
same b.

Exercise 13.4.11. Find two different primitive Pythagorean triples with the
same a.

Exercise 13.4.12. Find two different primitive Pythagorean triples with the
same c.

We will now work through a few exercises which will prove Theorem 26.
First, suppose r < s (with no divisibility conditions). Define a, b and c as in
Equations (13.10).

Exercise 13.4.13. Show that a2+b2 = c2. That is, show (a, b, c) is a Pythagorean
triple.

We now add the divisibility conditions and show this triple is primitive.
These divisibility conditions are that GCD(r, s) = 1 and r and s are not both
odd.
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Exercise 13.4.14. Use Equations 13.10 and the fact that one of r and s is even
and one is odd to prove that a and c are both odd. Also, why is b even?

Therefore, 2 is not a common factor of a, b and c. Suppose p is some common
prime divisor of a, b and c, p 6= 2. Then p is a divisor of c+ a and c− a.

Exercise 13.4.15. Show that p is therefore a divisor of 2r2 and 2s2. Explain
why this means that p is a divisor of r and s.

But p cannot be a divisor of r and s, since GCD(r, s) = 1. Therefore, a, b
and c have no common divisor, so (a, b, c) is a primitive Pythagorean triple.

Now suppose (a, b, c) is a primitive Pythagorean triple (b even). Our program
is as follows. We will show how to construct r and s such that Equations (13.10)
hold and GCD(r, s) = 1 with not both r and s odd. The fact that r/s = b/(a+c)
reduced to lowest terms comes from the following exercise:

Exercise 13.4.16. If a, b and c are related to r and s through Equations (13.10),
show b/(a+ c) = r/s.

Since GCD(r, s) = 1, r/s must be reduced to lowest terms.
To construct r and s, we begin by writing b = 2u, where u is an integer. We

can do this since b is even.

Exercise 13.4.17. Show 4u2 = (c− a)(c+ a).

Exercise 13.4.18. Why are c− a and c+ a both even?

Since c− a is even and c+ a is even, we will write them as follows:

c− a = 2x

c+ a = 2y

We can solve this system of equations for a and c.

Exercise 13.4.19. Show

a = y − x (13.11)

c = y + x

If x and y had a common factor, then it would be a factor of a and c. But a
and c have no common factor, so neither do x and y. That is, GCD(x, y) = 1.

We then have
4u2 = 4xy,

or u2 = xy. But since GCD(x, y) = 1, the only way their product could be a
perfect square is if each of x and y is a perfect square (see Exercise 5.1.13 in
Chapter 5). That is, let x = r2 and y = s2. These are the r and s we seek. We
must now check all the conditions we wanted.
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First,
a = y − x = s2 − r2

and
c = y + x = s2 + r2.

Also,
b2 = 4u2 = 4xy = 4r2s2

so that b = 2rs. Therefore Equations 13.10 hold.
Since y − x > 0, s2 > r2, so that s > r. Now suppose r and s have a

common factor. Then x and y would also, but GCD(x, y) = 1 as we noted
earlier. Finally, suppose both r and s are odd. Then a and c will both be even,
and so (a, b, c) would not be primitive. This completes the proof.

Equations 13.10 allow us to make some observations about divisibility of
primitive Pythagorean triples. For example, since one of r and s is even and
b = 2rs, it follows that b is divisible by 4.

In a similar vein, suppose b is not a multiple of 3. Then neither r nor s is a
multiple of 3.

Exercise 13.4.20. If r and s are both not multiples of 3, show r2, s2 ≡ 1
mod 3.

Since a = s2 − r2, it follows that a ≡ 0 mod 3, i.e., a is divisible by 3.
Therefore, one of a or b is divisible by 3.

Exercise 13.4.21. Use similar arguments to show that one of a, b or c is
divisible by 5.

Summarizing, if (a, b, c) is a Pythagorean triple, then at least one of a and b
is a multiple of 3, at least one of a and b is a multiple of 4, and at least one of
a, b and c is a multiple of 5. Furthermore, if (a, b, c) is a primitive Pythagorean
triple, then exactly one of a and b is a multiple of 3, exactly one of a and b is a
multiple of 4, and exactly one of a, b and c is a multiple of 5.

13.5 Circle geometry

Recall from Section 13.2 the general principle: linear dimensions of similar poly-
gons grow linearly with the similarity ratio.

Let’s put this principal to work to find the circumference of a circle. Let’s
start with a regular hexagon (all six angles equal and all six sides equal) P1.
We will call the distance from the center of the regular hexagon to any vertex
its radius, r1. Since P1 is regular, the definition of r1 is independent of the
choice of vertex. Suppose P2 is another regular hexagon whose radius is r2.
Then according to the above principle, the perimeter of P2 is r2/r1 times the
perimeter of P1. That is, the ratio of the perimeters is the same as the ratio of
the radii.
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For example, in Figure 13.14, two regular hexagons are drawn. In one, the
radius is 1, while in the other, the radius is 3.

Exercise 13.5.1. Compute the perimeters of the two regular hexagons in Fig-
ure 13.14 and verify that the perimeter of the second is 3 times the perimeter
of the first.

1

3

Figure 13.14: Similar regular hexagons

If p1 and p2 are the perimeters of P1 and P2, respectively, we have

p1

p2
=
r1

r2

or, equivalently,
p1

r1
=
p2

r2
.

This last equation says the the ratio of the perimeter to the radius is always the
same, i. e., a constant.

Exercise 13.5.2. Compute this ratio for regular hexagons.

If, instead of hexagons, we had chosen 10 or 100 sided regular polygons, the
general principle would still hold: the ratio of the perimeter to the radius is a
constant (which will depend on the number of sides).

Exercise 13.5.3. Compute this constant for regular triangles (equilateral tri-
angles), for regular quadrilaterals (squares), for regular octagons and for regu-
lar 12-sided polygons. (You will have to use the Pythagorean theorem several
times.)
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As the number of sides of the polygon increases, the polygon looks more and
more like a circle (see Figure 13.15), and the ratio of the perimeter to the radius
will approach a special number. We call that number 2π. Therefore, the ratio
of the circumference of a circle to the radius of a circle is 2π, or

c = 2πr.

Figure 13.15: A regular 24-gon

A surprising fact about π is that it appears in both the circumference formula
and the area formula for a circle. Let’s see why.

If we slice the circle up into “pie pieces” and redraw the pieces (see Fig-
ure 13.16), we get a region R that is “almost” a rectangle. The more pieces we
cut the pie into, the closer we get to a rectangle. The height of the rectangle is
r and the width is c/2. Therefore, A(R) = rc/2. Since c = 2πr, A(R) = πr2.

Now let’s see if we can find approximate values for π. The calculations in
Exercise 13.5.3 have actually produced lower bounds for π in the following way.
If a polygon of radius r is inscribed in a circle of radius r, the perimeter of the
polygon, p, is less than the circumference of the circle, c. See Figure 13.17 to
see an inscribed square.

Let kn denote the ratio of the perimeter to the radius of a regular n-sided
polygon. Then p = knr and c = 2πr, but p < c. Therefore,

π >
kn
2
.
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Figure 13.16: The area of a circle



292 CHAPTER 13. AREAS AND TRIANGLES

Figure 13.17: A square inscribed in a circle

Exercise 13.5.4. Use Exercise 13.5.3 to give lower bounds for π.

We may use a similar idea to obtain upper bounds for π. Instead of using
inscribed polygons, we use circumscribed polygons. However, one technical
problem emerges. It is easy to see that the perimeter of an inscribed polygon
is smaller than the perimeter of the circle. We simply use the geometry axiom
that the shortest line between two points is a straight line.

We have no such axiom to fall back upon in the circumscribed polygon case.
Our intuition tells us that the perimeter of the square in Figure 13.18 is greater
than the circumference of the circle, but what principle are we using for this
intuition?

We can avoid this technical difficulty by relying on areas instead of circum-
ferences. That is, we could compute the area of the circumscribed polygon,
which is clearly greater than the area of the circle, since the circle is inside the
polygon. This would give us a bound, since we now know that π must also
appear in the area formula. This approach actually gives us a weaker bound
than the perimeter approach for the same polygon.

We will do examples using both approaches.

Exercise 13.5.5. By computing the perimeter of the square and the circum-
ference of the circle in Figure 13.18, find an upper bound for π. Then find an
upper bound by using areas instead of perimeters.

Exercise 13.5.6. Find a better upper bound by using the perimeter of a regular
polygon with more sides than a square.

Exercise 13.5.7. Find another upper bound by using the area of a regular
polygon with more sides than a square.

The first recorded approximations to π were made by the Babylonians around
2000 B.C. The techniques described in this section were used by Archimedes to
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Figure 13.18: A square circumscribed outside a circle

establish 223/71 < π < 22/7. As better computational tools emerged and as
better formulas became known, the approximations improved. For example,
using the invention of the zero, Tsu Ch’ung-Chi established 3.1415926 < π <
3.1415927 in the 5th century A.D.

In the 17th century, Gregory and Leibniz discovered arctangent series which
greatly aided π approximations. By the 18th century, π had been approximated
to over 100 decimal places. In 1766, Lambert proved π was irrational, thus
dispelling the notion that there might be some undiscovered integers p and q such
that π = p/q. Then in 1882, Lindemann proved π was transcendental, which
ended the two thousand year quest to find a straightedge-compass construction
which would convert a circle to a square with the same area.

At the dawn of the computer age, π had been computed to nearly 1000
decimal places. Now we can approximate π virtually without limit. As of June,
2000, it had been computed to over 200 billion decimal places.

More than any other mathematical concept, π attracts crackpot “mathe-
maticians.” This may be due in part to the Greek problem of squaring a circle,
which was resolved by Lindemann. It may also be due to the simplicity of the
definition of π as the ratio of the circumference to the diameter of a circle. In
any case, in 1897 a bill was introduced into the Indiana State Legislature, which,
among other things, presented a purported proof of squaring the circle, and gave
a rational value for π. The bill was written by Edwin J. Goodman, M. D., who
promised Indiana free use of his invention. This bill passed the Indiana House,
and probably would have passed the Senate except for the intervention of C.
A. Waldo, a mathematician from Purdue, who happened to be at the capitol
lobbying for university funding.

13.6 Finding Volumes

Some of the principles and techniques we learned in Section 13.2 and in Sec-
tion 13.5 can be expanded to compute volumes of solid geometric objects. We
will use the notation V(S) for the volume of the solid object S.

A parallelepiped is a polyhedron consisting of six faces, with three pairs of
opposite faces. Each face is a parallelogram. Opposite faces are congruent and
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parallel. If F is one face, the height corresponding to F is the perpendicular
distance from F to its opposite face.

A rectangular parallelepiped is a parallelepiped all of whose faces are rectan-
gles. Therefore, all the angles in a parallelepiped are right angles. By arguments
similar to those in Section 13.1, the volume of a rectangular parallelepiped is
length times width times height. That is, it is the area of one rectangular face
times the corresponding height.

An important general principle for computing volumes is the “cross-section”
principle of Cavalieri. Suppose two solids are placed on a table. Then imagine
slicing the two solids with a series of planes parallel to the table. If the cross-
section area of one solid is the same as the cross-section area of the other solid
for each slice, then their volumes are the same.

Let’s apply Cavalieri’s principle to give a formula for the volume of a par-
allelepiped. Suppose a parallelepiped has a base parallelogram with area A
and corresponding height h. Construct a rectangular parallelepiped with base
rectangle having area A and corresponding height h.

Exercise 13.6.1. Use Cavalieri’s principle to show these two parallelepipeds
have the same volume. Then use the formula for the volume of a rectangular
parallelepiped to give a formula for the volume of a general parallelepiped.

We will use Cavalieri’s principle to find the volume of general conical solids.
Let’s start with a tetrahedron. If we place a tetrahedron on a table, (see Fig-
ure 13.19) it has a base triangle (ABC in the figure) and a height equal to the
perpendicular distance from the table to the top of the tetrahedron (l(DP ) in
the figure). Now suppose we slice this tetrahedron with a plane parallel to the
plane of the base. The intersection of the slicing plane and the tetrahedron
is a triangle (EFG in the figure), which, together with the top of the original
tetrahedron, forms a new, smaller tetrahedron (DEFG).

We will show that triangles ABC and EFG are similar with similarity ratio

equal to L(DQ)
L(DP ) .

Exercise 13.6.2. Show triangle DQE is similar to triangle DPA. Hint: first
show they are right triangles.

Since the plane of ABC is parallel to the plane of EFG, it follows that EG
is parallel to AC.

Exercise 13.6.3. Show triangle DEG is similar to triangle DAC.

Exercise 13.6.4. Conclude that triangle EFG is similar to triangle ABC with

similarity ratio L(DQ)
L(DP ) .

Exercise 13.6.5. Show that

A(EFG)

A(ABC)
=
(L(DQ)

L(DP )

)2

.

Hint: use Exercise 13.2.15.
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Figure 13.19: Tetrahedron sliced with plane parallel to base
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Now suppose two tetrahedra have bases of equal area and equal correspond-
ing heights (see Figure 13.20). In this figure, the two heights h are equal, while
the two base triangles ABC and EFG have equal area.

A

B

C

D

h

h

E
F

G

H

Figure 13.20: Equal volumes

Exercise 13.6.6. Explain why any plane slicing through these two tetrahedra
intersects the tetrahedra in triangles of equal area. Hint: Use Exercise 13.6.5.
Conclude from Cavalieri’s principle that the two tetrahedra have the same vol-
ume.

We therefore conclude that all tetrahedra with the same area base and the
same corresponding height have the same volume.

To find a formula for this volume, our program is as follows. We cut a
rectangular parallelepiped up into six pieces. Each piece will be a tetrahedron.
Using the above fact, we show that all six pieces have the same volume, which
must be

V(T ) =
1

6
lwh. (13.12)

Also, at least one of them has a base triangle S equal to half of one of the
rectangular sides of the parallelepiped and height equal to the corresponding
height of the parallelepiped. Therefore, for one of the tetrahedra,

A(S) =
1

2
lw. (13.13)

Putting Equation (13.12) and Equation (13.13) together gives

V(T ) =
1

3
A(S)h. (13.14)
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Since every tetrahedron with the same area base and same height has the same
volume, Equation (13.14) is the formula for the volume of a tetrahedron with
base S and height h.

The next series of exercises carries out the details of this program.

Look carefully at Figures 13.21, 13.22, 13.23, and 13.24. In Figures 13.21
and 13.22, a rectangular parallelepiped has been cut diagonally down the middle
into two congruent pieces. Figure 13.23 shows one of these pieces.

A B

C
D

E F

GH

Figure 13.21: A rectangular parallelepiped to be sliced

Figure 13.24 shows how this piece is further cut into three tetrahedra. Two
slices have been made. The first is in the plane determined by A, H and F . It
slices off E, forming tetrahedron AFHE. The second is in the plane determined
by A, D and F . It slices off B, forming tetrahedron ADFB. What is left is
tetrahedron AFDH.

Exercise 13.6.7. Show V(ADFB) = V(AFHE) by showing they have con-
gruent bases and equal heights. Hint: use base ADB for the first tetrahedron
and base EHF for the second.

Exercise 13.6.8. Show V(ADFB) = V(AFDH) by showing they have congru-
ent bases and equal corresponding heights. Hint: Use bases DFB and FDH.

Exercise 13.6.9. Conclude that all three tetrahedra ADFB, AFHE and
AFDH have the same volume.

Exercise 13.6.10. Find the volume of the regular tetrahedron whose side
length is 1.
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B

CD

F

GH

A B

D
E

F

H

Figure 13.22: Sliced rectangular parallelepiped

A B

D
E F

H

Figure 13.23: A half rectangular parallelepiped to be sliced
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F
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A

Figure 13.24: Sliced half of a rectangular parallelepiped

By triangulating polygons, we can compute the volume of any “cone” C with
base polygon P and height h:

V(C) = A(P )h/3,

See Figure 13.25.

Exercise 13.6.11. Compute the volume of the Great Pyramid of Egypt. It
has a square base, 751 feet on a side, and a height of 481 feet.

By approximating curved regions with polygons, we obtain the formula for
the volume of a general cone. If a cone C has base given by region R and height
h, then

V(C) = A(R)h/3.

For example, if R is a circle of radius r, then the formula for the volume of the
cone is πr2h/3.

Exercise 13.6.12. Find the volume of an ice cream cone with radius 3/2 inches
and height 5 inches.

Let’s now calculate some formulas for a sphere, S. First, there is a simple
relationship between the volume of a sphere, V(S) and its surface area, A(S).
This relationship is similar to the relationship between the area of a circle and
the circumference of the circle.
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Figure 13.25: A generalized cone

First, we approximate S with a polyhedron with many faces. The solid
formed by each face and the center of S is a cone with base equal to the face
and height approximately the radius of the S, r. See Figure 13.26, which shows
two such cones, one with an octagonal base and the other with a triangular
base.

If C is one of these cones, with base B, its volume is given by

V(C) = A(B)r/3

Now sum this equation over all the cones in the polyhedron. The left-hand side
sums to the volume of the polyhedron, which is approximately V(S). The right
hand side sums to approximately A(S)r/3. The smaller the base of the cones,
the better the approximation. Therefore,

V(S) =
1

3
A(S)r (13.15)

We now concentrate our attention on the surface area of the sphere. Imagine
that the surface area of the sphere is like the surface of the earth. At each
latitude (latitudes measure distance from the equator), suppose we mark off a
band 1 mile wide (in the north-south direction) at the same latitude, wrapping
all the way around the earth. Let’s compute the surface area of this band.

Figure 13.27 shows how to do this. This figure shows a great circle cross-
section view of the sphere. In our earth-analogy, the north pole is N and the
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Figure 13.26: Cones in a sphere
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center of the earth is P . The radius AP is a line from the center of the earth to
the southernmost edge of the band, and the radius CP is a line from the center
of the earth to the northernmost edge. The arc AC is a north-south line across
the band. If the band is very narrow, i. e., A is close to C, then the length of
the arc AC is approximately the length of the line segment AC.

Exercise 13.6.13. Prove that triangle ACD and triangle BPA are similar.

By the proportionality principles of similar objects, we get

L(AC)

L(CD)
=

r

L(AB)
,

or

L(AC) = r
L(CD)

L(AB)
(13.16)

We now use Equation (13.16) to approximate the area of the band. Since
L(AC) is approximately the length of the arc AC, the area of the band will
be approximately L(AC) times the circumference of the circle whose radius is
L(AB), i. e., 2πL(AB)L(AC). Substituting Equation (13.16) into this expres-
sion, we get

2πL(CD)r (13.17)

as the formula for the approximate area of that small strip of equal latitude
around the sphere. Surprisingly, this formula is independent of the latitude!
We now sum this formula over all such thin strips in the upper hemisphere.
Each small region contributes an amount given by Equation (13.17). The entire
sum will then be

2πr2,

since the L(CD)’s will all add to r. Now double this to get both hemispheres,
and we have

A(S) = 4πr2.

Exercise 13.6.14. Use Equation (13.15) to find the formula for V(S).

Exercise 13.6.15. Suppose the ice cream cone in Exercise 13.6.12 is filled with
ice cream and the ice cream mounds up to form a half sphere above the cone.
What is the volume of ice cream?
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Figure 13.27: Cross-section of a sphere
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disjoint events, 147
division of a plane, 29
divisor, 108
dodecahedron, 96
dominant gene, 162
dot product, 176
doubling time, 21
duo decimal number, 115

e, 217, 234
edge, 77
endpoint, 167
equiprobable model, 146
Euclidean algorithm, 110
Euler’s formula, 90
Eulerian circuit, 79, 82
Eulerian walk, 79
event, 145
expectation, 239
explicit formula, 9
exterior face, 89

face
of a planar graph, 89
of a polyhedron, 94
of a tessellation, 97

face handshake theorem, 92
factorial, 35
Fibonacci number, 24

explicit formula, 27
recursion, 24

field, 215
axioms, 215
extension, 231
finite, 266
ordered, 215
simple algebraic extension, 231

forest, 204
labeled, 207
planar, 205

fractal, 22
frequency distribution, 153
fundamental theorem of algebra, 226
fundamental theorem of arithmetic, 108

genetics, 162
genotype, 162
genus of a graph, 102
geometric sequence, 3

explicit formula, 11
recursion, 11

golden mean, 26
graph, 77
greatest common divisor, 110
greedy algorithm, 201

handshake theorem, 83
Heron’s formula, 280
hexadecimal number, 115
hexagonal number, 15
histograph, 155

i, 222
icosahedron, 96
incenter, 167
independent events, 149
infinite sum, 18, 247
initial condition, 6
integers, 107
intermediate value theorem, 220
irrational number, 124
irrational numbers, 216
isometry, 273

joint probability, 149

leaf, 89, 204
least common multiple, 110
least upper bound axiom, 220
logarithm, 21
loop, 81

mean, 244
median, 168, 180, 249



INDEX 307
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parametric representation, 171
Pascal’s identity, 41
pentagonal number, 15
permutation, 34
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irreducible, 229, 267
linear, 226
quadratic, 226
quartic, 226
quintic, 226
rational, 225

real, 225
zero of a, 226

powerball, game of, 242
prime factorization, 108
prime number, 108
primitive Pythagorean triple, 284
probability

function, 145
of a point, 145
of an event, 145
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random variable, 239
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ray, 167
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recursion, 5
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regular tessellation, 97
repeating decimal, 122
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score vector, 105
segment, 167
semi-regular polyhedron, 97
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sphere, 299
square number, 15
SSS, 276
standard deviation, 250
standard representation, 129
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subscript, 4
summation index, 245
summation limit, 245
summation notation, 245

tableau, 53
term of a sequence, 4
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ternary number, 115
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torus, 100
tournament

intransitive, 104
round-robin, 103
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transcendental number, 234
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tree, 87

binary, 207
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triangular number, 13
triangulations of a polygon, 49
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uncountable set, 235
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vertex, 77

walk, 77
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