
THE CYCLIC SIEVING PHENOMENON

V. REINER, D. STANTON, AND D. WHITE

Abstract. The cyclic sieving phenomenon is defined for generat-
ing functions of a set affording a cyclic group action, generalizing
Stembridge’s q = −1 phenomenon. The phenomenon is shown
to appear in various situations, involving q-binomial coefficients,
Pólya-Redfield theory, polygon dissections, non-crossing partitions,
finite reflection groups, and some finite field q-analogues.

1. Introduction

Stembridge’s q = −1 phenomenon [42, 43, 44] has proven to be
a useful tool in organizing various enumerative results. This paper
introduces the more general cyclic sieving phenomenon, which we now
define.

Let X be a finite set, with an action of a cyclic group C of order n.
Elements within a C-orbit share the same stabilizer subgroup, whose
cardinality we will call the stabilizer-order for the orbit. Let X(q)
be a polynomial in q having nonnegative integer coefficients, with the
property that X(1) = |X|; we will think of X(q) as a q-enumerator
or generating function for X. Fix an isomorphism ω of C with the
complex nth roots of unity, that is, an embedding ω : C ↪→ C×.
Definition-Proposition. The following are equivalent conditions for
a triple (X, X(q), C) as above:
(i) For every c ∈ C,

[X(q)]q=ω(c) = |{x ∈ X : c(x) = x}|.

(ii) The coefficient a` defined uniquely by the expansion

X(q) ≡
n−1∑

`=0

a`q
` mod qn − 1
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has the following interpretation: a` counts the number of C-orbits on
X for which the stabilizer-order divides `. In particular, a0 counts
the total number of C-orbits on X, and a1 counts the number of free
C-orbits on X.

When either of these two conditions holds, we say that (X, X(q), C)
exhibits the cyclic sieving phenomenon. The straightforward equiv-
alence between conditions (i) and (ii) above is proven in Section 2,
and related to a linear-algebraic/representation-theoretic paradigm for
proving them.

When |C| = 2, condition (i) above is the q = −1 phenomenon. We
observe many instances of the more general cyclic sieving phenomenon,
beginning with the following result on q-binomial coefficients. It is well-
known [24, Ex. I.2.3], [37, §7.8] that the q-binomial coefficients

[
N
k

]

q

and

[
N + k − 1

k

]

q

are generating functions for k-subsets and k-multisubsets of [N ] :=
{1, 2, . . . , N} counted according to certain natural q-weights. Say that
the cyclic group C of order n acts nearly freely on [N ] if it is generated
by an element c ∈ SN whose cycle type is either

• a cycles of size n, so that N = an (and Cn acts freely), or
• a cycles of size n and one singleton cycle, so that N = an + 1

for some positive integer a.

Theorem 1.1. Let the cyclic group C of order n act nearly freely on
[N ].

(a) Let X be the set of k-multisubsets of [N ], and

X(q) :=

[
N + k − 1

k

]

q

.

Then (X, X(q), C) exhibits the cyclic sieving phenomenon.
(b) Let X be the set of k-subsets of [N ], and

X(q) :=

[
N
k

]

q

.

Then (X, X(q), C) exhibits the cyclic sieving phenomenon.

Example 1.2. As an illustration, take k = n = 6, N = 12, and C the
cyclic group generated by c = (1, 3, 5, 7, 9, 11)(2, 4, 6, 8, 10, 12) acting
on the subsets of [12] of cardinality 6. Then
[
12
6

]

q

≡ 160 + 150q + 156q2 + 152q3 + 156q4 + 150q5 mod q6 − 1
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reflecting the fact that there are 150 free orbits, and, respectively, 6, 2, 2
orbits having stabilizer-orders 2, 3, 6. For an example involving mul-
tisets, take k = n = 4 and N = 8, and consider the cyclic group
C4 generated by c = (1357)(2468) acting on the multisubsets of [8] of
cardinality 4. Then

[
11
4

]

q

≡ 86 + 80q + 84q2 + 80q3 mod q4 − 1

reflecting the fact that there are 80 free orbits, and, respectively, 4, 2
orbits having stabilizer-orders 2, 4.

Theorem 1.1 is not hard; it is deduced using the representation theory
paradigm in Section 3, or via calculation of explicit formulae for the
coefficients a` in Section 4.

Special cases of this theorem provide combinatorial proofs for several
results in the literature. For example, at the end of the paper [12], the
authors ask for a combinatorial explanation of the following corollary
to Theorem 1.1.

Corollary 1.3. Let a`(n, k) denote the coefficient of q` in
[
n + k − 1

k

]

q

mod qn − 1,

with the convention that a1(1, k) = 1. Then

(1.1) a`(n, k) =
∑

d|n,k,`

a1

(
n

d
,
k

d

)

.

This corollary is immediate from Theorem 1.1(a), with C the cyclic
group of order n acting freely on [n], and on its k-multisubsets: the left
side of (1.1) counts orbits of multisets whose stabilizer-order is some d
dividing `; the number of such orbits for which the stabilizer-order is
exactly d is the term a1(

n
d
, k

d
) on the right side of (1.1).

One of our original motivations was to understand the following fact
observed by Chapoton [6], which we deduce in Section 5 from either
part (a) or (b) of Theorem 1.1.

Theorem 1.4. The constant term a0 in
[
2n − 1

n

]

q

mod qn − 1

counts ordered trees with n non-root vertices, up to cyclic rotation of
subtrees about the root.
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The two parts of Theorem 1.1 have interesting generalizations. Sec-
tion 6 generalizes Theorem 1.1(a) to a result (Theorem 6.1) about prin-
cipal specializations of weight enumerators from Pólya-Redfield theory.
A sample application of this result is the following result of Read [26].

Corollary 1.5. Let X(q) be the generating function counting unla-
belled (isomorphism classes of) simple graphs on n vertices accord-
ing to their number of edges. Then X(−1) counts the number of self-
complementary unlabelled graphs on n vertices.

Section 8 generalizes Theorem 1.1(b) to a statement about finite
Coxeter groups, and more generally, unitary reflection groups. The
symmetric group SN is a Coxeter group W of type AN−1. The k-
subsets of [N ] correspond to cosets W/WJ , where WJ is the parabolic
subgroup Sk × SN−k. One then has

[
N
k

]

q

= W J(q) :=
∑

w∈W J

q`(w)

where W J denotes the set of minimal length representatives for cosets
of WJ . A cyclic subgroup C of W acts on the set of cosets W/WJ

by left-multiplication. It turns out that C in SN acts nearly freely
on [N ] exactly when it is generated by a regular element in the sense
of Springer [35]. In Section 8, we deduce (a generalization of) the
following statement, using Springer’s theory of regular elements as re-
phrased by Kraśkiewicz and Weyman [21].

Theorem 1.6. Let (W, S) be a finite Coxeter system and J ⊆ S. Let
C be a cyclic subgroup generated by a regular element. Let X be the
set of cosets W/WJ , and X(q) := W J(q).

Then (X, X(q), C) exhibits the cyclic sieving phenomenon.

Special cases of this result related to maximal parabolic subgroups for
some of the other reflection groups are discussed in Section 8. It is also
observed there that the longest element w0 in W is always a regular
element, and thus specializing Theorem 1.6 to C = 〈w0〉 gives the first
case-free proof for all finite Coxeter groups of a theorem of Eng [13].

Section 7 proves two curious instances of the cyclic sieving phenom-
enon (Theorem 7.1), one involving dissections of a convex polygon, the
other involving noncrossing partitions.

Section 9 deals with finite field q-analogues of Theorem 1.1(b). These
relate to recent results of Drudge [11], counting orbits of k-dimensional
subspaces in a finite vector space under the action of a Singer cycle,
which is a q-version of an n-cycle. This turns out to be closely related
to the invariant theory of GLn(Fq) and its parabolic subgroups, leading
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naturally to the cyclic sieving phenomenon for flags of subspaces and
a newly defined (q, t)-multinomial coefficient.

Section 10 proves that these q-analogues counting cyclic orbits of sub-
spaces are polynomials in q with integer coefficients, and conjectures
that they have nonnegative coefficients. Some easy cases of this conjec-
ture are discussed, generalizing a result due independently to Andrews
[1] and Haiman [17]. In the process of our analysis, we abstract two
general principles, one for proving polynomiality of a rational function,
and one for proving polynomials have nonnegative coefficients. The
latter comes from the methods of Andrews [1], and is applied to prove
some old and new positivity results.
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2. Phenomen-ology

This section treats general facts about the cyclic sieving phenome-
non. We begin by proving the equivalence of conditions (i) and (ii) in
the Definition-Proposition of the introduction, relating them to a third,
representation-theoretic condition. We then show how this third con-
dition leads to a representation theory lemma (Lemma 2.4) useful for
proving instances of the cyclic sieving phenomenon. For the purpose
of stating this third equivalent condition, we introduce some notation.

As in the introduction, let C be a cyclic group of order n acting
on a finite set X, and fix an embedding ω : C ↪→ C×. Let a` be the
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coefficient uniquely defined by the expansion

X(q) ≡
n−1∑

`=0

a`q
` mod qn − 1.

Introduce a graded C-vector space

AX :=
⊕

i≥0

AX,i

having
∑

i≥0 dimC AX,iq
i = X(q), and affording a representation of C

in which each c ∈ C acts on the graded component AX,i by the scalar
ω(c)i.

The following encompasses the Definition-Proposition from the in-
troduction.

Proposition 2.1. With the above notation, the following are equivalent
phrasings of the cyclic sieving phenomenon:
(i) For every c ∈ C,

[X(q)]q=ω(c) = |{x ∈ X : c(x) = x}|.

(ii) The coefficient a` counts the number of C-orbits on X for which
the stabilizer-order divides `.

(iii) As representations of C, the permutation representation C[X] and
AX are isomorphic.

Proof. The equivalence of conditions (i) and (iii) is clear, as the left
side of (i) is the character value for c in the representation AX , while
the right side of (i) is the character value for c in C[X].

To prove the equivalence of (iii) and (ii), note that C[X] and AX

are isomorphic if and only if for each of the irreducible (degree one)
representations {ρ(`)}`∈Z/nZ of C, defined by ρ(`)(c) = ω(c)`, one has
equality of the intertwining numbers

(2.1) 〈ρ(`), AX〉C = 〈ρ(`), C[X]〉C.

The coefficient a` of q` in X(q) mod qn − 1 has the following well-
known expression in terms of nth roots of unity:

(2.2) a` =
1

n

∑

ωn=1

ω−`X(ω).

Thus a` is exactly the left side of (2.1):

〈ρ(`), AX〉C =
1

n

∑

c∈C

ω(c)−`X(ω(c)) = a`.
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On the other hand, the right side of (2.1) can be computed using the
fact that C[X] is a permutation representation of C which decomposes
into a sum over C-orbits O. Letting CO denote the stabilizer subgroup
within C of any element in the orbit O, one has

〈ρ(`), C[X]〉C =
∑

C−orbits O

〈ρ(`), IndC
CO

1〉C

=
∑

C−orbits O

〈ResC
CO

ρ(`), 1〉CO

=
∑

C−orbits O

{
1 if |CO| divides `
0 otherwise.

}

= |{C-orbits on X whose stabilizer-order divides `}|.

Thus the equality (2.1) holds exactly when condition (iii) holds. �

Remark 2.2. The equivalence of conditions (i) and (ii) in Proposi-
tion 2.1 can also be proven easily via (number theoretic) Möbius inver-
sion; see Proposition 4.1(ii).

Remark 2.3. It should be noted that condition (i) of the Definition-
Proposition of the introduction immediately implies the following: if
(X, X(q), C) exhibits the cyclic sieving phenomenon, then (X, X(q), C ′)
exhibits the cyclic sieving phenomenon for any subgroup C ′ of C.

Condition (iii) in Proposition 2.1 leads to the following represen-
tation theory paradigm, generalizing a paradigm for proving q = −1
phenomena followed in [42, 43]. Given a cyclic group C acting (faith-
fully) on the set [N ], one obtains an embedding of C in GLN (C). Given
a rational representation ρ : GLN(C) → GL(V ), recall that its charac-
ter χρ(x1, . . . , xN ) is defined to be the trace on V of any diagonalizable
element in GLN(C) having eigenvalues x1, . . . , xN .

Lemma 2.4. Let C be a cyclic group acting nearly freely on [N ]. Let
ρ : GLN (C) → GL(V ) be a representation. Assume that there exists
an integer m, and that V has a basis {vx}x∈X which is permuted (up
to scalars) by C in the following way:

(2.3) c(vx) = ω(c)m vc(x) for all c ∈ C, x ∈ X.

Then the induced C-action on X and the (twisted) principal specializa-
tion

X(q) := q−mχρ(1, q, q
2, . . . , qN−1)

give rise to a triple (X, X(q), C) that exhibits the cyclic sieving phe-
nomenon.
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Proof. First note that when a cyclic subgroup C of order n acts nearly
freely on [N ], the eigenvalues of any c in C are given by the multiset

1, ω(c), ω(c)2, . . . , ω(c)N−1.

Consequently, the character value of c acting in the representation
ρ(−m) ⊗ ρ will be

χρ(−m)(c) · χρ(1, ω(c), ω(c)2, . . . , ω(c)N−1) = [X(q)]q=ω(c) .

In other words, ρ(−m) ⊗ ρ ∼= AX as C-modules, as they have the same
characters. On the other hand, the hypothesis (2.3) asserts an iso-
morphism ρ(−m) ⊗ ρ ∼= C[X] of C-modules, so the result follows from
condition (iii) of Proposition 2.1. �

Remark 2.5. The hypothesis of Lemma 2.4 can be rephrased. When-
ever the C-action permutes basis elements {vx}x∈X up to scalars, the
representation will decompose into a direct sum indexed by the C-
orbits on X. Each summand is a representation induced from a cyclic
subgroup Cd, where Cd = 〈c

n
d 〉 is the stabilizer within C of an orbit

representative x. There will exist an integer mx such that

c
n
d (vx) = ω(c

n
d )mxvx.

The hypothesis in (2.3) simply asserts that these integers mx all coin-
cide with a single integer m.

3. First proof of Theorem 1.1: representation theory

The goal of this section is to give our first proof of Theorem 1.1,
using the representation theory paradigm, Lemma 2.4.

First proof of Theorem 1.1. Let U = CN with standard basis {ei}
N
i=1,

affording the defining representation of GLN(C).
For part (a), let V be the kth symmetric power Symk(U). This has

an obvious basis of symmetric tensors indexed by k-multisubsets of [N ].
As this basis is permuted by the cyclic group C, Lemma 2.4 applies
with m = 0 to

X(q) = χSymk(V )(1, q, q
2, . . . , qN−1) =

[
N + k − 1

k

]

q

,

completing the proof.
For part (b), let V be the kth exterior power

∧k(U), having an
obvious basis of antisymmetric tensors vS :=

∧

i∈S ei indexed by k-
subsets S of [N ]. We claim that the C-action on these basis elements
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vS obeys the hypotheses of Lemma 2.4 with m =
(

k
2

)
. Once this is

established, one can apply the lemma to

X(q) = q−(k

2)χVk(V )(1, q, q
2, . . . , qN−1) =

[
N
k

]

q

,

completing the proof.
To verify this claim, in light of Remark 2.5, it remains to show that

whenever S is a k-subset whose C-stabilizer is the cyclic group Cd, one
has

(3.1) c
n
d (vS) = ω(c

n
d )(

k

2) vS.

To check (3.1), uniquely decompose the subset S = tb
i=0Si where

S1, . . . , Sb are the (non-empty) intersections of S with various n-cycles
of a generator c for C in its action on [N ], and S0 is either empty or
possibly the singleton cycle of c. Note that either k = b · d or b · d + 1.
Then c

n
d acts on vS by the scalar (−1)b(d−1). Letting ω := ω(c) be a

primitive nth root of unity, it then only remains to show that

ω
n
d
·(k

2) = (−1)b(d−1).

Note that

ω
n
d
·(k

2) = ω
n
d
·(bd

2 )

since
(

k
2

)
is equal either to

(
bd
2

)
or
(

bd
2

)
+ b · d, and (ω

n
d )b·d = 1. The

result then follows from comparing the coefficient of x0 on the two sides
of the identity

bd−1∏

i=0

(
x − ω

n
d

i
)

= (xd − 1)b.

�

4. Second proof of Theorem 1.1: explicit formulae

One can sometimes verify directly that the cyclic sieving phenom-
enon holds for a triple (X, X(q), C), by checking that both sides of
condition (i) agree with an explicit formula. We use this method to
give a second proof of Theorem 1.1.

Note that having done this, one gains explicit formulae for various
other orbit-counts associated with the C-action on X. We collect some
of these in Proposition 4.1 below, after recalling the Ramanujan sum
[20, Th. 271, Th. 272]:

(4.1) cd(`) :=
∑

ω a primitive
dth root of 1

ω` =
∑

s|d,`

µ

(
d

s

)

s,
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where µ is the number-theoretic Möbius function. For example,

cd(`) :=

{

φ(d) if gcd(d, `) = d,

µ(d) if gcd(d, `) = 1,

where φ is the classical Euler-phi function.
The proof of the following proposition is a straightforward exercise

in (number-theoretic) Möbius inversion, which we omit.

Proposition 4.1. Given a cyclic group C of order n acting on a finite
set X, let

β(d) := |{x ∈ X : x is fixed by at least the subgroup Cd of C}|.

Then the number of C-orbits

(i) in total is
1

n

∑

d|n

φ(d)β(d).

(ii) whose stabilizer-order divides ` is

1

n

∑

d|n

cd(`)β(d).

(iii) of size e, where n = de, is

1

e

∑

s: d|s|n

µ
(s

d

)

β(s).

The second proof of Theorem 1.1 requires some explicit evaluations
of the q-binomial coefficient at roots for unity. All can be routinely
deduced from setting q to a root of unity in a finite version of the q-
binomial theorem; see [16, Exercise 1.2(vi)] or [36, Exercise 3.45(a,b)].
Some can also be found in the references1 cited in the following propo-
sition.
(NB: In the proposition below, and throughout the paper, a binomial
coefficient containing any non-integer rational arguments is defined to
be 0.)

Proposition 4.2. Let n, k, a and d be positive integers, with d|n. Let
ω be a primitive dth root of unity. Then

(i) (see [12, 15, 25, 45])
[
an + k − 1

k

]

q=ω

=

(an
d

+ k
d
− 1

k
d

)

,

1The authors thanks Matthias Beck for providing some of the references via [5].
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(ii)
[
an
k

]

q=ω

=

(an
d
k
d

)

,

(iii) (see [5, Th. 3])
[
an + k

k

]

q=ω

=

(an
d

+ bk
d
c

bk
d
c

)

,

(iv)
[
an + 1

k

]

q=ω

=

(an
d
k
d

)

+

( an
d

k−1
d

)

.

Second proof of Theorem 1.1. Consider first the case where C acts
freely on [N ] for N = an. Then C acts also on the collection Ω of all
k-multisets of [N ]. Note that if c ∈ C has multiplicative order d, then
it fixes exactly

β(d) =

(an
d

+ k
d
− 1

k
d

)

k-multisubsets of [N ]; those fixed by c come from a k
d
-multiset of

[
an
d

]

by replacing occurrences of a single i with the set of d values in the
same cycle of c as i. Comparing this with Proposition 4.2(i) verifies
condition (i) of the Definition-Proposition from the introduction.

The other cases of the theorem are proven analogously; in each case
condition (i) of the Definition-Proposition is easily verified since β(d)
can be computed explicitly, and one then compares this with Proposi-
tion 4.2(ii), (iii), or (iv). �

Although not necessary for what follows, it is interesting to see
how Proposition 4.2(i) and (ii) generalize to principal specializations
of Schur functions. The generalization involves the notion of t-cores
and t-quotients of a partition λ [24, Ex. I.1.8], [37, Exercise 7.59]. In
a special case, it is implicit in [23, p. 128]; see also [24, Ex. I.3.17, Ex.
I.5.24, Ex. I.7.8].

Theorem 4.3. Let t|N , and let q be a primitive tth root of unity. Then
sλ(1, q, · · · , qN−1) is zero unless the t-core of λ is empty, in which case

sλ(1, q, · · · , qN−1) = sgn(χλ(tk))
t−1∏

i=0

sλ(i)(1, 1, · · · , 1
︸ ︷︷ ︸

N
t

),

where k = |λ|
t
, the t-quotient of λ is (λ(0), λ(1), · · · , λ(t−1)), and χλ is

the irreducible character of the symmetric group Skt indexed by λ.
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Sketch of proof. The Schur function may be expanded in terms of the
power sum symmetric functions pρ using characters of the symmetric
group [24, §I.7]

(4.2) sλ(x) =
∑

ρ

χλ(ρ)

zρ
pρ(x).

Choosing x = (1, q, · · · , qN−1), where q is a primitive tth root of unity
gives pj(x) = 0 unless t|j, in which case pj = N. Thus in (4.2) we may
assume that t divides each part of ρ. By the Murnaghan-Nakayama
rule [24, Ex. I.7.4], if λ has non-empty t-core, then χλ(ρ) = 0, and
thus sλ(x) = 0. If λ does have empty t-core note that (4.2) implies the
polynomial expansion

(4.3) sλ(1, q, · · · , qN−1) = Nk χλ(tk)

tkk!
+ O(Nk−1).

We compare this with a different polynomial expansion in N . Sup-
pose that λ has t-quotient (λ(0), λ(1), · · · , λ(t−1)) and empty t-core. By
the hook-content formula [37, p. 374]

(4.4) sλ(1, q, · · · , qN−1) = qn(λ)
∏

x∈λ

1 − qN+c(x)

1 − qh(x)
.

The hooks h(x) in λ which are divisible by t are t times the hooks of
the t-quotients [24, Ex. I.1.8(d)], as are the contents.

Consequently

sλ(1, q, · · · , qN−1) = R ·
t−1∏

i=0

sλ(i)(1, 1, · · · , 1
︸ ︷︷ ︸

N
t

)

where

R := qn(λ)
∏

x∈λ
c(x)6≡0 mod t

(1 − qc(x))/
∏

x∈λ
h(x)6≡0 mod t

(1 − qh(x))

is a quantity independent of N . Comparing this with (4.3) gives

R = χλ(tk)

∏t−1
i=0

∏

x∈λ(i) h(x)

k!
.

From the results of [40], one has

χλ(tk) = sgn(χλ(tk))
k!

∏t−1
i=0

∏

x∈λ(i) h(x)
.

Thus R = sgn(χλ(tk)). �
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The deduction of Proposition 4.2(i) from Theorem 4.3 with λ = k is
immediate. To deduce Proposition 4.2(ii) from the case where λ = 1k

one needs

sgn
(

χ1k

(tk/t)
)

= (−1)
(t−1)k

t .

We remark that Proposition 4.2(ii) generalizes easily to

(4.5)

[
an

k1, · · · , km

]

q=ω

=

( an
d

k1

d
, · · · , km

d

)

.

when ω is a primitive dth root of unity and d|n. This then leads to a
similar direct proof of the following proposition. When C acts on [N ],
it induces an action on k-flags of subsets

∅ ⊂ Sk1 ⊂ Sk1+k2 ⊂ · · · ⊂ Sk1+···+km−1 ⊂ Sk1+···+km−1+km = [N ]

where |Sk| = k.

Proposition 4.4. Let C = Cn act freely on [an]. Let X be the set of
all k-flags of subsets with the induced C-action, and

X(q) =

[
an

k1, · · · , km

]

q

.

Then (X, X(q), C) exhibits the cyclic sieving phenomenon.

The previous proposition is the special case of Theorem 1.6 where W
is a type A Weyl group W (Aan−1) = San. It turns out that Theo-
rem 1.6 shows that the conclusion of Proposition 4.4 also holds when
C acts only nearly freely but not freely; see the discussion following
Theorem 8.2.

A finite field analogue of Proposition 4.4 will be given in Theorem 9.4
below.

Remark 4.5. In Proposition 4.2(i),(ii), if gcd(n, k) = 1, then the coef-
ficients modulo qn−1 in the sieved sums are constant (see the discussion
following Conjecture 10.3 below). Necessary and sufficient conditions

for a general q-binomial coefficient

[
N
k

]

q

to have constant coefficients

mod qm − 1 have been given in [46], where a bijection between these
classes is also given. An analogous bijection for the major index statis-
tic on permutations [10] has been given in [4].
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5. Cyclically equivalent ordered trees

We return to Chapoton’s observation (Theorem 1.4) from the intro-
duction, and strengthen it in Corollary 5.1 below.

An ordered tree [41, §3.1] can be defined recursively as a root ver-
tex r, connected by edges to the roots of a linearly ordered sequence
T1, . . . , Tm of ordered trees. We think of such trees as embedded in
the plane, in which the linear order on T1, . . . , Tm is their order from
left to right. We will consider the set of ordered trees with n non-root
vertices, which is well-known to have cardinality 1

n+1

(
2n
n

)
, the Catalan

number.
Given an ordered tree (r, T1, . . . , Tm), we will say that it is cyclically

equivalent to the ordered tree (r, T2, T3, . . . , Tm, T1). (Note that we
do not allow cyclic rotations about non-root vertices.) One can also
speak of the symmetry group of such an equivalence class, namely the
group of cyclic rotations of subtrees of the root which stabilizes any
representative tree from the class; this will be a cyclic group whose
order divides m.

Corollary 5.1. The coefficient of q` in
[
2n − 1

n

]

q

mod qn − 1

is the number of cyclic equivalence classes of ordered trees with n non-
root vertices whose symmetry group has order dividing `.

For example, if n = 3, we have
[
5
3

]

q

≡ 4 + 3q + 3q2 mod q3 − 1.

The q0 coefficient of 4 above reflects the fact that among the 5 ordered
trees with 3 non-root vertices, there are 4 cyclic equivalence classes, as
two of the trees are cyclically equivalent. Furthermore, exactly one of
these classes has a non-trivial C3 symmetry group.

Proof. We describe an encoding of ordered trees with n non-root ver-
tices by n-multisubsets of [n]. Given such an ordered tree, record a
depth-first search by writing down a word w with n A’s and n B’s,
recording moves along an edge away from (resp. toward) the root with
an A (resp. B). Then let the multisubset of [n] have ki occurrences of
the letter i if there are ki occurrences of the letter B between the ith

and (i + 1)st occurrences of A.
It is easy to see that given an n-multisubset of [n], the corresponding

word w encodes such a depth-first search of an ordered tree if and only
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if w is a ballot sequence, that is, it has at least as many A’s as B’s in any
initial segment. Furthermore, the ballot sequences corresponding to n-
multisubsets of [n] in the same Cn-orbit correspond to cyclic rotations
of the subtrees of the root.

Consequently, the result follows from Theorem 1.1(a) with k = n
and N = 2n. �

6. The phenomenon in Pólya-Redfield theory

The goal of this section is to prove Theorem 6.1, an instance of the
cyclic sieving phenomenon in Pólya-Redfield theory that generalizes
Theorem 1.1(a). The proof is a quick application of Lemma 2.4, gen-
eralizing the first proof of Theorem 1.1(a). We begin with some review
of Pólya-Redfield theory; see e.g. [37, §7.24].

Let G be a group of permutations acting on a finite set S. The
Pólya-Redfield cycle indicator for this action is the symmetric function

PG(x1, x2, . . .) =
1

|G|

∑

g∈G

pλ(g)

where λ(g) denotes the cycle type of g as it permutes S, and pλ is the
power-sum symmetric function corresponding to λ.

The action of G on S induces an action on the set [N ]S of N -colorings
of S. Letting X = [N ]S/G denote the set of G-orbits of N -colorings, the
cycle indicator has the following interpretation as the pattern inventory
for these G-orbits:

(6.1) PG(x1, x2, . . . , xN ) =
∑

G−orbits O

xO

where xO :=
∏N

i=1 xmi

i if mi denotes the number of occurrences of the
color i in any representative of the orbit O.

Theorem 6.1. With notation as above, assume C is a cyclic group
acting nearly freely on the color set [N ], and define

X(q) := PG(1, q, q2, . . . , qN−1).

Then (X, X(q), C) exhibits the cyclic sieving phenomenon.

Note that when |S| = k and G is the full symmetric group Sk, this
theorem specializes to Theorem 1.1(a).

Proof. As in the proof of Theorem 1.1(a), let U := CN afford the
defining representation of GLN (C). Consider the |S|-fold tensor power
U⊗|S|, with G acting on the tensor positions and GLN (C) acting diag-

onally. Let V =
(
U⊗|S|

)G
be the G-invariant subspace for this action,
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which still affords a representation ρ of GLN (C). Then V has an ob-
vious basis eO of G-symmetrized basic tensors, indexed by the set of
X = [N ]S/G of G-orbits O of N -colorings. Since such a basis element
eO is a GLN(C)-weight vector of weight xO, equation (6.1) implies ρ
has character χρ = PG. Since the cyclic group C permutes this basis,
Lemma 2.4 with m = 0 implies the result. �

The N = 2 special case of the previous theorem is an interesting
result of de Bruijn.

Corollary 6.2. (de Bruijn [9]) Let G be a group permuting a finite set
S, and X := 2S/G the set of G-orbits on the subsets of S, Let X(q) be
the generating function counting these G-orbits according to cardinality
of any representative subset.

Then X(−1) counts the self-complementary G-orbits of subsets.

Proof. Identify a 2-coloring of S with the subset that receives the sec-
ond color. Then PG(1, q) = X(q) as defined in the corollary. Letting
the cyclic group C of order 2 swap the colors amounts to swapping a
subset S ′ ⊂ S for its complement S − S ′. �

Note that this corollary reduces to Theorem 1.5 from the introduc-
tion when S =

(
[n]
2

)
is the set of potential edges in a graph on vertex

set [n], with S carrying an action of G = Sn induced from the action
on the vertex set [n]. Here G-orbits of subsets of edges are identified
with unlabelled graphs on n vertices.

Remark 6.3. Corollary 6.2 has a flavor very similar to that of Stem-
bridge’s original examples [42]. In fact, the special case of Corollary 6.2
where S = [ab] and G = Sa o Sb coincides with the (easy and well-
known) c = 1 special case of Stembridge’s observation concerning plane
partitions inside an a × b × c box [42, §2.1].

7. The phenomenon in polygons: two instances

In this section we observe two instances of the cyclic sieving phenom-
enon involving convex polygons with cyclic actions by rotation; one for
dissections of the polygon, the other for noncrossing partitions.
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7.1. Polygon dissections. Consider dissections of a convex n-gon us-
ing k noncrossing diagonals. The formula for the number of such dis-
sections has a long history; see [39]. It is given by

f(n, k) =
1

n + k

(
n + k

k + 1

)(
n − 3

k

)

=
(n + k − 1)!

k!(k + 1)!(n − k − 3)!(n − 1)(n − 2)
.

It was noted by K. O’Hara and A. Zelevinsky that this last expression
coincides with the number of standard Young tableaux of the shape
(k + 1)2 1n−k−3, using the celebrated hook formula of Frame, Robinson
and Thrall [37, Corollary 7.21.6].

A natural q-analogue of f(n, k) comes from replacing integers and
factorials by their q-analogues

[n]q := 1 + q + q2 + · · ·+ qn−1,

[n]!q := [n]q[n − 1]q · · · [2]q[1]q.

One can then define

(7.1)

f(n, k; q) :=
1

[n + k]q

[
n + k
k + 1

]

q

[
n − 3

k

]

q

=
[n + k − 1]!q

[k]!q[k + 1]!q[n − k − 3]!q[n − 1]q[n − 2]q

= q−(n−k−1
2 )−k

∑

standard Young tableaux T
of shape (k+1)2 1n−k−3

qmaj(T )

where the statistic maj(T ) is the major index of T , defined to be the
sum of values i for which i+1 appears in a lower row of T than i. The
last equality in (7.1) is a special case of a q-hook formula of Stanley
[37, Corollary 7.21.5].

Theorem 7.1. Let X be the set of dissections of a convex n-gon using
k noncrossing diagonals. Let the cyclic group C of order n act on X
by cyclic rotations of the n-gon. Let X(q) := f(n, k; q).

Then (X, X(q), C) exhibits the cyclic sieving phenomenon.

Proof. We verify by direct calculation condition (i) of the Definition-
Proposition from the introduction. Starting with the left side of con-
dition (i), one must evaluate f(n, k; q) at q = ω, where ω is a primitive
dth root-of-unity for some divisor d of n. To do this, one examines the
numerator and denominator factors in (7.1), and uses these facts:
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• The factor [m]q has a (simple) zero at q = ω if and only if d|m,
d 6= 1, and

• when m1 ≡ m2 mod d,

lim
q→ω

[m1]q
[m2]q

=

{
m1

m2
if m1 ≡ m2 ≡ 0 mod d

1 if m1 ≡ m2 6≡ 0 mod d.

The following computation is then a straightforward exercise (albeit
somewhat tedious). For d ≥ 2 a divisor of n,

(7.2) [f(n, k; q)]q=ω =







bn+k−1
2

c!

bn−k−3
2

c!b k
2
c!b k+1

2
c! n−2

2

if d = 2,

(n+k
d

−1)!

(n−k
d

−1)!( k
d)!2

if d ≥ 3 and d|k,

0 otherwise.

For the right side of condition (i), we must compute the number of
dissections of the n-gon using k diagonals which are invariant under
d-fold rotation. For this we utilize a result of Simion [33, Proposition
1] counting the number an,p of subdivisions of an n-gon, with n even,
which are centrally symmetric, using p antipodal pairs of diagonals (and
where a diameter of the n-gon is counted as one antipodal pair):

(7.3) an,p =

(
n
2
− 1

p

)(
n
2

+ p − 1

p

)

.

As one might expect from the formulae in (7.2), the calculation will
proceed in two cases, d = 2 and d ≥ 3, with the case d = 2 broken into
two subcases depending upon the parity of the number k of diagonals.

Case 1(a): d = 2 and k odd. In this case, a centrally symmetric subdi-
vision with k diagonals will contain a unique diameter. This diameter
can be chosen in n

2
ways, and the rest of the subdivision is completely

determined by the subdivision of the (n
2

+ 1)-gon using k−1
2

diagonals
on either side of the diameter. Hence the number of such subdivisions
is

n

2
· f

(
n

2
+ 1,

k − 1

2

)

=
n+k−1

2
!

n−k−3
2

!k−1
2

!k+1
2

!n−2
2

,

which agrees with (7.2) for d = 2 and k odd.

Case 1(b): d = 2 and k even. Here the set of subdivisions counted
by an, k

2
in (7.3) contains not only the subdivisions that we wish to

count, but also those which have k−1 diagonals; since k−1 is odd, the
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latter can be enumerated as in Case 1(a). Hence the desired number
of subdivisions with k diagonals is

an, k
2
−

n

2
· f

(
n

2
+ 1,

k − 2

2

)

=

(n
2
− 1
k
2

)(n
2

+ k
2
− 1

k
2

)

−
n+k−2

2
!

(
n−k

2
− 1
)
!
(

k
2
− 1
)
!k
2
!n−2

2

=
n+k−2

2
!

n−k−4
2

!
(

k
2
!
)2 n−2

2

,

which agrees with (7.2) for d = 2 and k even.

Case 2: d ≥ 3. In the case d ≥ 3, it is easily seen that any diagonal in
a subdivision with d-fold rotational symmetry lies in a free orbit under
this action of Cd. Consequently k must be divisible by d, in agreement
with (7.2).

When d divides k, the d-fold rotationally symmetric subdivisions
using k diagonals decompose into two sets (similar in spirit to the cases
of k odd and k even for d = 2): there are those for which the central
polygon in the subdivision is a d-gon, and those for which it is not. In
the former set, one can choose this central d-gon in n

d
ways, and then the

rest is completely determined by the subdivision of the (n
d
+1)-gon using

k
d
−1 diagonals that lies in each 2π

d
-sector outside an edge of the central

d-gon. Such subdivisions are therefore counted by n
d
· f
(

n
d

+ 1, k
d
− 1
)
.

In the latter set, one can employ an obvious bijection (described in
the proof of [29, Proposition 4.2]) between subdivisions with d-fold
rotational symmetry and those with central symmetry. This bijects
the collection of d-fold symmetric subdivisions of an n-gon using k
diagonals and no central d-gon to the collection of centrally symmetric
subdivisions of a 2n

d
-gon using 2k

d
diagonals. The latter were counted

in Case 1(b). Totalling the cardinalities of these two sets gives

n

d
· f

(
n

d
+ 1,

k

d
− 1

)

+
2n/d+2k/d−2

2
!

(
2n/d−2k/d−4

2

)

!
(

2k/d
2

!
)2

2n/d−2
2

=

(
n+k

d
− 1
)
!

(
n−k

d
− 1
)
!k
d
!
(

k
d
− 1
)
!
(

n
d
− 1
) +

(
n+k

d
− 1
)
!

(
n−k

d
− 2
)
!
(

k
d
!
)2 (n

d
− 1
)

=

(
n+k

d
− 1
)
!

(
n−k

d
− 1
)
!
(

k
d

)
!2

,

in agreement with (7.2) for d ≥ 3 and d dividing k. �
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7.2. Noncrossing partitions. Kreweras defined noncrossing parti-
tions in 1972, and they have been intensively studied since; see Simion
[32] for a nice survey. To define them, number the vertices of a convex
n-gon by 1, 2, . . . , n in a circular order. A partition of [n] is noncross-
ing if its blocks correspond to subsets of these vertices whose convex
hulls are pairwise disjoint. Ordering the noncrossing partitions by re-
finement gives a ranked lattice called NC(n), in which a noncrossing
partition having b blocks has rank n − b. The cardinality |NC(n)| is
the Catalan number 1

n+1

(
2n
n

)
, and the number of elements at rank k in

NC(n) is the Narayana number [37, Exer. 6.36]:

N(n, k) =
1

n

(
n

k

)(
n

k + 1

)

.

A natural q-analogue of the Narayana number, introduced by Fürlinger
and Hofbauer [14], is given by

(7.4) N(n, k; q) :=
1

[n]q

[
n
k

]

q

[
n

k + 1

]

q

qk(k+1).

This has many combinatorial interpretations; see Brändén [3].

Theorem 7.2. Let X be the set of noncrossing partitions in NC(n)
with rank k. Let the cyclic group C of order n act on X by cyclic
rotations of the n-gon. Let X(q) := N(n, k; q).

Then (X, X(q), C) exhibits the cyclic sieving phenomenon.

Proof. We proceed via direct calculation as in the proof of Theorem 7.1,
starting with the left side of condition (i) in the Definition-Proposition
from the introduction. A straightforward analysis of numerator and de-
nominator factors in N(n, k; q) similarly shows that for d ≥ 2 dividing
n,

(7.5) [N(n, k; q)]q=ω =







n−k
n

(n
d
k
d

)2
if d|k,

k+1
n

( n
d

k+1
d

)2
if d|k + 1,

0 otherwise.

For the right side of condition (i), we must compute the number of
elements of NC(n) having rank k which are invariant under d-fold ro-
tation. Note that when a noncrossing partition is d-fold rotationally
symmetric, the cyclic group Cd acts freely on all blocks except possibly
for the central block (if present). Thus the number of blocks b is con-
gruent either to 0 or 1 modulo d. Since d|n and b = n − k, this means
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that there will be no such partitions unless d|k or d|k+1, in agreement
with (7.5).

This leaves the two cases where d|k or d|k +1. Here we will utilize a
special case of a result of Athanasiadis and the first author [2, Lemma
4.4]: there are

•
(

N
p

)2
centrally symmetric non-crossing partitions of [2N ] that

have p antipodal pairs of blocks (where a central block fixed
under the antipodal map does not count as a pair),

and among these,

• the fraction which have a central block is N−p
N

, so
• the fraction with no central block is p

N
.

Case 1: d|k, so that b ≡ 0 mod d. Here there is an obvious bijection
[27, Proposition 1] to centrally symmetric noncrossing partitions of [ 2n

d
]

having 2b
d

blocks. The latter will have b
d

antipodal pairs of blocks and
no central block, and so are counted by the following formula with
N = n

d
, p = b

d
:

p

N

(
N

p

)2

=
b/d

n/d

(n
d
b
d

)2

=
n − k

n

(n
d
k
d

)2

.

This agrees with (7.5) for d|k.

Case 2: d|k + 1, so that b ≡ 1 mod d. As in Case 1, there is an
obvious bijection to centrally symmetric noncrossing partitions of [ 2n

d
]

having 2(b−1)
d

+ 1 blocks. The latter will have b−1
d

antipodal pairs of
non-central blocks and one central block, and so are counted by the
following formula with N = n

d
, p = b−1

d
:

N − p

N

(
N

p

)2

=
n
d
− b−1

d
n
d

( n
d

b−1
d

)2

=
k + 1

n

( n
d

k+1
d

)2

.

This agrees with (7.5) for d|k + 1. �

We remark that Theorems 7.1 and 7.2 are somewhat mysterious; it
would be desirable to have a more illuminating or unified proof. It is
perhaps worth mentioning that

• in both cases, the sets X are in bijection with lattice paths
obeying various restrictions, and X(q) is a q-count by a major
index statistic,

• in both cases, the cardinality |X| has a hook or hook-content
formula, and X(q) has a q-hook or q-hook-content formula; see
Brändén [3, Corollary 8],
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• the cardinalities |X| = f(n, k) and |X| = N(n, k) give, respec-
tively, the entries in the f -vector of the (n − 3)-dimensional
associahedron and the h-vector of the (n − 1)-dimensional as-
sociahedron; see Simion [32].

8. Springer’s theorem on regular elements

In this section, we show how Theorem 1.1(b) generalizes to reflection
groups.

Recall that an element of GLN (C) is a (pseudo-)reflection if it has
finite order and fixes pointwise a (unique) hyperplane in CN , called
its reflecting hyperplane. A finite reflection group is a subgroup W of
GLN(C) generated by reflections. The theory of these groups is quite
rich, including a classification by Shephard and Todd [34] and many re-
sults on their polynomials invariants. We introduce some terminology
for the sake of stating a beautiful theorem of Springer [35] on regu-
lar elements, reformulated2 below in the fashion of Kraśkiewicz and
Weyman [21].

Say that an element c in a finite reflection group W is a regular ele-
ment if it has an eigenvector which does not lie on any of the reflecting
hyperplanes for reflections in W . Let A denote the co-invariant alge-
bra for W , that is, the quotient of the polynomial algebra C[x1, . . . , xn]
by the ideal generated the W -invariant polynomials of positive degree.
Given a regular element c of order n, let C = 〈c〉 be the cyclic group
that it generates, and ω a primitive nth root of unity. We will regard
A as a representation of W × C by having

• W act in the usual way on A (induced on the quotient from
substitutions of variables), and

• C act by c(xi) = ωxi.

We will also regard the group algebra C[W ] as a representation of
W × C by having W act by left-multiplication and C act by right-
multiplication.

Theorem 8.1. (Springer [35, Prop. 4.5], cf. [21]) The coinvariant
algebra A and group algebra C[W ] are isomorphic as representations of
W × C.

2The result of Kraśkiewicz and Weyman [21] was stated and proved for the
classical Weyl groups of types A, B, C, D. The authors thank A. Shepler for helping
them to understand why Springer’s result implies that of [21] for reflection groups
in general. They also thank F. Lübeck for checking via computer that the result
of [21] holds for the exceptional irreducible finite reflection groups, before they had
realized that this follows from Springer’s result!
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Given a graded C-algebra R =
⊕

d≥0 Rd, define its Hilbert series

Hilb(R, q) :=
∑

d≥0

dimC Rd qd.

The following is the main result of this section, and generalizes Theo-
rem 1.6 from the introduction.

Theorem 8.2. Let c be a regular element of order n in a finite reflec-
tion group W . Let C = 〈c〉, and let W ′ be any subgroup of W . Let AW ′

be the W ′-invariant subalgebra of the coinvariant algebra A.
Then setting X := W/W ′ and X(q) = Hilb(AW ′

, q), one obtains a
triple (X, X(q), C) that exhibits the cyclic sieving phenomenon.

To deduce Theorem 1.6 from this theorem, one needs the following
fact [19, §IV.4]. For (W, S) a finite Coxeter system (i.e. a finite Eu-
clidean reflection group) and any J ⊆ S, the minimum length coset
representatives W J for the parabolic subgroup WJ satisfy

W J(q) :=
∑

w∈W J

q`(w) = Hilb(AWJ , q).

Proof of Theorem 8.2. Since Theorem 8.1 tells us that A and C[W ]
are isomorphic as representations of W × C, restricting to their W ′-
invariant subspaces AW ′

and C[W ]W
′

gives isomorphic representations
of C. By definition of the C-action on AW ′

and the way we have
defined X(q), one has that AW ′

coincides with the C-representation
AX defined in Proposition 2.1. Meanwhile, C[W ]W

′

is easily identified
with the permutation representation on cosets C[W/W ′] ∼= C[X]. Thus
the result follows from Proposition 2.1 (iii). �

Theorem 8.2 motivated the search for a generalization of Springer’s
theory. The general linear group GLn(Fq) leads to a q-analogue of the
case of the symmetric group, which was studied in [30] and discussed in
Section 9 below. This was generalized further to a version of Springer’s
theory valid over arbitrary fields in [31], which includes a generalization
of Theorem 8.2.

As mentioned in the introduction, Theorem 1.6 also gives the first
case-free proof for all finite Coxeter groups of the following instance of
the q = −1 phenomenon. It was originally proven via the classification
of irreducible finite Coxeter systems by Eng [13], and later given a
case-free proof for Weyl groups in [28].

Theorem 8.3. Let (W, S) be a finite Coxeter system, and J ⊆ S. Let
w0 be the longest element in W . Then

[
W J(q)

]

q=−1
= |{cosets wWJ : w0wWJ = wWJ}|.
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In other words, setting X := W/WJ , X(q) := W J(q), and C = 〈w0〉
gives a triple (X, X(q), C) exhibiting the cyclic sieving phenomenon.

The theorem follows immediately from Theorem 1.6 and the follow-
ing observation.

Lemma 8.4. For any finite Coxeter system (W, S), the longest element
w0 is a regular element in the sense of Springer.

Proof. Let V be the natural reflection representation for (W, S), and
V +, V − the +1,−1 eigenspaces for w0 acting on V . Note that V +, V −

are orthogonal complements of one another in V , because w0 acts as
an orthogonal involution.

We will show that V − contains a regular vector, that is, one which
lies on no reflecting hyperplanes. Consider a typical reflecting hyper-
plane H, corresponding to some positive root α. Since w0(α) is a
negative root, we know that α is not fixed by w0, so α 6∈ V + = (V −)⊥.
Thus V − 6⊂ α⊥ = H, and hence H ∩V − is a codimension one subspace
inside V −. As H ranges over all of the (finitely many) reflecting hyper-
planes, these codimension one subspaces cannot exhaust V −. Hence
their complement within V − consists of regular vectors, all of which
are (−1)-eigenvectors for w0. �

Springer conveniently classified all regular elements in the finite irre-
ducible Coxeter groups [35, §5]. In type A, where W (AN−1) = SN , an
element c is regular if and only if it acts nearly freely in the sense defined
earlier. Thus Theorem 1.6 provides a third proof of Theorem 1.1(b),
and also generalizes Proposition 4.4 to nearly free actions.

The Coxeter group W (BN) of type B is the hyperoctahedral group,
that is, the subgroup of GLN (C) consisting of monomial matrices in
which the non-zero entries are all ±1. Springer’s classification shows
that the only regular elements in W (BN) are the powers of a Coxeter
element. A Coxeter element in type BN is conjugate to an element
which cyclically permutes the N coordinates while introducing a sign
change in one particular coordinate; call elements in this conjugacy
class negative N-cycles. Say that an element conjugate in W (BN) to
a cyclic permutation of the N coordinates with no sign changes is a
positive N-cycle. For each divisor n of 2N , there are regular elements
in W (BN) of order n, having form that depends upon the parity of n:

• For n an odd divisor of N , say N = an, a regular element of
order n consists of a positive cycles each of size n.
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• For n an even divisor of 2N , say 2N = an, a regular element
of order n consists of a negative cycles each of size n

2
. (When

a = 1, such elements are the Coxeter elements for W (Bn).)

We will only consider here the maximal parabolic subgroups WJ of
W (BN). These have the form

W (AN−k−1) × W (Bk) for k = 0, 1, . . . , N − 1.

One can identify their minimum length coset representatives W J with
the set of Q(N, k) all vectors in {+1, 0,−1}N ⊂ CN having exactly k
zero coordinates (see e.g. [38]). The actions of the appropriate cyclic
groups Cn generated by regular elements turn out to be simply the
restriction of their actions on CN . It is easily seen that

W J(q) =

[
N
k

]

q

(−qk+1; q)N−k

where we are using the the notation

(x; q)m := (1 − x)(1 − qx)(1 − q2x) · · · (1 − qm−1x).

We immediately conclude the following from Theorem 1.6.

Corollary 8.5. Let n be a divisor of 2N , and C the cyclic subgroup of
W (BN) generated by a regular element of order n. Let X := Q(N, k),
and

X(q) :=

[
N
k

]

q

(−qk+1; q)N−k.

Then (X, X(q), C) exhibits the cyclic sieving phenomenon.

The previous discussion generalizes easily from W (BN) to the re-
flection groups W = Cm o SN , consisting of the monomial matrices
in GLN (C) whose non-zero entries are mth roots of unity. Although
these are not Coxeter groups, they do have distinguished sets of gen-
erators S coming from the fact that they are Shephard groups, that is
the symmetry groups of regular complex polytopes [8].

Let WJ be a “maximal parabolic subgroup”, that is, J = S−{s} for
some s ∈ S. This WJ will be isomorphic to W (AN−k−1) × (Cm o Sk)
for some k = 0, 1, . . . , N − 1. One can check directly that the subring
of WJ -invariants AWJ in the coinvariant algebra has Hilbert series

Hilb(AWJ , q) =

[
N
k

]

q

(q(k+1)m; qm)N−k

(qk+1; q)N−k
.

The role analogous to that of a Coxeter element is played here by
an element c which cyclically permutes the N coordinates while intro-

ducing a scaling by ζ := e
2πi
m in one particular coordinate. It is easy
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to check that such an element c is regular of order mN , and hence any
power of it is also regular. Thus for each divisor n of mN , there will
be a cyclic subgroup Cn in Cm o SN generated by the regular element

c
mN

n ; although one could describe the cycle structure of these powers

c
mN

n , as in type BN , we omit these descriptions here.
One can check that the cosets W/WJ biject with the set Q(m)(N, k)

of vectors in CN having N −k coordinates which are mth roots of unity,
and k zero coordinates. One can also check that the Cn-action on cosets
W/WJ coincides with the restriction of the action on CN to the vectors
in Q(m)(N, k).

Corollary 8.6. Let n be a divisor of mN and C = Cn the cyclic

subgroup of Cm o SN generated by c
mN

n . Let X := Q(m)(N, k), and

X(q) :=

[
N
k

]

q

(q(k+1)m; qm)N−k

(qk+1; q)N−k
.

Then (X, X(q), C) exhibits the cyclic sieving phenomenon.

As an example of Corollary 8.6 take

N = 4, m = 3, k = 0, n = 12,

so |Q(3)(4, 0)| = 34 = 81. Altering the notation slightly, one can identify

the alphabet {1, ζ, ζ2} where ζ = e
2πi
3 with the alphabet {0, 1, 2} =

Z/3Z. Then Q(3)(4, 0) consists of words of length 4 in the alphabet
Z/3Z, with the generator c of C12 acting as follows:

c(w1, w2, w3, w4) = (w4 + 1, w1, w2, w3) mod 3.

It turns out that there are 6 free orbits of C12 on Q(3)(4, 0), one or-
bit with stabilizer-order 2, namely {2200, 1220, 1122, 0112, 0011, 2001},
and one orbit with stabilizer-order 4, namely {2102, 0210, 1021}. This
is reflected in the coefficients of the sieved polynomial

(q3; q3)4

(q; q)4
≡ 8 + 6q + 7q2 + 6q3 + 8q4 + 6q5

+ 7q6 + 6q7 + 8q8 + 6q9 + 7q10 + 6q11 mod q12 − 1.

9. Counting cyclic orbits over finite fields

In this section we propose q-analogues of some of the preceding for-
mulae, involving orbit-counting of cyclic groups acting on (flags of)
subspaces in finite vector spaces. We hope that the reader will for-
give our re-use of the variable q in these new polynomials; since they
have finite field interpretations when q is a prime power, we adhere to
convention.
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We first introduce some terminology for the finite field q-analogues
of cyclic group actions. Let q be a prime power and let Fq denote the
field with q elements. Consider the tower of extensions

Fq ⊂ Fqn ⊂ Fqan

for positive integers a, n. The field extension Fqan is in particular an Fq-
vector space, in which the multiplicative group F×

qn of the subfield Fqn

acts Fq-linearly. Consequently, F×
qn acts on the set of all Fq-subspaces

of Fqan. In this action, the subgroup F×
q acts trivially, so it descends to

an action of the quotient group F×
qn/F×

q .

Note that F×
qn/F×

q is a cyclic group, since it is a quotient of the

multiplicative group F×
qn (which is well-known to be cyclic). When

a = 1, the cyclic permutation in S
F
×

qn
corresponding to multiplication

by a cyclic generator of F×
qn is called a Singer cycle (see e.g. [11]). Also

note that the cardinality of F×
qn/F×

q is [n]q = 1 + q + q2 + · · · + qn−1,

suggesting that F×
qn/F×

q is a natural q-analogue of the cyclic group Cn.
This analogy is tightened further by the following observation: just as

every subgroup of Cn is of the form Cd for some d|n, the only subgroups
of F×

qn/F×
q which can occur as the stabilizer of an Fq-subspace V in

Fqan are those of the form F×
qd/F×

q for some d|n. This is because the set

{α ∈ Fqn : αV ⊂ V } is easily seen to form a subfield of Fqn, and every
such subfield is of the form Fqd for d|n. Note that the size of such a
F×

qn/F×
q -orbit in which the stabilizer is F×

qd/F×
q will be

[n]q
[d]q

= [e]qd where n = de.

Bearing this in mind, the following finite field analogue of Proposi-
tion 4.1 is also a straightforward exercise in Möbius inversion. Define
q-analogues of the Euler-phi function and Ramanujan sum by

φq(m) :=
∑

d|m

µ
(m

d

)

[d]q

cd(`; q) :=
∑

s|d,`

µ

(
d

s

)

[s]q.

Proposition 9.1. Let C = F×
qn/F×

q act on a finite set X of subspaces
or flags of subspaces in Fqn, and let

βq(d) := |{x ∈ X : x is fixed by at least the subgroup F×
qd/F×

q of C}|.

Then the number of C-orbits
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(i) in total is
1

[n]q

∑

d|n

φq(d)βq(d).

(ii) whose stabilizer-order divides [`]q is

1

[n]q

∑

d|n

cd(`; q)βq(d).

(iii) of size [e]qd , where n = de, is

1

[e]qd

∑

s: d|s|n

µ
(s

d

)

βq(s).

We now consider the case where X is the set of all k-flags of Fq-
subspaces in Fqan, for some composition k = (k1, . . . , km) of an:

0 ⊂ V k1 ⊂ V k1+k2 ⊂ · · · ⊂ V k1+···+km−1 ⊂ V k1+···+km−1+km = Fqan

where dimFq
V k = k. Note that such a k-flag is stabilized by the

subgroup F×
qd/F×

q if and only if each Fq-subspace in the flag is actually

an Fqd-subspace. One concludes that in this situation

(9.1) βq(d) =

[
an
d

k1

d
, . . . , km

d

]

qd

.

From this and Proposition 9.1, we immediately deduce the following
generalization of a recent result of Drudge [11], who proved the special
case where a = 1, m = 2.

Proposition 9.2. (cf. [11, Theorem 2.1]) When F×
qn/F×

q acts on the set

of all k-flags of Fq-subspaces in Fqan, the total number of F×
qn/F×

q -orbits
is

(9.2) Oa,n,k(q) :=
1

[n]q

∑

d| gcd(n,k)

φq(d)

[
an
d

k1

d
, · · · , km

d

]

qd

and the number of orbits of size [e]qd for n = de is

(9.3) Oa,n,k
d (q) :=

1

[e]qd

∑

s: d|s|n

µ
(s

d

) [ an
s

k1

s
, · · · , km

s

]

qs

.

The relevant cyclic sieving phenomenon that accompanies Proposi-
tion 9.2 requires the definition of an appropriate generating function3

X(t) for the set X of all k-flags in Fqan.

3The variable t is used in X(t) here rather than our previous variable q because
the variable q is needed in its traditional role as the order of the field Fq.
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Definition 9.3. Given a composition k = (k1, . . . , km) of N , let

σs := k1 + k2 + · · ·+ ks for 1 ≤ s ≤ m,

and define the (q, t)-multinomial coefficient
[

N
k1, . . . , km

]

q,t

:=

∏N
i=1(1 − tq

N−qN−i

)
∏m

s=1

∏ks

i=1(1 − tqσs−qσs−i)
.

Although not obvious at the moment, we will see that the (q, t)-
multinomial coefficient is a polynomial in t with nonnegative integer
coefficients, whose degree is a polynomial in q depending upon k. Also
note that

lim
t→1

[
N

k1, . . . , km

]

q,t

=

[
N

k1, . . . , km

]

q

.

The (q, t)-multinomial with N = an is the appropriate choice to obtain
the cyclic sieving phenomenon; see Theorem 9.4 below. The motivation
for this choice was guided by the proof of Theorem 1.6, and results from
invariant theory, as we now explain; we refer the reader to [30] for more
details.

Let G = GLN (Fq), which acts transitively on k-flags of Fq-subspaces
in FqN . If P denotes the parabolic subgroup which fixes some par-
ticular k-flag, then X := G/P is identified with the set of k-flags.
Letting S = Fqn[x1, . . . , xN ], a theorem of Hewett [18] describes the
P -invariant polynomials SP as a polynomial subalgebra of S with ho-
mogeneous generators of degree qσs − qσs−i for 1 ≤ s ≤ m, 1 ≤ i ≤ ks.
His result generalizes a well-known theorem of Dickson asserting that
the G-invariant polynomials SG form a polynomial subalgebra with
homogeneous generators of degree qN − qN−i for 1 ≤ i ≤ N . A little
commutative algebra of Cohen-Macaulay rings then implies that SP is
a free module over the polynomial subalgebra SG. Consequently, the
quotient ring SP /(SG

+), where (SG
+) denotes the ideal in SP generated

by the G-invariants SG
+ of positive degree, has Hilbert series

Hilb(SP/(SG
+), t) =

Hilb(SP , t)

Hilb(SG, t)
=

[
N

k1, . . . , km

]

q,t

.

In [30], it is directly verified that if c ∈ F×
qn generates the subfield

Fq(c) = Fqd, and ω is a complex root of unity with the same multi-
plicative order as c, then

(9.4)

[
N

k1, . . . , km

]

q,t=ω

=

[
N
d

k1

d
, . . . , km

d

]

qd

.

This can be used to prove the following.
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Theorem 9.4. Let C = F×
qn act on the set X of k-flags of Fq-subspaces

in Fqan. Let X(t) =

[
an

k1, . . . , km

]

q,t

.

Then (X, X(t), C) exhibits the cyclic sieving phenomenon.

Proof. Let c ∈ C = F×
qn generate the extension Fq(c) = Fqd ⊂ Fqn.

Then the k-flags stabilized by c are exactly those counted by βq(d) in
(9.1) above. Since the root of unity ω(c) has the same multiplicative
order as c, comparing βq(d) with (9.4) directly verifies condition (i) of
the Definition-Proposition from the introduction. �

10. Polynomiality, nonnegativity, and a conjecture

In this section we examine the rational functions Oa,n,k
d (q) from

Proposition 9.2 that count orbits of k-flags in Fqan. We observe that
they are actually polynomials in q with integer coefficients, and conjec-
ture that these coefficients are nonnegative. We then discuss the easy
special case where gcd(n,k) = 1, which is related to results of Haiman
and Andrews.

Our main tool in this section is Proposition 10.1 below. Parts (i),(ii)
give obvious criteria for a rational function in Q(q) to be a polynomial
in Q[q] or Z[q]. Part (iii) abstracts an argument implicit in Andrews
[1], giving a simple but useful criterion for a polynomial in Z[q] to lie
in N[q], that is, to have nonnegative coefficients.

Proposition 10.1. Let f(q) ∈ Q(q).

(i) If f(N) ∈ Z for infinitely many N ∈ Z, then f(q) ∈ Q[q].

(ii) If furthermore f(q) = a(q)
b(q)

where a(q), b(q) ∈ Z[q] and b(q) is

monic, then f(q) ∈ Z[q].

(iii) If furthermore f(q) = a(q)
[n]q

for some positive integer n, and

a(q) ∈ N[q] has symmetric, unimodal coefficient sequence, then
f(q) ∈ N[q], and f(q) has symmetric coefficient sequence.

Proof. For (i), express f(q) = a(q)
b(q)

with a(q), b(q) ∈ Q[q]. Divide b(q)

into a(q) with quotient c(q) and remainder r(q). If D ∈ Z is a common
denominator for the coefficients of c(q), then

Df(q) = Dc(q) + D
r(q)

b(q)
.

where Dc(q) ∈ Z[q]. Since Dc(N) ∈ Z for any integer N , we conclude

that D r(N)
b(N)

∈ Z for infinitely many integers N . As r has lower degree
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than b, one will have
∣
∣
∣D

r(N)
b(N)

∣
∣
∣ < 1 for |N | large, and hence D r(N)

b(N)
= 0

for infinitely many N . Hence r(q) = 0, so f(q) = c(q) ∈ Q[q].
For (ii), note that when a(q), b(q) ∈ Z[q] and b(q) is monic, the

quotient c(q) also lies in Z[q].

For (iii), since the polynomial f(q) = a(q)
[n]q

is a quotient of two poly-

nomials with symmetric coefficients, it will also have symmetric coeffi-
cients. One has

deg(f) = deg(a) − n + 1 ≤ deg(a),

and hence by the symmetry of f(q), it suffices to show that the coeffi-
cient of qk in f(q) is nonnegative for 0 ≤ k ≤ deg(a)/2. Rewrite

f(q) = (1 − q) a(q) ·
1

1 − qn
.

Since a(q) is symmetric and unimodal, the coefficient of qk in (1−q) a(q)
is nonnegative for 0 ≤ k ≤ deg(a)/2. Since 1

1−qn ∈ N[[q]], the coefficient

of qk in f(q) is also nonnegative for 0 ≤ k ≤ deg(a)/2, as desired. �

Corollary 10.2. For any composition k of an,

Oa,n,k(q), Oa,n,k
d (q) ∈ Z[q].

Proof. Apply Proposition 10.1 (i),(ii) to Theorem 9.2. �

Conjecture 10.3. For any composition k of an,

Oa,n,k(q), Oa,n,k
d (q) ∈ N[q].

Note that since

Oa,n,k(q) =
∑

d|n

Oa,n,k
d (q), and

Oa,n,k
d (q) = O

a,e,k
d

e (qd) if n = de,

this conjecture immediately reduces to the case d = 1, where Oa,n,k
1 (q)

counts free orbits.
Things simplify greatly, and Conjecture 10.3 is easy, when the action

of F×
qn/F×

q is free. As in the discussion of Section 9, this will happen

if and only if gcd(n,k) = 1: an element c ∈ F×
qn that generates the

subfield Fq(c) = Fqd for d|n will stabilize a k-flag if and only if it

is actually a k

d
-flag of Fqd-subspaces, requiring d|k1, . . . , km, n. So if

gcd(n,k) = 1 this forces c to lie in F×
q .
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Thus when gcd(n,k) = 1, the F×
qn/F×

q -action is free, and every

F×
qn/F×

q -orbit of k-flags has cardinality [n]q. The number of F×
qn/F×

q -
orbits of k-flags of Fq-subspaces in Fqan is then

(10.1)
1

[n]q

[
an

k1, · · · , km

]

q

.

Since q-multinomial coefficients are known (see e.g. [38]) to have non-
negative, symmetric, and unimodal coefficient sequence (in q), Propo-
sition 10.1(iii) immediately implies the following.

Corollary 10.4. When gcd(n,k) = 1,

Oa,n,k(q) = Oa,n,k
1 (q) =

1

[n]q

[
an

k1, · · · , km

]

q

∈ N[q]

and has symmetric coefficient sequence.

As Oa,n,k
d (q) is non-zero only for d = 1 when gcd(n,k) = 1, this verifies

Conjecture 10.3 in this case.

Question 10.5. What is a combinatorial interpretation for the non-
negative integer coefficients in (10.1) when gcd(n,k) = 1?

For m = 2 (i.e. the case of k-subspaces rather than k-flags), and
a = 1, Corollary 10.4 becomes the assertion

(10.2)
1

[n]q

[
n
k

]

q

∈ N[q] if gcd(n, k) = 1.

This was proven by Andrews [1], where he implicitly introduced Propo-
sition 10.1(iii). It also turns out to be a special case of the following
result of Haiman, whose original proof is somewhat tricky. We deduce
it here by Andrews’ method.

Theorem 10.6. ([17, Prop. 2.5.1, 2.5.2, 2.5.3]) When gcd(n, |λ|) = 1,

1

[n]q
sλ(1, q, · · · , qn−1) ∈ N[q].

Proof. Nonnegativity, symmetry and unimodality of the coefficients of
sλ(1, q, · · · , qn−1) are well-known [24, Ex. I.8.4]. Polynomiality of the
quotient is not hard: it is [17, Prop. 2.5.1] or can be established using
n-cores as in the proof of Theorem 4.3, or as in [24, Ex. I.3.17(a)]).
Now apply Proposition 10.1(iii). �

One can apply the same technique to generalize Corollary 10.4 to

generating functions of the form W J(q)
[n]q

. Recall that W J(q) is the length
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generating function for minimal length coset representatives of a par-
abolic subgroup WJ in a finite Coxeter group W . Stanley [38] showed
that when W is a Weyl group, W J(q) always has symmetric, unimodal
coefficient sequence. Thus Proposition 10.1(iii) applies to give the fol-
lowing.

Corollary 10.7. Let (W, S) be a finite Weyl group, J ⊂ S, and n a
positive integer.

If W J (q)
[n]q

∈ Z[q], then it is actually in N[q].

In particular, for the classical Weyl groups of types B, D and their
maximal parabolic subgroups WJ , one can check the conditions for

polynomiality of W J (q)
[n]q

case-by-case. One deduces the following.

Type Bn: If 0 ≤ k ≤ n − 1 and gcd(n, k) is a power of two, then

1

[2n]q

[
n
k

]

q

(−qk+1; q)n−k ∈ N[q].

Type Dn: If 2 ≤ k ≤ n − 2 and both gcd(n − 1, k) and gcd(n − 1, k − 1)
are powers of two, then

1

[2(n − 1)]q

[
n
k

]

q

(−qk; q)n−k ∈ N[q].

We close with some remarks.

Remark 10.8. An explicit statistic for the Cn-orbits on k-subsets of
[n] with gcd(n, k) = 1 can be given to explain the nonnegativity of
coefficients in (10.2) for k = 2, 3 or 4. We explain here such a statistic
for k = 4 and comment on k = 2, 3 below.

Denote by (a, b, c, d) on a circle the spacing between the elements
in the 4-subset of [n] when considered circularly modulo n. Then one
may always rotate the circle to assume that a ≤ c and b < d (note
that n − 4 = a + b + c + d must be odd, since gcd(n, 4) = 1), and this
representation is unique. The statistic for this 4-tuple is a + 2b + 3c,
that is, one can check that

∑

0≤a≤c
0≤b<d

a+b+c+d=n−4

qa+2b+3c =
1

[n]q

[
n
4

]

q

.

For k = 3, similarly denote by (a, b, c) the spacing between elements of
the 3-subset of [n] (so a+b+c = n−3). Choose Cn-orbit representatives
that have (a, b, c) first in lexicographic order in their orbit. Then the
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statistic a + 2b can be checked to work. For k = 2, the problem is
trivial, since for n odd,

1

[n]q

[
n
2

]

q

= 1 + q2 + q4 + · · ·+ qn−3.

Remark 10.9. Let a` be the coefficient of q` in

[
n
k

]

q

mod qn − 1.

Combining Theorem 1.1(b) with Propositions 4.1(ii), 4.2(ii) tells us
that

(10.3) a` =
1

n

∑

d|n

cd(`)

(n
d
k
d

)

.

Note that this may be rephrased

(10.4) a` =
〈
h(n−k,k), L

(`)
n

〉

where h(n−k,k) is the product hn−khk of complete homogeneous sym-
metric functions, and

L(`)
n :=

1

n

∑

d|n

cd(`)p
n/d
d

is the Frobenius characteristic of a representation of Sn induced from
a character on an n-cycle [21], [22], [37, Exercise 7.88], generalizing the
well-known Lie character when ` = 1.

Equation (10.4) also follows from results of Désarménien on q-Kostka
polynomials, as we now explain. He proved [10, Theorem 2.2] that the
coefficient of q` in

qn(λ)−n(λ′)Kλ,1n(q) mod qn − 1

equals
1

n

∑

d|n

χλ(dn/d)cd(`) =
〈
sλ, L

(`)
n

〉
.

Combining Désarménien’s result with the (three) facts
[
n
j

]

q

−

[
n

j − 1

]

q

= qn((n−j,j))−n((n−j,j)′)K(n−j,j),1n(q),

[
n
k

]

q

=
k∑

j=0

([
n
j

]

q

−

[
n

j − 1

]

q

)

,

h(n−k,k) =

k∑

j=0

s(n−j,j),
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gives an alternate proof of (10.3).
The specialization a = 1, m = 2, ` = 0 in (9.2) is a q-version of the

right side of (10.3). Perhaps an appropriate q-generalization of L
(`)
n can

be used to resolve Conjecture 10.3?
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