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Abstract. We explicitly characterize boundary conditions that are compatible with
low order variational principles. The freedom afforded by adding in a null Lagrangian with-
out altering the Euler–Lagrange equation significantly expands the range of variationally
admissible boundary conditions, although not all possibilities are permitted. Applications
to several fundamental problems arising in elastostatics, including bars, beams, and plates,
are presented.
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1. Introduction.

The aim of this paper is to better understand the role of boundary conditions in the
calculus of variations. Standard texts, including [12, 19, 20, 26], treat fixed and natural
boundary conditions, but have little to say about whether other types of boundary condi-
tions, e.g., inhomogeneous Neumann boundary conditions, or Robin boundary conditions,
can be incorporated into a variational framework. One reason is that, at least for first or-
der variational problems, the inhomogeneous fixed boundary conditions and homogeneous
natural boundary conditions are, in fact, the only possible uncoupled† boundary conditions
that induce the vanishing of the boundary terms arising after integration by parts in the
first variation. However, this is not the end of the story.

It is well known, [20, 32, 33, 35], that one can modify a variational problem with-
out altering the corresponding Euler–Lagrange equations by adding a null Lagrangian to
the integrand. As noted by Ericksen, [15], in the context of liquid crystal theory, this
modification (he calls null Lagrangians “nilpotent energies”) does, however, change the
associated natural boundary conditions, and hence enables one to enlarge the range of
boundary value problems that can be handled by variational techniques. This observation
was further developed, in the context of continuum mechanics, by Edelen and Lagoudas,
[13, 14], and by Lancia, Podio–Guidugli, and Vergara Caffarelli, [27, 37]. However, this
idea has yet to be fully fleshed out, even in the simple situations to be presented here.
Boundary conditions that are compatible with a variational principle will be called varia-
tionally admissible here; they are also termed self-adjoint or conservative, [3, 19]. I should
also note that the classical text by Forsyth, [18], does treat boundary conditions for vari-
ational problems in much greater detail than elsewhere but, as we will see, falls short in
some of the analysis, and, as best as I can tell, does not consider the effect of modifying
the Lagrangian in this manner.

The first result is that essentially any scalar first order variational problem can be
modified by a suitable null Lagrangian in order to admit any (reasonable) uncoupled
boundary conditions. On the other hand, coupled boundary conditions — also known as
mixed boundary conditions, [8] — are not always variationally admissible and we explicitly
characterize those that are. Moreover, the uncoupled result is particular to this simplest
case, and no longer holds for higher order scalar variational problems, variational problems
involving several unknowns, or multivariate variational problems. We illustrate the various
options in some of the more basic situations: first and second order variational problems
involving one and two independent variables and a single dependent variable, first order
problems involving one independent variable and two dependent variables, and first order
problems involving two or three independent and dependent variables, the latter of impor-
tance in (hyper-)elastostatics, [3, 23, 28]. For second order variational problems in one
independent and one dependent variable, the variationally admissible uncoupled boundary
conditions are the fixed conditions and generalizations of the simply supported, sliding, and

† By “uncoupled” — “separated” in the terminology of Bliss, [8] — we mean that each
boundary condition only involves values of the unknowns at a single point on the boundary.
Periodic, quasi-periodic, and more general coupled boundary conditions are thus excluded when
making the ensuing assertion.
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free end conditions arising in Euler–Bernoulli beam theory, [3, 40]. We further derive the
natural boundary conditions for a general second order variational problem involving two
independent variables and one dependent variable, and show how Timoshenko’s boundary
conditions for linear plate mechanics, [42], are a particular case, provided one uses the
physically relevant quadratic variational principle, which depends upon a particular choice
of null Lagrangian.

In a sense, these results can be viewed as a (partial) solution to an extended version
of the inverse problem of the calculus of variations that includes boundary conditions.
The basic inverse problem asks when is a given system of differential equations is the
Euler–Lagrange equations of some variational principle, and is answered by the classical
Helmholtz conditions, [32]. Our concern is to characterize which boundary value problems
can be assigned a variational structure as posed. We do not attempt a more general form
of the inverse problem, which asks when a system is equivalent to a system coming from
a variational principle; see the surveys [1, 38] for details (in the absence of boundary
conditions).

2. Scalar First Order Variational Problems.

We begin with a variational problem involving a scalar-valued function of a single
variable. The basic minimization problem is to determine a suitable function u = f(x)
that minimizes the objective functional

J [u ] =

∫ b

a

L(x, u, u′) dx (2.1)

which we assume to be defined on a compact interval [a, b ] ⊂ R. The integrand L(x, u, p),
where p represents u′, is known as the Lagrangian for the variational problem. To avoid
technicalities, we will impose the nondegeneracy condition

∂2L

∂p2
(x, u, p) 6= 0 (2.2)

although in this study, this will only be required at the endpoints a, b. All functions
will be assumed to be sufficiently smooth in order that one can perform the necessary
manipulations.

In most treatments of the subject, one imposes one of two possible uncoupled boundary
conditions at each endpoint a, b of the interval. (The case of coupled boundary conditions
will be discussed at the end of the section.) The first is a fixed boundary condition that
specifies the value of the minimizing function at an endpoint, e.g., u(a) = α. The second
possibility is that of a free boundary , in which no conditions are imposed a priori on the
minimizer at the endpoint in question. In the latter case, as we will see, the variational
formulation leads to the imposition of a natural boundary condition there.

The basic idea of the calculus of variations is to compare the proposed minimizer u(x)
with a nearby function. We thus introduce a variation in the form Φ(ε, x) — classically
written as δu — in which ε ∈ R is assumed small, Φ(0, x) ≡ 0, and so that the function
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u(x) + Φ(ε, x) satisfies the same boundary conditions as u(x) for all (sufficiently small) ε.
Thus, if u is to be a minimizer, the scalar function†

h(ε) = J [u+ Φ] =

∫ b

a

L(x, u+Φ, u′ +Φ′ ) dx (2.3)

must have a minimum at ε = 0, and hence h′(0) = 0. Assuming sufficient smoothness of
the integrand allows us to bring the derivative with respect to ε inside the integral and so,
by the chain rule,

h′(0) =
d

dε
J [u+ Φ]

∣∣∣∣
ε=0

=

∫ b

a

d

dε
L(x, u+Φ, u′ +Φ′ )

∣∣∣∣
ε=0

dx

=

∫ b

a

[
ϕ(x)

∂L

∂u
(x, u, u′) + ϕ′(x)

∂L

∂p
(x, u, u′)

]
dx,

(2.4)

where

ϕ(x) =
d

dε
Φ(ε, x)

∣∣∣∣
ε=0

. (2.5)

Integrating the second term in the final integral by parts, we arrive at the basic variational
formula

0 = h′(0) = ϕ(b)
∂L

∂p

(
b, u(b), u′(b)

)
− ϕ(a)

∂L

∂p

(
a, u(a), u′(a)

)

+

∫ b

a

ϕ(x)

[
∂L

∂u
(x, u, u′)−Dx

(
∂L

∂p
(x, u, u′)

)]
dx,

(2.6)

where the notation Dx refers to the total derivative, in which one differentiates with respect
to x treating u as a function thereof, [32]. We will refer to the first two terms on the right
hand side as the variational boundary terms .

So far we have not explicitly specified the conditions to be imposed on our variation
Φ other than setting Φ(0, x) ≡ 0. Suppose first that, for each fixed ε, the variation Φ(ε, x)
has compact support in the open interval (a, b), which implies that it vanishes at the
boundary: Φ(ε, a) = Φ(ε, b) = 0, which, by (2.5), implies the same for ϕ(a) = ϕ(b) = 0.
The latter implies that the variational boundary terms in (2.6) vanish. The vanishing of
the final integral term is then governed by the Fundamental Lemma, whose proof can be
found in any text on the subject.

Lemma 2.1. If f(x) is continuous on [a, b ], and

∫ b

a

f(x)ϕ(x)dx = 0 for every C∞

function ϕ(x) with compact support in (a, b), then f(x) ≡ 0 for all a ≤ x ≤ b.

This implies that the minimizer u(x) must satisfy the usual Euler–Lagrange equation

∂L

∂u
(x, u, u′)−Dx

∂L

∂p
(x, u, u′) = 0, (2.7)

† Primes on Φ mean derivatives with respect to x.
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which, under the nondegeneracy condition (2.2), constitutes a second order ordinary dif-
ferential equation that any sufficiently smooth minimizer u(x) must satisfy. One word
of caution: there do exist seemingly reasonable functionals whose minimizers are not, in
fact, C2, and hence do not solve the Euler–Lagrange equation in the classical sense; see
[7, 26, 35] for examples. Such pathologies are not considered here.

Now let us look at the boundary terms in (2.6). If u satisfies a fixed boundary condition
at an endpoint, say u(a) = α, then in order that the variation continue to satisfy the same
boundary condition, we must have ϕ(a) = 0, and hence the corresponding variational
boundary term vanishes. On the other hand, if a is a free boundary, then there are no
conditions initially imposed on either u(a) or ϕ(a). Thus, in order that the variational
requirement (2.6) hold, the term multiplying ϕ(a) must vanish instead:

∂L

∂p

(
a, u(a), u′(a)

)
= 0. (2.8)

This is known as a natural boundary condition, and imposes a constraint that any minimizer
must satisfy at the free boundary x = a. An identical argument proves that at the other
endpoint either u satisfies a fixed boundary condition u(b) = β, or the corresponding
natural boundary condition holds:

∂L

∂p

(
b, u(b), u′(b)

)
= 0. (2.9)

We conclude that, in the case of uncoupled boundary conditions, any sufficiently
smooth minimizer for the variational problem (2.1) must satisfy a two-point boundary
value problem for the associated second order Euler–Lagrange equation (2.7), where, at
each endpoint one imposes either an (inhomogeneous) fixed boundary condition or a (homo-
geneous) natural boundary condition. As always, the above are just necessary conditions
for local minimizers. Maximizers, if such exist, must also satisfy the same conditions,
which serve to characterize the critical functions of the variational principle subject to
the given boundary constraints. Determining whether a critical function is a (local) min-
imizer, or maximizer, or neither, involves further criteria based on the second variation,
[19, 20, 26, 35], that will not concern us here. It is also worth noting that minimizers (and
maximizers) may not exist, need not be unique, and can be local or global. In continuum
mechanics, under suitable assumptions, the stable equilibrium configurations are the (local
and global) minimizers of the variational problem representing the stored energy in the
system.

Consequently, imposing any other type of boundary conditions at an endpoint, say
x = a, will force the critical function to satisfy more than one boundary condition there
— the natural boundary condition (2.8) plus the imposed boundary condition, thereby
effectively prescribing both u(a) and u′(a). In this case, the basic existence and uniqueness
theorem for the initial value problem for a second order ordinary differential equation, [10],
would imply that they are satisfied by one and only one solution to the Euler–Lagrange
equation. This solution will probably not satisfy the additional boundary condition(s) at
the other endpoint, in which case there would be no critical functions associated with the
variational principle, and hence no candidate minimizers.
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Example 2.2. Let us apply this method to the following problem: find the shortest
path between a point a = (a, α) and a vertical straight line ℓb = {x = b} in the xy plane.
Assuming the solution is given by the graph of a function y = u(x), the length is given by
the arc length functional

J [u ] =

∫ b

a

√
1 + u′(x)2 dx, (2.10)

subject to the single fixed boundary condition u(a) = α. The Lagrangian is

L =
√
1 + p2, and hence

∂L

∂u
= 0,

∂L

∂p
=

p√
1 + p2

. (2.11)

The Euler–Lagrange equation becomes

0 = −Dx

u′(x)√
1 + u′(x)2

= −
u′′(x)

(1 + u′(x)2)3/2
,

which simplifies to u′′ = 0, whose solutions are straight lines. To determine the second,
natural boundary condition at x = b, we apply (2.9), whence

u′(b)√
1 + u′(b)2

= 0, or, simply, u′(b) = 0.

This means that any critical function u(x) must have horizontal tangent at the point x = b,
or, equivalently, it must be perpendicular to the vertical line ℓb.

Suppose we try to impose a non-natural, non-fixed boundary condition at the endpoint
— for example, the Robin condition, [34],

u′(b) = β u(b) + γ, (2.12)

where β 6= 0 and γ are constants. The solution to this boundary value problem for the
Euler–Lagrange equation is easily calculated:

u(x) =
(αβ + γ)x+ α(1− β b) − γ a

1− β (b − a)
(2.13)

provided the denominator does not vanish. However, unless αβ + γ = 0, so the graph of
u is a horizontal line, this function does not provide a minimum to arc length functional
among functions subject to the prescribed boundary conditions. Indeed, one can construct
functions that satisfy the Robin boundary condition (2.12) whose arc length is arbitrarily
close to that of the horizontal line, which is b − a. For example, we can slightly perturb
the line by, say, setting

uε(x) =

{
α, a ≤ x ≤ b− ε,

α+ (αβ + γ) (x− b+ ε)/(1− ε β), b− ε ≤ x ≤ b,

where 0 < ε < | β |, which does satisfy (2.12); see Figure 1. Its arc length

b− a+ ε

(√

1 +

(
αβ + γ

1− ε β

)
2

− 1

)
−→ b− a as ε→ 0.
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a b− ε b

α

Figure 1. Perturbed Horizontal Line.

One can even smooth off its corner, which has the effect of slightly decreasing its total arc
length and thus does not affect the convergence to b− a as ε→ 0. Thus, while the Robin
boundary value problem has no minimizing solution, it does admit smooth functions that
come arbitrarily close to the minimum possible value, which is b − a. A similar behavior
is expected for other types of non-variationally admissible boundary conditions.

Despite the perhaps disappointing conclusion of Example 2.2, it turns out that it
is possible to impose other types of boundary conditions on a variational principle, by
suitably modifying the functional. With this aim, we introduce an important notion of
independent interest in the calculus of variations.

Definition 2.3. A function N(x, u, p) is called a null Lagrangian if and only if its
associated Euler–Lagrange expression (2.7) vanishes identically: E(N) ≡ 0.

The key result is a special case of a general theorem characterizing higher order and
multidimensional null Lagrangians; see [32; Theorem 4.7].

Proposition 2.4. A function N(x, u, p) defined for all† (x, u, p) ∈ R
3 is a null

Lagrangian if and only if it is a total derivative, so

N(x, u, u′) = Dx[A(x, u)] =
∂A

∂x
+ u′

∂A

∂u
(2.14)

for some function A that depends only on x, u.

With Proposition 2.4 in hand, we can apply the Fundamental Theorem of Calculus
to write the functional associated with a null Lagrangian in the following form:

I[u ] =

∫ b

a

N(x, u, u′) dx =

∫ b

a

Dx[A(x, u)] dx = A
(
b, u(b)

)
− A

(
a, u(a)

)
. (2.15)

In other words, the value of the functional associated with a null Lagrangian depends only
on the values of the function at the endpoints of the interval, and hence it is constant for
any function u(x) that satisfies our usual fixed boundary conditions u(a) = α, u(b) = β.

† More generally, N can be defined on a subset of R3 with trivial topology, [2, 32].
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The flexibility afforded by null Lagrangians allows us to expand the range of boundary
conditions that can be handled by a variational analysis. Namely, we can modify the
original variational problem by adding in a null Lagrangian, which does not alter the
Euler–Lagrange equations but does change the associated natural boundary conditions. In
other words, if N = DxA is a null Lagrangian, then the modified objective functional

J̃ [u ] =

∫ b

a

[
L(x, u, u′) +N(x, u, u′)

]
dx =

∫ b

a

[L(x, u, u′) + DxA(x, u) ] dx

= A
(
b, u(b)

)
− A

(
a, u(a)

)
+

∫ b

a

L(x, u, u′) dx

(2.16)

has the same Euler–Lagrange equations as J [u ] =

∫ b

a

L(x, u, u′) dx. Moreover, when sub-

ject to fixed boundary conditions, they have exactly the same critical functions, and hence
the same minimizers, since their values differ only by the initial two boundary terms in
the final expression, which depend only on the values of u at the endpoints a, b. On the
other hand, as we will see, the two variational problems have different natural boundary
conditions, and this flexibility allows us, at least in the present situation, to admit any
uncoupled boundary conditions into the variational framework.

Remark : The second expression for the modified objective functional (2.16) is, in the
terminology of Bliss, [8], a version of the problem of Bolza, with separated end-conditions.

To prove the preceding claim, and explain how to construct the required null Lag-
rangian, let us assume that both boundary conditions explicitly involve the derivative of
the function u(x) at the endpoint. We can already handle fixed boundary conditions, and
the remaining “mixed” case, in which one end is fixed and the boundary condition at the
other end involves the derivative, is left as an exercise for the reader. Under mild algebraic
assumptions, we can solve the boundary conditions for the derivative:

u′(a) = β
1

(
u(a)

)
, u′(b) = β

2

(
u(b)

)
, (2.17)

for some functions β
1
, β

2
depending only on the value of u at the endpoint in question.

(They may, of course, depend on the respective endpoints a, b, but this is taken care of by
allowing different functions at each end.)

Given a variational problem with Euler–Lagrange equation supplemented by the pre-
scribed boundary conditions (2.17), let us add in a suitable null Lagrangian (2.14) in order
that the natural boundary conditions associated with the modified Lagrangian

L̃(x, u, p) = L(x, u, p) +N(x, u, p) = L(x, u, p) + p
∂A

∂u
(x, u) +

∂A

∂x
(x, u) (2.18)

are equivalent to the desired boundary conditions (2.17). Thus, at the right hand endpoint,
in view of (2.9), this means

0 =
∂L̃

∂p

(
b, u(b), u′(b)

)
=
∂L

∂p

(
b, u(b), u′(b)

)
+
∂A

∂u

(
b, u(b)

)

8



is equivalent to the boundary equation u′(b) = β
2

(
u(b)

)
. For this to occur, we must require

∂A

∂u

(
b, u(b)

)
=
∂L

∂p

(
b, u(b), β

2

(
u(b)

) )
. (2.19)

Similarly, at the left hand endpoint, we require

∂A

∂u

(
a, u(a)

)
=
∂L

∂p

(
a, u(a), β

1

(
u(a)

) )
. (2.20)

These two conditions suffice to prescribe (2.17) as the natural boundary conditions for the
variational problem associated with the modified Lagrangian (2.18), thus justifying our
claim that by a suitable choice of A(x, u), or, equivalently, by adding in a suitable null
Lagrangian N = dA/dx we can arrange for any boundary conditions of the above form to
be the natural boundary conditions associated with the variational problem.

We can combine the requirements (2.19–20) into a simpler form as follows. Choose
an “interpolating function” B(x, u) such that

B
(
a, u(a)

)
= β

1

(
u(a)

)
, B

(
b, u(b)

)
= β

2

(
u(b)

)
. (2.21)

For example, we can use linear interpolation and set

B(x, u) =
x− a

b− a
β
2
(u)−

x− b

b− a
β
1
(u). (2.22)

Then (2.19–20) are implied by the interpolated equation

∂A

∂u
(x, u) = −

∂L

∂p

(
x, u, B(x, u)

)
, and thus A(x, u) = −

∫
∂L

∂p

(
x, u, B(x, u)

)
du

(2.23)
is any anti-derivative of the integrand. We have thus proved a general result about varia-
tional problems with specified boundary conditions.

Theorem 2.5. Let J [u ] =

∫ b

a

L(x, u, u′) dx be a variational problem whose mini-

mizers are subject to the boundary conditions

u′(a) = β
(
a, u(a)

)
, u′(b) = β

(
b, u(b)

)
, (2.24)

for some function β(x, u). Let A(x, u) be defined by (2.23). Then the modified variational

problem

J̃ [u ] =

∫ b

a

[L(x, u, u′) + DxA(x, u) ] dx = A
(
b, u(b)

)
− A

(
a, u(a)

)
+

∫ b

a

L(x, u, u′) dx

(2.25)
has the same Euler–Lagrange equations as J [u ], and natural boundary conditions (2.24).

Observe that the modified variational problem (2.25) differs from the original only
through the addition of certain “corrections” that depend only on the boundary values
of u. The point is that any solution to the resulting boundary value problem will be a
candidate minimizer for the modified variational problem.
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Example 2.6. Let us consider the problem of minimizing arc length (2.10) subject
to the Robin boundary conditions

u′(a) = β
1
u(a) + γ

1
, u′(b) = β

2
u(b) + γ

2
, (2.26)

in which β
1
, β

2
, γ

1
, γ

2
are prescribed constants. We assume β

1
β
2
6= 0, leaving the cases of

inhomogeneous Neumann conditions to the reader. In accordance with (2.22), set

B(x, u) = β(x) u+ γ(x) where β(x) =
x− a

b− a
β
2
−
x− b

b− a
β
1
, γ(x) =

x− a

b− a
γ
2
−
x− b

b− a
γ
1
.

Substituting the second formula in (2.11) into (2.23), the required function A is obtained
by integration:

A(x, u) = −

∫
β(x) u+ γ(x)√

1 + [β(x) u+ γ(x)]2
du =−

√
1 + [β(x) u+ γ(x)]2

β(x)
,

provided β(x) 6= 0. The modified variational problem (2.25) can thus be written in the
form†

J̃ [u ] = −

√
1 + [β

2
u(b) + γ

2
]2

β
2

+

√
1 + [β

1
u(a) + γ

1
]2

β
1

+

∫ b

a

√
1 + u′(x)2 dx

= −

√
1 + u′(b)2

β
2

+

√
1 + u′(a)2

β
1

+

∫ b

a

√
1 + u′(x)2 dx.

(2.27)

Thus, while the basic arc length functional does not, in general, admit a minimizer that
satisfies the Robin boundary conditions, the modified arc length (2.27), which has the
same Euler–Lagrange equation, (usually) does.

Let us solve the Robin boundary value problem for the Euler–Lagrange equation,
which, as noted above, is merely u′′ = 0, the solutions of which are straight lines u = cx+d.
Substituting into the Robin boundary conditions (2.26) produces

c = β
1
(ca+ d) + γ

1
= β

2
(cb+ d) + γ

2
.

Thus, if

(b− a)β
1
β
2
+ β

2
− β

1
6= 0,

the problem admits a unique solution, while if the left hand side is zero, then there is either
a one-parameter family of solutions that all give the same value to the modified variational
problem (even though they have differing arc lengths), or there is no solution, depending
on the values of γ

1
, γ

2
.

† We avoid writing out the more complicated integral expression (2.16) involving the associated
null Lagrangian.
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What about coupled boundary conditions, which relate the values of the minimizer and
its derivatives at the endpoints? The simplest are the usual periodic boundary conditions

u(a) = u(b), u′(a) = u′(b). (2.28)

Any variation must satisfy the same periodic conditions: ϕ(a) = ϕ(b), ϕ′(a) = ϕ′(b), and
hence the difference of the two variational boundary terms in (2.6) will vanish provided
∂L/∂p is also periodic in x, meaning

∂L

∂p
(a, u, p) =

∂L

∂p
(b, u, p). (2.29)

More generally we could try to impose a pair of coupled boundary conditions of the
form

F
1

(
u(a), u′(a), u(b), u′(b)

)
= F

2

(
u(a), u′(a), u(b), u′(b)

)
= 0,

where each Fi(u, p, v, q) depends on 4 arguments. The variation ϕ(x) will thus satisfy the
linearization of each:

∂Fi

∂u
ϕ(a) +

∂Fi

∂p
ϕ′(a) +

∂Fi

∂v
ϕ(b) +

∂Fi

∂q
ϕ′(b) = 0. (2.30)

Now, if there are no algebraic constraints relating ϕ(a) and ϕ(b), meaning they can achieve
independent values, then (2.6) will imply that both natural boundary conditions must be
satisfied, and hence, unless the boundary value problem is overdetermined, variational ad-
missibility implies that the boundary conditions decouple into the usual natural conditions
at each end. For this not to be the case, the coupled boundary condition must relate the
values of the critical function at the endpoints, say

F
(
u(a), u(b)

)
= 0, (2.31)

and hence
∂F

∂u

(
u(a), u(b)

)
ϕ(a) +

∂F

∂v

(
u(a), u(b)

)
ϕ(b) = 0.

The vanishing of the variational boundary terms in (2.6) thus requires

G
(
u(a), u′(a), u(b), u′(b)

)
= 0, (2.32)

where

G(u, p, v, q) =
∂F

∂v
(u, v)

∂L

∂p
(a, u, p) +

∂F

∂u
(u, v)

∂L

∂p
(b, v, q).

This provides the second “natural coupled boundary condition” complementing the “fixed
coupled condition” (2.31). Thus, variationally admissible coupled boundary conditions
necessarily take the form (2.31, 32).

For example, the quasiperiodic condition

u(b) = αu(a), (2.33)
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where α is a nonzero constant, requires

∂L

∂p

(
b, u(b), u′(b)

)
=

1

α

∂L

∂p

(
a, u(a), u′(a)

)
(2.34)

as its variationally admissible quasiperiodic counterpart. In the case of the arc length
functional (2.10), the second quasiperiodic condition (2.34) becomes

u′(b)√
1 + u′(b)2

=
u′(a)

α
√
1 + u′(a)2

. (2.35)

3. Second Order Scalar Variational Problems.

We next consider a second order scalar variational problem, with objective functional

J [u ] =

∫ b

a

L(x, u, u′, u′′) dx, (3.1)

prescribed by the Lagrangian L(x, u, p, q), where now p, q represent the first and second
order derivatives u′, u′′. In analogy with (2.2), we will impose the nondegeneracy condition

∂2L

∂q2
(
x, u, p, q

)
6= 0. (3.2)

We introduce the variation

h(ε) = J [u+ Φ] =

∫ b

a

L(x, u+ Φ, u′ + Φ′, u′′ + Φ′′ ) dx,

where Φ(0, x) ≡ 0 and we set ϕ(x) =
∂Φ

∂ε
(0, x). As before, any sufficiently smooth critical

function u satisfies

0 = h′(0) =
d

dε
J [u+Φ]

∣∣∣∣
ε=0

=

∫ b

a

d

dε
L(x, u+Φ, u′ +Φ′, u′′ + Φ′′ )

∣∣∣∣
ε=0

dx

=

∫ b

a

[
ϕ(x)

∂L

∂u
(x, u, u′, u′′) + ϕ′(x)

∂L

∂p
(x, u, u′, u′′) + ϕ′′(x)

∂L

∂q
(x, u, u′, u′′)

]
dx

= B(b)−B(a) +

∫ b

a

ϕ(x)E(L)dx,

(3.3)
where the final formula results from integrating the second and third terms in the preceding
integral by parts. Here

E(L) =
∂L

∂u
(x, u, u′, u′′)−Dx

(
∂L

∂p
(x, u, u′, u′′)

)
+D2

x

(
∂L

∂q
(x, u, u′, u′′)

)
, (3.4)

is the associated Euler–Lagrange expression, while the variational boundary terms are
obtained by evaluating

B(x) = g(x)ϕ(x) + h(x)ϕ′(x), (3.5)

12



where

g(x) =
∂L

∂p
(x, u, u′, u′′)−Dx

∂L

∂q
(x, u, u′, u′′), h(x) =

∂L

∂q
(x, u, u′, u′′),

at the endpoints x = a, b.

If Φ(ε, x) has compact support in (a, b) for each ε, then ϕ(a) = ϕ′(a) = ϕ(b) = ϕ′(b) =
0, and the boundary terms in (3.3) both vanish: B(a) = B(b) = 0. Thus, applying the
Fundamental Lemma 2.1, we conclude that any critical function u must satisfy the fourth
order Euler–Lagrange equation E(L) = 0. This differential equation will be supplemented
by four boundary conditions — two at each endpoint in the uncoupled case. The key
question is which pairs of boundary conditions are compatible with the variational structure
afforded by (3.1).

The variation must maintain the boundary conditions, which serves to constrain
Φ(ε, x) and/or some of its derivatives at each endpoint. We can classify the possible
uncoupled cases as follows. Let us designate the order 1 ≤ n ≤ 3 of a pair of bound-
ary conditions at an endpoint, either a or b, to be the highest order derivative of u that
explicitly occurs in them. We will allow nonlinear boundary conditions — indeed for non-
quadratic variational problems the natural boundary conditions are inevitably nonlinear
— but make a mild algebraic assumption that allows us to solve one of the two boundary
conditions for the highest order derivative and then, substituting this expression into the
second boundary condition, solve it for the highest order remaining derivative occurring
therein. We will also substitute the resulting expression back into the first boundary condi-
tion so the derivative we subsequently solved for only occurs in the second condition. (This
preliminary step will become clearer in the context of specific examples.) We will focus on
the left hand endpoint x = a, noting that the same analysis holds, mutatis mutandis, at
x = b.

Furthermore, we will modify the variational problem by adding in a null Lagrangian
so as to preserve the underlying Euler–Lagrange equation. The analogue of Proposition 2.4
characterizes every second order null Lagrangians as a total derivative, so

N(x, u, p, q) = DxA(x, u, p) =
∂A

∂x
+ p

∂A

∂u
+ q

∂A

∂p
(3.6)

for some function A that depends only on x, u, p. Replacing L by L+N in the preceding
computation, we arrive at the modified boundary function (3.5) with

g(x) =
∂L

∂p
−Dx

∂L

∂q
+
∂A

∂u

= −
∂2L

∂q2
u′′′(x)−

∂2L

∂p∂q
u′′(x)−

∂2L

∂u∂q
u′(x)−

∂2L

∂x∂q
+
∂L

∂p
+
∂A

∂u
,

h(x) =
∂L

∂q
+
∂A

∂p
,

(3.7)

where the partial derivatives of L and A are evaluated at x, u(x), u′(x), u′′(x).
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First order boundary conditions : If the two boundary conditions at x = a only involve
u(a) and u′(a), then, under our algebraic assumption, we can solve them for

u(a) = α, u′(a) = β, (3.8)

where α, β ∈ R, and so we are dealing with the fixed boundary conditions at x = a. The
corresponding variation must therefore satisfy the homogeneous fixed boundary conditions

ϕ(a) = 0, ϕ′(a) = 0. (3.9)

In view of (3.5), this immediately implies that the boundary term B(a) = 0. Hence, as
in the first order case, fixed boundary conditions are variationally admissible and no null
Lagrangian modification is required.

Second order boundary conditions : These come in two subclasses. First, one boundary
condition could only involve u(a), and so be of fixed type. Thus, under our algebraic
assumptions, we can solve for

u(a) = α, u′′(a) = β
(
u′(a)

)
, (3.10)

where α is a constant and β(p) a scalar function. Alternatively, both boundary conditions
involve derivatives of u and can be solved for

u′(a) = α
(
u(a)

)
, u′′(a) = β

(
u(a)

)
, (3.11)

where now both α(u), β(u) are scalar functions.

In the first subcase (3.10), the first condition again implies ϕ(a) = 0. As for the
second boundary condition, the value of ϕ′(a) is no longer constrained, and so, in order
that B(a) = 0, we must impose the corresponding natural boundary condition

h(a) =
∂L

∂q

(
a, u(a), u′(a), u′′(a)

)
+
∂A

∂p

(
a, u(a), u′(a)

)
= 0. (3.12)

Arguing as we did for first order boundary conditions, this will be equivalent to the second
boundary condition in (3.10) provided we choose A(x, u, p) such that

∂A

∂p
(a, α, p) =

∂L

∂q

(
a, α, p, β(p)

)
. (3.13)

Thus, we can always find a null Lagrangian that makes the boundary conditions (3.10)
variationally admissible. We will refer to (3.10) as generalized simply supported boundary
conditions, the justification of this choice of terminology appearing below.

On the other hand, the second subcase (3.11) is not variationally admissible. Substi-
tuting u + Φ into the boundary conditions, differentiating with respect to ε and setting
ε = 0, we find that ϕ satisfies the corresponding linearized boundary conditions

ϕ′(a) = α′
(
u(a)

)
ϕ(a), ϕ′′(a) = β′

(
u(a)

)
ϕ(a).

Using the first of these, the corresponding boundary term (3.5) can thus be written in the
form

B(a) =
[
g(a) + h(a)α′

(
u(a)

) ]
ϕ(a), (3.14)
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whose vanishing requires the vanishing of the expression in brackets. However, referring
back to (3.7) and the nondegeneracy condition (3.2), there is a term in g(a) that depends
on u′′′(a) with non-vanishing coefficient. Thus, the vanishing of the bracket expression
will impose a third boundary condition involving u′′′(a) and hence, except in exceptional
circumstances, we do not have a variational formulation of the boundary conditions (3.11).

Third order boundary conditions come in three subclasses.

Generalized free boundary conditions :

u′′(a) = α
(
u(a), u′(a)

)
, u′′′(a) = β

(
u(a), u′(a)

)
; (3.15)

Generalized sliding boundary conditions :

u′(a) = α
(
u(a)

)
, u′′′(a) = β

(
u(a), u′′(a)

)
; (3.16)

and a final case:
u(a) = α, u′′′(a) = β

(
u′(a), u′′(a)

)
. (3.17)

Here α, β are smooth functions of the indicated variables except in the last case when
α is constant. As we will show, in the first two cases, variational admissibility imposes
certain compatibility conditions between the functions α, β, while the third case is never
variationally admissible. In all cases, the variation ϕ(x) must satisfy the corresponding
linearized boundary conditions, derived in the same manner as above.

Starting with the free conditions (3.15), both ϕ(a) and ϕ′(a) are unconstrained, and
hence both boundary terms (3.7) must vanish when the boundary conditions are satisfied.
Since both u(a) and u′(a) are similarly unconstrained, this requires

∂A

∂u
(a, u, p) = P (u, p),

∂A

∂p
(a, u, p) = Q(u, p), (3.18)

for u, p ∈ R, where

P (u, p) = β(u, p)
∂2L

∂q2
+ α(u, p)

∂2L

∂p∂q
+ p

∂2L

∂u∂q
+

∂2L

∂x∂q
−
∂L

∂p
, Q(u, p) =

∂L

∂q
, (3.19)

and the derivatives of L are all evaluated at (x, u, p, q) =
(
a, u, p, α(u, p)

)
. We can solve

(3.18), and hence construct a null Lagrangian such that the modified variational principle
is compatible with the given boundary conditions, provided the functions (3.19) satisfy the
integrability constraint

∂P

∂p
=
∂Q

∂u
, (3.20)

which effectively imposes a compatibility condition on the boundary functions α, β in order
that the corresponding boundary conditions be variationally admissible.

Turning to the sliding conditions (3.16), linearizing the first boundary condition as
above, we deduce that (3.14) must vanish at x = a, which requires that

∂A

∂u

(
a, u, α(u)

)
+ α′(u)

∂A

∂p

(
a, u, α(u)

)

= β(u, q)
∂2L

∂q2
+ q

∂2L

∂p∂q
+ α(u)

∂2L

∂u∂q
+

∂2L

∂x∂q
−
∂L

∂p
− α′(u)

∂L

∂q
,
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where the derivatives of L are evaluated at (x, u, p, q) =
(
a, u, α(u), q

)
. However, here

the dependence of A on p is not helpful, and we can assume the null Lagrangian (3.6) is
prescribed by A(x, u), reducing the previous equation to

∂A

∂u
= β(u, q)

∂2L

∂q2
+ q

∂2L

∂p∂q
+ α(u)

∂2L

∂u∂q
+

∂2L

∂x∂q
−
∂L

∂p
− α′(u)

∂L

∂q
. (3.21)

Since the left hand side does not depend on q, given the nondegeneracy condition (3.2),
the right hand side serves to prescribe the dependence of β on q; once this is of the proper
form, the null Lagrangian can be obtained by integrating the remaining q-independent
terms on the right hand side of (3.21) with respect to u to construct A(x, u).

As for the third possibility, (3.17), arguing as in the case (3.10), we must impose the
corresponding natural boundary condition (3.12). But this would impose an additional
boundary condition constraining u′′(a). We conclude that we are unable to find a null
Lagrangian that makes (3.12) a consequence of the given boundary conditions.

Example 3.1. The linearized equilibrium equations for a one-dimensional elastic
beam, [3, 40], first developed by Jacob and Daniel Bernoulli and Leonhard Euler, are
obtained by minimizing the stored energy functional

J [u ] =

∫ b

a

[
1

2
c(x) u′′2 − f(x) u

]
dx, (3.22)

prescribed by the Lagrangian L(x, u, p, q) = 1

2
c(x)q2 − f(x) u. The function c(x) > 0

is assumed positive and measures the stiffness of the beam at the point x, while f(x)
represent an external forcing. The equilibrium configuration of the beam is characterized
as a solution to the fourth order Euler–Lagrange equation

d2

dx2

(
c(x)

d2u

dx2

)
= f(x). (3.23)

There are four physically important pairs of homogeneous boundary conditions that can
be imposed at each endpoint. The associated names are physically motivated, and were
adapted to our preceding general formulation.

a) Fixed (clamped) end : u(a) = u′(a) = 0,

b) Simply supported end : u(a) = u′′(a) = 0,

c) Sliding end : u′(a) = u′′′(a) = 0,

d) Free end : u′′(a) = u′′′(a) = 0.

A second pair of boundary conditions must be imposed at the other end x = b, and can be
mixed or matched in any combination. Inhomogeneous boundary conditions, both linear
and nonlinear, are also allowed and used to model applied displacements or applied forces
at the ends, although not all of these are variational. On the other hand, we will see that
any constant inhomogeneity for the above four types of boundary conditions, i.e., setting
one or both of the indicated derivatives of u at the endpoint to be a fixed constant, is
always admissible.
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Let us investigate the full range of possibilities in detail based on the preceding anal-
ysis. First, inhomogeneous fixed boundary conditions (3.8) are always admissible. Next
suppose we have inhomogeneous simply supported conditions of the form (3.11). In view
of (3.13), using A(x, p) = c(x)B(p) to form our null Lagrangian, where B is a scalar func-
tion of the derivative variable with β(p) = B′(p) allows us to impose any inhomogeneous
simply supported conditions. For sliding boundary conditions (3.16), requiring the right
hand side of (3.21) to be independent of q implies that β(u, q) = α′(u) q + γ(u) for some
scalar function γ. The remaining terms give the admissibility constraints

α(u) = F ′(u), β(u, q) = F ′′(u) q +G′(u), A(x, u) = c′(x)F (u) + c(x)G(u), (3.24)

where F,G are arbitrary scalar functions. Finally consider the generalized free conditions
(3.10). In this case, the functions (3.19) are

P (u, p) = c(a) β(u, p) + c′(a)α(u, p), Q(u, p) = c′(a)α(u, p), (3.25)

and the integrability constraint (3.20) required for variational admissibility reduces to

c(a)
∂β

∂p
+ c′(a)

∂α

∂p
= c′(a)

∂α

∂u
. (3.26)

The potential physical relevance of these constraints is not immediately clear to the author.

Example 3.2. Euler’s elastica, [3, 26], governs the equilibrium configurations of a
thin planar elastic rod, i.e., a nonlinear elastic beam. In the unforced case, we assume that
the elastica is given by the graph† of a function y = u(x), with stored energy functional is

I[u ] =

∫
1

2
κ2 ds =

∫
(u′′)2 dx

2
(
1 + (u′)2

)
5/2

, with Lagrangian L =
q2

2(1 + p2)5/2
,

(3.27)
where

κ =
u′′(

1 + (u′)2
)
3/2

, ds =
√

1 + (u′)2 dx, (3.28)

are, respectively, the curvature and arc length of the elastica at the point
(
x, u(x)

)
. As

Euler discovered, the resulting complicated, highly nonlinear fourth order Euler-Lagrange
equation can be compactly written as

E(L) =
d2κ

ds2
+ 1

2
κ3 = 0, (3.29)

whose solutions κ(s) can thus be expressed in terms of elliptic functions, [26, 30], whose
historical developments in fact commence with Euler’s solution to the elastica. A direct
derivation of (3.29) from the curvature form of the Lagrangian can be found in [2, 22, 25].

† Not all equilibrium configurations are of this form. Extending the analysis to general para-
metrized curves is not difficult.
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Let us apply the preceding developments to determine which boundary conditions are
variationally admissible. We will just summarize the results leaving the details of the cal-
culation for the reader to fill in. As always, inhomogeneous fixed boundary conditions (3.8)
are variationally admissible, as are inhomogeneous simply supported conditions (3.10), the
latter requiring inclusion of the null Lagrangian based on

A(p) =

∫
β(p) dp

(1 + p2)5/2
. (3.30)

In the case of sliding boundary conditions (3.16), using (3.21), we find

β(u, q) =
5α(u)2q2

2
(
1 + α(u)2

) + α′(u) q +
(
1 + α(u)2

)5/2
A′(u), A = A(u). (3.31)

As for the free boundary conditions (3.15), setting

P (u, p) =
(1 + p2) β(u, p)− 5

2
pα(u, p)2

(1 + p2)7/2
, Q(u, p) =

α(u, p)

(1 + p2)5/2
, (3.32)

the integrability constraint (3.20) is required for admissibility.

4. Variational Problems Involving Several Unknowns.

Next we investigate the case of first order variational problems involving one indepen-
dent and two dependent variables. We find, unlike the scalar first order case, compatibility
constraints are required even for uncoupled boundary conditions in order that they be
variationally admissible. The extension of this analysis to first order variational problems
involving more dependent variables is straightforward.

We thus consider a functional

J [u, v ] =

∫ b

a

L(x, u, v, u′, v′) dx, (4.1)

prescribed by the Lagrangian L(x, u, v, p, q) involving two unknown functions u(x), v(x);
here p, q represent u′, v′, respectively. We introduce variations u(x)+Φ(ε, x), v(x)+Ψ(ε, x),

so that Φ(0, x) = Ψ(0, x) ≡ 0, and set ϕ(x) =
∂Φ

∂ε
(0, x), ψ(x) =

∂Ψ

∂ε
(0, x). Arguing as

before, we compute the derivative of the scalar function

h(ε) = J [u+ Φ, v +Ψ] =

∫ b

a

L(x, u+ Φ, v +Ψ, u′ + Φ′, v′ +Ψ′ ) dx

and require

0 = h′(0) =

∫ b

a

d

dε
L(x, u+ Φ, v +Ψ, u′ +Φ′, v′ +Ψ′ )

∣∣∣∣
ε=0

dx

=

∫ b

a

[
ϕ(x)

∂L

∂u
+ ϕ′(x)

∂L

∂p
+ ψ(x)

∂L

∂v
+ ψ′(x)

∂L

∂q

]
dx

= B(b)−B(a) +

∫ b

a

[
ϕ(x)Eu(L) + ψ(x)Ev(L)

]
dx.

(4.2)
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Here

Eu(L) =
∂L

∂u
(x, u, v, u′, v′)−Dx

(
∂L

∂p
(x, u, v, u′, v′)

)
,

Ev(L) =
∂L

∂v
(x, u, v, u′, v′)−Dx

(
∂L

∂q
(x, u, v, u′, v′)

)
,

(4.3)

are the Euler–Lagrange expressions associated with each of the dependent variables, while
the variational boundary terms are obtained by evaluating the following function at the
endpoints x = a, b:

B(x) = ϕ(x)
∂L

∂p
(x, u, v, u′, v′) + ψ(x)

∂L

∂q
(x, u, v, u′, v′). (4.4)

Taking ϕ(x), ψ(x) to have compact support in (a, b) annihilates the boundary terms in
(4.2). Thus, applying the Fundamental Lemma 2.1, we conclude that any critical functions
u, v must satisfy the system of second order Euler–Lagrange equations

Eu(L) = 0, Ev(L) = 0. (4.5)

In order that the boundary terms vanish at an endpoint, say x = a, we can either impose
an inhomogeneous fixed condition u(a) = α or the corresponding homogeneous natural

boundary condition
∂L

∂p

(
a, u(a), v(a), u′(a), v′(a)

)
= 0; the same goes for the other vari-

able: either v(a) = β or
∂L

∂q

(
a, u(a), v(a), u′(a), v′(a)

)
= 0.

Another option is a mixture, imposing one fixed boundary condition and letting the
second be determined by naturality. In geometric terms, the problem is to find a solution
curve

(
u(x), v(x)

)
whose endpoint, at x = a, lies on a prescribed plane curve, say

H
(
a, u(a), v(a)

)
= 0. (4.6)

We assume the curve is nonsingular, meaning that Ha(u, v) = H(a, u, v) has non-vanishing

gradient, ∇Ha =

(
∂Ha

∂u
,
∂Ha

∂v

)
6= 0, on the locus (4.6), which, by the Implicit Function

Theorem, implies that one can simplify by solving for one of the boundary values in terms
of the other; for example v(a) = h

(
a, u(a)

)
. The variations that infinitesimally preserve

(4.6) satisfy the linearized boundary condition:

∂H

∂u

(
a, u(a), v(a)

)
ϕ(a) +

∂H

∂v

(
a, u(a), v(a)

)
ψ(a) = 0,

which implies that they be tangent to the surface. Thus, the boundary variation (4.4) will
vanish provided the natural boundary condition

∂H

∂v

(
a, u(a), v(a)

) ∂L
∂p

(
a, u(a), v(a), u′(a), v′(a)

)

−
∂H

∂u

(
a, u(a), v(a)

) ∂L
∂q

(
a, u(a), v(a), u′(a), v′(a)

)
= 0

(4.7)
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holds. The other endpoint x = b is treated similarly.

In this situation, null Lagrangians have the form

N(x, u, v, p, q) = DxA(x, u, v) =
∂A

∂x
+ p

∂A

∂u
+ q

∂A

∂v
(4.8)

for some function A that depends only on x, u, v. Replacing L by L+N in the preceding
computation, we arrive at the modified boundary function

B(x) =

(
∂L

∂p
+
∂A

∂u

)
ϕ(x) +

(
∂L

∂q
+
∂A

∂v

)
ψ(x). (4.9)

Thus, given a set of general first order boundary conditions

u′(a) = α
(
a, u(a), v(a)

)
, v′(a) = β

(
a, u(a), v(a)

)
, (4.10)

the boundary term B(a) = 0 for all allowable variations if and only if

∂A

∂u

(
a, u(a), v(a)

)
= P

(
a, u(a), v(a)

)
,

∂A

∂v

(
a, u(a), v(a)

)
= Q

(
a, u(a), v(a)

)
, (4.11)

where

P (x, u, v) = −
∂L

∂p

(
x, u, v, α(x, u, v), β(x, u, v)

)
,

Q(x, u, v) = −
∂L

∂q

(
x, u, v, α(x, u, v), β(x, u, v)

)
.

(4.12)

Thus, we can construct a null Lagrangian that makes the boundary conditions (4.10)
variationally admissible if and only if we can solve (4.11) for A(x, u, v), which requires the
compatibility constraint

∂P

∂v
=
∂Q

∂u
(4.13)

at x = a. We conclude that, in contrast to the case of a single dependent variable, not every
set of uncoupled boundary conditions is variationally admissible for a first order problem
in several dependent variables. Boundary conditions satisfying the constraint (4.13) are
also known as self-adjoint boundary conditions, [19].

Finally, in the case of a single fixed boundary condition (4.6), an easy calculation
shows that, with the addition of the null Lagrangian (4.8), the right hand side of the
associated natural boundary condition (4.7) becomes the Jacobian determinant between
A and H:

∂A

∂u

(
a, u(a), v(a)

) ∂H
∂v

(
a, u(a), v(a)

)
−
∂A

∂v

(
a, u(a), v(a)

) ∂H
∂u

(
a, u(a), v(a)

)
,

and can thus, by suitable choice of A(x, u, v), be made equal to any function of u(a), v(a).
We conclude that, as in the single dependent variable problem, there are no constraints on
the inhomogeneous term in the single natural boundary condition.
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5. Multidimensional First Order Variational Problems.

Next, we turn to first order variational problems that involve several independent
variables. In this section, we restrict our attention to the case of two independent variables,
which we call x, y, and a single dependent variable u; later sections will deal with more
general situations.

Thus, we consider a functional

J [u ] =

∫ ∫

D

L(x, y, u, ux, uy) dx dy, (5.1)

given by a double integral over a prescribed bounded open domain D ⊂ R
2, assumed

to have smooth (or, possibly, piecewise smooth) boundary, denoted by ∂D. We adopt

subscript notation to denote partial derivatives, so ux =
∂u

∂x
, uy =

∂u

∂y
, and use the vari-

ables p, q to respectively represent the first order partial derivatives of u. The Lagrangian
L(x, y, u, p, q) is assumed to be a sufficiently smooth function of its five arguments. Our
goal is to find the function(s) u = f(x, y) that minimize the value of J [u ] when subject to
a set of prescribed boundary conditions on ∂D.

Let Φ(ε, x, y), defined for ε ∈ R, (x, y) ∈ D, denote a variation in the function u, where

Φ(0, x, y) ≡ 0 and we set ϕ(x, y) =
∂Φ

∂ε
(0, x, y). We thus introduce the scalar function

h(ε) ≡ J [u+ εv ] =

∫ ∫

D

L(x, y, u+ Φ, ux +Φx, uy +Φy) dx dy.

If u is a local minimizer, then, subject to appropriate smoothness assumptions, it must
satisfy

0 = h′(0) =

∫ ∫

D

(
ϕ(x, y)

∂L

∂u
+ ϕx(x, y)

∂L

∂p
+ ϕy(x, y)

∂L

∂q

)
dx dy, (5.2)

where the derivatives of L are all evaluated at x, y, u, ux, uy. The next step is to remove
the derivatives from ϕ through an integration by parts based on the divergence form of
Green’s Theorem, [34]:

∫ ∫

D

(div v ) dx dy =

∮

∂D

v · n ds, (5.3)

in which v is a C1 vector field, n is the unit outward normal to the boundary ∂D of the
domain, oriented in the counterclockwise direction, and ds is the element of arc length
thereon. We set

v = ϕV, where V =

(
∂L

∂p
,
∂L

∂q

)
. (5.4)

We conclude that

h′(0) =

∮

∂D

ϕ (V · n ) ds+

∫ ∫

D

ϕ(x, y)E(L)dx dy, (5.5)
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where

E(L) =
∂L

∂u
−Dx

(
∂L

∂p

)
−Dy

(
∂L

∂q

)
(5.6)

is the Euler–Lagrange expression associated with the Lagrangian L, with Dx,Dy denoting
the total derivatives with respect to the independent variables. Taking ϕ to be of compact
support in D and using a two-dimensional version of the Fundamental Lemma 2.1, we con-
clude that any sufficiently smooth minimizer, or, more generally, critical function, u(x, y)
must satisfy the Euler–Lagrange equation E(L) = 0. Assuming that not all the second
order partial derivatives of L with respect to the variables p, q vanish, the Euler–Lagrange
equation is a second order partial differential equation.

Suppose first that we have imposed a fixed boundary condition

u(x, y) = g(x, y) for (x, y) ∈ S ⊆ ∂D

on a subset† S of the boundary. This implies ϕ(x, y) = 0 for (x, y) ∈ S, and hence that part
of the boundary integral in (5.5) will vanish. This leaves an integral over the remainder
T = ∂D \ S, the free boundary where the value of the minimizer u is unspecified. Since
ϕ(x, y) is no longer constrained on T , a version of the Fundamental Lemma 2.1 applies to
the boundary integral, and implies that V ·n = 0 on T , which plays the role of the natural
boundary condition. We conclude that either

u(x, y) = g(x, y) or V · n =

(
∂L

∂p
,
∂L

∂q

)
· n = 0

at each point (x, y) ∈ ∂D.

As before, we seek to extend the range of variationally admissible boundary conditions
by including a null Lagrangian. In the present situation, first order null Lagrangians have
the form of a divergence, [32]:

N(x, y, u, p, q) = DxA(x, y, u) + DyB(x, y, u) =
∂A

∂x
+ p

∂A

∂u
+
∂B

∂y
+ q

∂B

∂u
, (5.7)

where w = (A,B) is a general vector field that depends on x, y and the dependent variable
u, but not on derivatives of u. Applying Green’s formula (5.3), the integral of any such
null Lagrangian depends only on its boundary values:

∫ ∫

D

N(x, y, u, ux, uy) dx dy =

∮

∂D

w · n ds. (5.8)

Adding the null Lagrangian to the original L does not alter the Euler–Lagrange equation,
but does change the natural boundary conditions to

(V +w) · n = 0. (5.9)

† For simplicity we assume S ⊂ ∂D is either empty, or all of ∂D, or a union of one or more
disjoint curves contained in ∂D, including their endpoints.
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The additional term w ·n can be arranged, through a suitable choice of the functions A,B,
to equal minus any desired function β(x, y, u) of a given boundary point (x, y) ∈ T ⊂ ∂D
and the value of the function u(x, y) there, i.e., we can fix

w · n = −β(x, y, u) for (x, y) ∈ T ⊂ ∂D. (5.10)

The corresponding null Lagrangian (5.7) can be the divergence of any vector field w =(
A(x, y, u), B(x, y, u)

)
whose normal component on T equals −β = w · n. (The explicit

formula for w will depend upon the shape of the boundary.) The modified natural bound-
ary conditions take the form

V · n = β(x, y, u), (x, y) ∈ T ⊂ ∂D. (5.11)

these constitute the most general variationally admissible “free boundary conditions” for
such a variational problem. In particular, we cannot impose any constraints on the tan-
gential components of V on the boundary.

Example 5.1. Consider the Dirichlet minimization problem

J [u ] =

∫ ∫

D

[
1

2

(
u2x + u2y

)
− f(x, y) u

]
dx dy =

∫ ∫

D

[
1

2
‖∇u ‖2 − f(x, y) u

]
dx dy,

(5.12)
with Lagrangian

L = 1

2
(p2 + q2)− f(x, y) u.

The Euler–Lagrange equation (5.6) is the two-dimensional Poisson equation

−∆u = −uxx − uyy = f. (5.13)

Referring back to (5.4), we find

V = (ux, uy) = ∇u,

and hence the natural boundary condition V ·n = 0 is simply the homogeneous Neumann
condition ∂u/∂n = 0. Addition of a null Lagrangian will replace this by the variationally
admissible Robin-type boundary condition

∂u

∂n
= β(x, y, u), (5.14)

where β is any function depending on the boundary point and the value of u thereon,
cf. (5.11). However, we cannot impose a variationally admissible natural boundary con-
dition involving the tangential derivative of u at the boundary. (That being said, for the
Dirichlet condition u = g on ∂D, the tangential derivative of u coincides with the tangential
derivative of g, and so is constrained by the condition ∂u/∂t = ∂g/∂t.)

Example 5.2. Minimal surfaces, [21, 29], are characterized as (local) minimizers of
the surface area functional

J [u ] =

∫ ∫

D

√

1 +

(
∂u

∂x

)
2

+

(
∂u

∂y

)
2

dx dy =

∫ ∫

D

√
1 + ‖∇u ‖2 dx dy (5.15)
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with Lagrangian L =
√
1 + p2 + q2 . Here we are assuming, for simplicity, that our minimal

surface is non-parametric, meaning that it can be described as the graph of a function
z = u(x, y) parametrized by (x, y) ∈ D. (In differential geometric terms, this amounts to
working on a Monge patch.) Minimal surfaces model soap films in equilibrium, in which
the surface tension serves to minimize the area, and thus forms the simplest elastic model
for a two-dimensional liquid, [17].

Note that

∂L

∂u
= 0,

∂L

∂p
=

p√
1 + p2 + q2

,
∂L

∂q
=

q√
1 + p2 + q2

,

and hence the Euler–Lagrange equation (5.6) becomes

−
∂

∂x

ux√
1 + u2x + u2y

−
∂

∂y

uy√
1 + u2x + u2y

=
− (1 + u2y)uxx + 2uxuyuxy − (1 + u2x)uyy

(1 + u2x + u2y)
3/2

= 0.

Setting the numerator of the left hand side to 0 produces the justly famous minimal surface
equation

(1 + u2y) uxx − 2uxuy uxy + (1 + u2x) uyy = 0. (5.16)

On a free boundary, the minimal surface must satisfy the natural boundary conditions
that the normal component V · n of the rescaled gradient vector field

V =

(
ux√

1 + u2x + u2y
,

uy√
1 + u2x + u2y

)
=

∇u√
1 + ‖∇u ‖2

vanishes, which is just the homogeneous Neumann boundary condition ∂u/∂n = 0.

However, an inhomogeneous Neumann boundary condition is not variationally admis-
sible for the surface area functional, and so a solution to the minimal surface equation that
is subject to such a boundary condition cannot be characterized variationally. Indeed,
according to (5.9), any variationally admissible boundary condition must, at each point on
∂D, be either a fixed boundary condition u = α or of the form

0 = (V +w) · n =
∂u/∂n√

1 + ‖∇u ‖2
− β(x, y, u),

where β = w · n is the normal component of w = (A,B), or, equivalently,

∂u

∂n
= β(x, y, u)

√
1 + ‖∇u ‖2 , (x, y) ∈ ∂D. (5.17)

As usual, we can impose fixed boundary conditions on part of the boundary and the
modified natural boundary conditions on the remainder, which, when β 6= 0, requires
modification of the surface area functional by addition of a suitable null Lagrangian. The
boundary condition (5.17) appears in the theory of equilibrium configurations of capillary
surfaces, [17; (7.3)], in which β is, typically, independent of u and represents the cosine
of the contact angle between the fluid film and a bounding surface. Dependence of the
contact angle on u would allow for patterning of the surface.
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6. Two-Dimensional Elasticity.

Let us now consider the case of a first order variational problem involving two inde-
pendent variables, x, y, and two dependent variables, u, v. Thus, we consider a functional

J [u, v ] =

∫ ∫

D

L(x,u,∇u) dx dy =

∫ ∫

D

L(x, y, u, v, ux, uy, vx, vy) dx dy. (6.1)

where D ⊂ R
2 is as before. The Lagrangian will be written in vectorial form

L(x,u,P), where x =

(
x
y

)
, u =

(
u
v

)
, P = ∇u =

(
ux uy
vx vy

)
.

Of particular importance are the variational principles arising in two-dimensional hypere-
lastostatics, [3, 23, 28], in which x represents the reference coordinates in a planar elastic
body D ⊂ R

2, while u(x) represents the deformation of the body, or, in the linear approx-
imation, a small displacement. The Jacobian matrix P = ∇u is known as the deformation
gradient , and the Lagrangian L represents the stored energy of the deformed body (often
denoted by W ). Frame indifference implies that the stored energy is independent of u
and has a rotational invariance, but these additional constraints will not play a role in our
analysis of the boundary conditions. (See Ericksen, [15], for a discussion of the effect of
such invariances on the form of the null Lagrangians.)

Applying variations ϕ(x) = (ϕ(x, y), ψ(x, y) )
T

to both components of u, and per-
forming the usual variational calculations leads to the first variation integral

∮

∂D

(
Tϕ

)
· n ds+

∫ ∫

D

[
ϕ ·E(L)

]
dx dy

=

∮

∂D

(
ϕTu + ψTv

)
· n ds+

∫ ∫

D

[
ϕEu(L) + ψEv(L)

]
dx dy,

(6.2)

which must vanish for all allowable variations. Here

T = (Tu,Tv) =

(
∂L

∂P

)
T

=

(
∂L/∂ux ∂L/∂vx
∂L/∂uy ∂L/∂vy

)
(6.3)

is known as the first Piola–Kirchhoff stress tensor in elasticity, while the components of
E(L) = (Eu(L), Ev(L) )

T
are the Euler–Lagrange expressions; the corresponding second

order Euler–Lagrange equations

Eu(L) =
∂L

∂u
−Dx

(
∂L

∂ux

)
−Dy

(
∂L

∂uy

)
= 0,

Ev(L) =
∂L

∂v
−Dx

(
∂L

∂vx

)
−Dy

(
∂L

∂vy

)
= 0,

(6.4)

are a consequence of the vanishing of the double integral in (6.2) under variations with
compact support.
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The boundary integral in (6.2) vanishes provided either the variations vanish on ∂D,
or the corresponding boundary terms vanish. Thus, the variationally admissible boundary
conditions include the fixed (Dirichlet) conditions

u(x, y) = f(x, y), v(x, y) = g(x, y), (x, y) ∈ ∂D, (6.5)

or, alternatively, the vanishing of the boundary tractions

Tu · n = Tv · n = 0, (x, y) ∈ ∂D. (6.6)

There is also a hybrid class of boundary conditions, similar to that discussed at the end of
Section 4, in which one imposes just one fixed condition, say

H
(
x, y, u(x, y), v(x, y)

)
= 0 for (x, y) ∈ ∂D, (6.7)

and the second is the appropriate linear combination of homogeneous traction conditions
(6.6) that cause the variational boundary integral to vanish, namely,

∂H

∂v
Tu −

∂H

∂u
Tv = 0, (x, y) ∈ ∂D. (6.8)

Geometrically, (6.7) requires that each point on the boundary of the deformed body is
constrained to lie on a prescribed curve, which is allowed to vary from point to point. (A
more physically realizable version of such conditions arises in the equilibrium configuration
of the capillary surface of a fluid in a container, [17].) Moreover, one can decompose the
boundary into subsets with different boundary conditions (fixed, traction, mixed) imposed
on the sub-boundaries.

As noted in [13], other types of boundary conditions that arise in applications, e.g.,
the dead load boundary conditions in which the boundary tractions are equal to a fixed
function of the reference coordinates, [3, 28], require the introduction of a suitable null
Lagrangian into the variational functional. The most general first order null Lagrangian
is a linear combination of the basic null Lagrangians depending only on ∇u, which are all
the subdeterminants thereof, [5, 15, 33]:

N(x,u,∇u) = λ+α · ∇u+ β · ∇v + µ(uxvy − uyvx). (6.9)

The coefficients λ, µ are scalars, while α,β are vectors, all depending on (x,u). The
condition that N be a null Lagrangian imposes the following constraints:

∂λ

∂u
= ∇ ·α,

∂λ

∂v
= ∇ · β,

∂β

∂u
−
∂α

∂v
= ∇⊥µ, (6.10)

which are readily found by computing its Euler–Lagrange expressions. Here

∇ =

(
∂/∂x
∂/∂y

)
, ∇⊥ =

(
∂/∂y

−∂/∂x

)
, (6.11)

are, respectively, the gradient and skew-gradient with respect to the reference coordinates.

For simplicity let us parametrize the boundary curve by arc length s, and write

∂D = { (x(s), y(s) | 0 ≤ s ≤ ℓ } , (6.12)
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where ℓ is the length of ∂D and closure implies x(0) = x(ℓ), y(0) = y(ℓ). The unit tangent
and unit (outwards) normal vectors are

t = (xs, ys), n = (ys,−xs), x2s + y2s = 1. (6.13)

The “null Piola–Kirchhoff stresses” associated with (6.9) are

Su =

(
∂N/∂ux
∂N/∂uy

)
= α+ µ∇⊥v, Sv =

(
∂N/∂vx
∂N/∂vy

)
= β − µ∇⊥u. (6.14)

On ∂D, their normal components are the “null tractions”

Su · n = α · n+ µ∇v · t = α · n+ µ
∂v

∂s
, Sv · n = β · n− µ∇u · t = β · n− µ

∂u

∂s
,

where the second terms in each expression are multiples of the tangential (arc length)
derivatives of the indicated deformations. Thus, the most general variationally admissible
traction boundary conditions have the form

Tu · n = α · n+ µ∇v · t, Tv · n = β · n− µ∇u · t, (6.15)

where the coefficients α,β, µ satisfy the constraints (6.10). In particular, if they depend
only on the reference coordinates x, y, then the third constraint implies that µ is constant,
and we deduce the generalized dead load boundary conditions

Tu · n = f(x, y) + µ∇v · t, Tv · n = g(x, y)− µ∇u · t, (6.16)

where f = α · n, g = β · n, are arbitrary. The variational problem must be modified by
adding in the appropriate null Lagrangian (6.9) to the stored energy. On the other hand,
if the coefficients in (6.15) only depend on the deformation u = (u, v), then µ(u, v) is
arbitrary, but the variationally admissible “load vectors” α(u, v), β(u, v) are constrained
by

∂β

∂u
=
∂α

∂v
.

The hybrid case, in which only one fixed boundary condition is imposed, is left to the
reader to complete.

7. Three-Dimensional Elasticity.

The fully three-dimensional case, which includes three-dimensional hyperelastostatics,
[3, 23, 28], is handled similarly albeit with additional computational challenges, primarily
due to the larger number of null Lagrangians. We begin with a functional

J [u, v ] =

∫ ∫ ∫

D

L(x,u,∇u) dx dy dz, (7.1)

over a solid domainD ⊂ R
3 with smooth boundary surface ∂D, oriented using the unit out-

wards normal n. The Lagrangian (stored energy) L depends on the reference coordinates

x = (x, y, z )
T
, the deformation (displacement) u(x) = (u(x, y, z), v(x, y, z), w(x, y, z) )

T
,
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and the deformation gradient P = ∇u, which is the 3 × 3 Jacobian matrix whose entries
are the first order partial derivatives of the dependent variables u, v, w with respect to
the independent variables x, y, z. As before, frame indifference, material symmetries, and
constitutive laws impose a variety of constraints on the Lagrangian, but these do not affect
our presentation.

Applying variations ϕ(x) = (ϕ(x, y, z), ψ(x, y, z), χ(x, y, z) )
T

to the three compo-
nents of u, and performing the usual variational calculations leads to the first variation
integral ∮

∂D

(
Tϕ

)
· n ds+

∫ ∫ ∫

D

[
ϕ ·E(L)

]
dx dy dz, (7.2)

where

T = (Tu,Tv,Tw) =

(
∂L

∂P

)
T

(7.3)

is the first Piola–Kirchhoff stress tensor , while

E(L) = (Eu(L), Ev(L), Ew(L) )
T
= 0 (7.4)

is the usual system of second order Euler–Lagrange equations.

The boundary integral vanishes provided either each variation vanishes on ∂D, or the
corresponding traction vanishes. Thus, the variationally admissible boundary conditions
include the fixed (Dirichlet) conditions

u(x) = f(x), x ∈ ∂D, (7.5)

or, alternatively, the vanishing of the boundary surface tractions:

T · n = (Tu · n,Tv · n,Tw · n )
T
= 0, x ∈ ∂D. (7.6)

One can also impose hybrid boundary conditions with one or two fixed conditions, and
two or one complementary homogeneous traction conditions, say when the boundary de-
formations are restricted to prescribed curves or surfaces.

As before — see also [33] — the basic null Lagrangians depending only on ∇u are all
the subdeterminants (of sizes 1× 1, 2× 2 and 3× 3) of the deformation gradient†, and the
general first order null Lagrangian can be written using the vector triple product:

N(x,u,∇u) = λ+α · ∇u+ β · ∇v + γ · ∇w + ρ · ∇v ×∇w

+ σ · ∇w ×∇u+ τ · ∇u×∇v + µ∇u · ∇v ×∇w.
(7.7)

The coefficients λ, µ are scalars, while α,β,γ,ρ,σ, τ are vectors, all depending on (x,u),
and satisfying the following constraints:

∂λ

∂u
= ∇ ·α,

∂λ

∂v
= ∇ · β,

∂λ

∂w
= ∇ · γ,

∂β

∂w
−
∂γ

∂v
= ∇× ρ,

∂γ

∂u
−
∂α

∂w
= ∇× σ,

∂α

∂v
−
∂β

∂u
= ∇× τ ,

∂ρ

∂u
=
∂σ

∂v
=
∂τ

∂w
= ∇µ.

(7.8)

† See [6] for the generalization of this result to higher order null Lagrangians.
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The “null Piola–Kirchhoff stresses”

Su = α+ σ ×∇w − τ ×∇v + µ∇v ×∇w,

Sv = β + τ ×∇u− ρ×∇w + µ∇w ×∇u,

Sw = γ + ρ×∇v − σ ×∇u+ µ∇u×∇v,

(7.9)

are thus found by computing the derivatives of the null Lagrangian with respect to the
deformation gradient variables. The corresponding “null tractions” on the boundary are
obtained by taking their dot products with the unit normal n, and these can be appended
to the homogeneous traction boundary conditions without affecting their variational ad-
missibility. The first terms, when α,β,γ depend only on x, produce dead load boundary
conditions; the last terms are related to pressure loading on the boundary of the deformed
body since the associated null Lagrangian det∇u = ∇u·∇v×∇w measures the local change
in volume. Other options appear to be less well known and would be worth investigating
for their potential physical relevance.

Remark : Each vector triple product arising in a null traction, say ∇u ×∇v · n, cor-
responds geometrically to the volume of the tetrahedron with sides ∇u,∇v,n or, equiv-
alently, the area of the parallelogram whose sides are the orthogonal projections of the
vectors ∇u,∇v onto the tangent space of the boundary surface.

8. Multidimensional Second Order Variational Problems.

While the natural boundary conditions for first order variational problems involving
several independent variables are reasonably straightforward, the same cannot be said
of second and higher order problems. Forsyth, [18; Chapter 11] devotes his penultimate
chapter to their study, but his presentation of the boundary conditions is incomplete, and
fails to deal with the additional complications that we investigate here. On the other
hand, Timoshenko, [42], derives the proper natural boundary conditions for the particular
Lagrangian arising in linear plate mechanics, but does not extend his analysis to general
variational problems. We will derive Timoshenko’s boundary conditions from our general
formulas. In addition, the range of natural boundary conditions can be extended using
null Lagrangians, although the details are computationally challenging and not particularly
enlightening to the author. As in Section 5, for simplicity, we restrict our attention to the
case of two independent variables and one dependent variable.

As before, D ⊂ R
2 is a bounded open domain with smooth connected boundary ∂D,

which we orient in the usual counterclockwise direction, although the latter assumptions
can easily be weakened. We consider a functional of the form

J [u ] =

∫ ∫

D

L(x, y, u, ux, uy, uxx, uxy, uyy) dx dy, (8.1)

where the Lagrangian L depends on derivatives of order ≤ 2 of the scalar-valued function
u(x, y). We perform the usual variational calculations, starting with the variation of the

29



Lagrangian h(ε) = J [u+Φ], with

h′(0) =

∫ ∫

D

(
ϕ
∂L

∂u
+ ϕx

∂L

∂ux
+ ϕy

∂L

∂uy
+ ϕxx

∂L

∂uxx
+ ϕxy

∂L

∂uxy
+ ϕyy

∂L

∂uyy

)
dx dy.

(8.2)
We then integrate each term on the right hand side that involves a derivative of the
variation ϕ by parts, leading to the Euler–Lagrange expression

E(L) =
∂L

∂u
−Dx

(
∂L

∂ux

)
−Dy

(
∂L

∂uy

)
+D2

x

(
∂L

∂uxx

)
+DxDy

(
∂L

∂uxy

)
+D2

y

(
∂L

∂uyy

)

(8.3)
multiplying ϕ plus a divergence, which, by Green’s formula (5.3), can be replaced by
the corresponding boundary integral. Applying the Fundamental Lemma, we conclude
that any sufficiently smooth critical function must satisfy the fourth order Euler–Lagrange
equation E(L) = 0.

The divergence terms that result from integrating the second and third terms in (8.2)
by parts are given in (5.5–6). For the fourth and sixth terms, the result is straightforward:

ϕxx

∂L

∂uxx
= ϕD2

x

(
∂L

∂uxx

)
+Dx

(
ϕx

∂L

∂uxx
− ϕDx

∂L

∂uxx

)
,

ϕyy

∂L

∂uyy
= ϕD2

y

(
∂L

∂uyy

)
+Dy

(
ϕy

∂L

∂uyy
− ϕDy

∂L

∂uyy

)
.

(8.4)

However, for the fifth term, there is an ambiguity, as we can either start with the x
derivative or with the y derivative, leading to the alternative expressions

ϕxy

∂L

∂uxy
= ϕDxDy

(
∂L

∂uxy

)
+





Dx

(
ϕy

∂L

∂uxy

)
+Dy

(
−ϕ Dx

∂L

∂uxy

)
,

Dx

(
−ϕ Dy

∂L

∂uxy

)
+Dy

(
ϕx

∂L

∂uxy

)
.

(8.5)

The divergence terms produce ostensibly different boundary integrals, and thus potentially
different natural boundary conditions! Forsyth, [18], takes the average of the two expres-
sions in (8.5), but this is just his particular convention, and he stops his presentation before
having to deal with the resolution of the problem. His final formula, at the end of Section
337, does not properly encapsulate what the natural boundary conditions should be. Our
goal is to ascertain what further analysis is needed.

Observe that the difference between the two expressions in (8.5) is a null divergence,
[2, 31, 33], namely a vector field (A,B) that satisfies

DxA+DyB ≡ 0, (8.6)

which, assuming it is defined on a topologically trivial domain, is valid if and only if the
vector field is a skew gradient:

A = DyC, B = −DxC, (8.7)
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for some function C; see [32; § 5.4].

The key point underlying the resolution of the difficulty is that, on the boundary,
the intrinsic components of the gradient of ϕ have different effects, and there is a second
integration by parts that can be employed. Let n, t denote the unit normal and unit
tangent vectors at a point (x, y) ∈ ∂D. We can write

∇ϕ = ϕ
n
n+ ϕ

t
t, (8.8)

where the coefficients ϕ
n
, ϕ

t
are its normal and tangential derivatives . For a general

variation, the normal derivative can be specified independently of ϕ itself; however, its
tangential derivative can be realized as the derivative of the restriction of ϕ to ∂D, and
hence is not independent thereof. Moreover, because the boundary ∂D is a closed curve,
a term involving ϕ

t
can be integrated by parts without affecting the value of the overall

boundary integral.

As in (6.12, 13), we parametrize the boundary curve ∂D by arc length, noting that
we can identify the derivative in the tangential direction t with the arc length derivative:
∂/∂t = ∂/∂s. Substituting (6.13) into (8.8), we deduce that

ϕx = ϕ
t
xs + ϕ

n
ys = ϕs xs + ϕ

n
ys, ϕy = ϕ

t
ys − ϕ

n
xs = ϕs ys − ϕ

n
xs, (8.9)

and so

ϕ
t
= ϕs =

d

ds
ϕ(x(s), y(s)) = ϕx xs + ϕy ys. (8.10)

In this manner, referring back to (8.2), we deduce a formula of the form

h′(0) =

∫ ∫

D

[
divW + ϕ(x, y)E(L)

]
dx dy =

∮

∂D

(W · n ) ds+

∫ ∫

D

ϕ(x, y)E(L)dx dy,

where the boundary terms, resulting from the preceding integration by parts, are assembled
using (5.4), (8.4), along with the first expression in (8.5). (As the reader can check,
the second expression leads to the same final formula for the boundary integral, as does
Forsyth’s average of the two.) Thus, W = (W

1
,W

2
), where

W
1
= ϕ

(
∂L

∂ux
−Dx

∂L

∂uxx

)
+ ϕx

(
∂L

∂uxx

)
+ ϕy

(
∂L

∂uxy

)
,

W
2
= ϕ

(
∂L

∂uy
−Dx

∂L

∂uxy
−Dy

∂L

∂uyy

)
+ ϕy

(
∂L

∂uyy

)
.

Using (6.13, 9, 10), we thus find

W · n = ϕ

[
ys

(
∂L

∂ux
−Dx

∂L

∂uxx

)
− xs

(
∂L

∂uy
−Dx

∂L

∂uxy
−Dy

∂L

∂uyy

)]

+ ϕs

[
xsys

∂L

∂uxx
+ y2s

∂L

∂uxy
− xsys

∂L

∂uyy

]
+ ϕ

n

[
y2s

∂L

∂uxx
− xsys

∂L

∂uxy
+ x2s

∂L

∂uyy

]
.
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The term involving the tangential derivative ϕs = ϕ
t
can be integrated by parts, using the

formula ∮

∂D

(f gs) ds =

∮

∂D

(−fs g) ds,

valid for any functions f, g on ∂D. (No boundary terms appear because ∂(∂D) = ∅.)
Thus, we can rewrite ∮

∂D

(W · n ) ds =

∮

∂D

(F ϕ+Gϕ
n
) ds,

where

F = ys

(
∂L

∂ux
−Dx

∂L

∂uxx

)
+
(
xsyss + ysxss + x2s ysDx + xsy

2

s Dy

)
(

∂L

∂uyy
−

∂L

∂uxx

)

− xs

(
∂L

∂uy
−Dy

∂L

∂uyy

)
+
(
xsxss − ysyss + x3s Dx − y3s Dy

) ∂L
∂uxy

= H · n+
d

ds

[
xsys

(
∂L

∂uyy
−

∂L

∂uxx

)
+

1

2
(x2s − y2s)

∂L

∂uxy

]
,

H =

(
∂L

∂ux
−Dx

∂L

∂uxx
−

1

2
Dy

∂L

∂uxy
,
∂L

∂uy
−

1

2
Dx

∂L

∂uxy
−Dy

∂L

∂uyy

)T

,

G = y2s
∂L

∂uxx
− xsys

∂L

∂uxy
+ x2s

∂L

∂uyy
.

(8.11)

where we have used the identities

x2s + y2s = 1, xsxss + ysyss = 0, (8.12)

to simplify and make the final result evidently symmetric under a 90◦ rotation of x and y,
as it must be, even though the intervening calculation was not. Indeed, the final formulas
are invariant under completely general orientation-preserving changes of variables in x, y.

Thus, at each point in ∂D, either ϕ = 0, which means that u must satisfy an inho-
mogeneous Dirichlet boundary condition u = f , or the natural boundary condition F = 0
holds. Furthermore, either ϕ

n
= 0, which means that u must satisfy an inhomogeneous

Neumann boundary condition ∂u/∂n = g, or the natural boundary condition G = 0 holds.
There are thus four possibilities, similar to what we found for a second order scalar varia-
tional problem. The boundary curve ∂D could then be divided into up to four sub-curves
(which need not individually be connected) on each of which one of these four possibilities
is imposed. This produces the complete set of variationally admissible boundary condi-
tions for the fourth order Euler–Lagrange equations before we admit the addition of a null
Lagrangian, which we now investigate. The fact that the first natural boundary condition
turns out to be cubic in the components of the tangent (or the normal) to the curve and
also involves its second derivatives (curvature) is striking.
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Example 8.1. The equations of linear plate mechanics are based on the Lagrangian

L = 1

2
u2xx+ν uxxuyy+

1

2
u2yy+(1−ν)u2xy = 1

2
(uxx+uyy)

2+(ν−1)(uxxuyy−u
2

xy), (8.13)

where the constant ν denotes the Poisson ratio of the material, which is assumed to be
uniform; see Timoshenko, [42], for details. The Euler–Lagrange equation is the biharmonic
equation

E(L) = uxxxx + 2uxxyy + uyyyy = ∆2u = 0, (8.14)

where ∆ = ∂2x+∂
2

y is the Laplacian operator, and is independent of ν. This is because the

final term in the Lagrangian (8.13) is a multiple of the Hessian determinant H = ∇2u of
the function u, which is a null Lagrangian:

detH = det

(
uxx uxy
uxy uyy

)
= uxxuyy − u2xy = Dx(uxuyy) + Dy(−uxuxy). (8.15)

Consequently the simplified Lagrangian

L̃ = 1

2
(uxx + uyy)

2 = 1

2
u2xx + 2uxxuyy +

1

2
u2yy (8.16)

has exactly the same Euler–Lagrange expression: E(L̃) = E(L) = ∆2u. However, the two
Lagrangians possess quite different natural boundary conditions, and only the former leads
to physically meaningful expressions.

Let us compute the natural boundary condition terms (8.11), first for the physical
plate Lagrangian (8.13). We find

F = −ys(uxxx + uxyy) + xs(uxxy + uyyy) + (ν − 1)
d

ds

[
xsys(uyy − uxx) + (x2s − y2s)uxy

]

= −(∆u)
n
+ (1− ν)

(
nTH t

)
s
,

G = (ν x2s + y2s)uxx + 2(ν − 1)xsysuxy + (x2s + ν y2s)uyy = ∆u+ (ν − 1)tTH t.

(8.17)

Identifying n = (ys,−xs) = (cosα, sinα), we recover the formulas in [42; eq. (110)]. Phys-
ically, G represents the bending moment of the plate at the boundary point. The first term
in the second expression for F — the normal derivative of the Laplacian of the displace-
ment — represents the shearing force the plate exerts on its boundary, while the second
term — the arc length (tangential) derivative of the twisting moment — represents the
reaction of the boundary to the twisting of the plate.

On the other hand, the natural boundary conditions associated with the alternative
Lagrangian (8.16) are much simpler:

F̃ = −ys(uxxx + uxyy) + xs(uxxy + uyyy) = −(∆u)
n
, G̃ = uxx + uyy = ∆u. (8.18)

However, they do not represent the proper physical forces exerted on the free boundary of
an elastic plate, hence the choice of the more complicated physical Lagrangian (8.13). See
[36, 39] for discussion of the role played by the null Lagrangian term in the resolution of
the polygon-circle plate paradox, [4], in which the energy functionals of simply supported
polygonal plates converge to that of a clamped circular plate.
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Finally, as noted in (8.15), second order null Lagrangians no longer depend linearly
on the second order derivatives of u. According to [2], every second order null Lagrangian
has the form

N = α+ λuxx + µuxy + ν uyy + σ (uxxuyy − u2xy) (8.19)

where the coefficients α, . . . , σ depend on x, y, u, ux, uy, but are not arbitrary functions.
Indeed, as always, N must be a divergence:

N = DxX +DyY where
X = A− Cuxy +Duyy,

Y = B + Cuxx −Duxy ,
(8.20)

with A,B,C,D arbitrary functions of x, y, u, ux, uy, and hence

α =
∂A

∂x
+ ux

∂A

∂u
+
∂B

∂y
+ uy

∂B

∂u
,

σ =
∂C

∂uy
+
∂D

∂ux
,

λ =
∂A

∂ux
+
∂C

∂y
+ uy

∂C

∂u
,

µ =
∂A

∂uy
+
∂B

∂ux
−
∂C

∂x
− ux

∂C

∂u
−
∂D

∂y
− uy

∂D

∂u
,

ν =
∂B

∂uy
+
∂D

∂x
+ ux

∂D

∂u
. (8.21)

However, there is redundancy in these expressions, because one can add in a null divergence
(8.6) to the vector field (X, Y ) without affecting the form of N . Indeed, if

X = DyZ =
∂Z

∂y
+ uy

∂Z

∂u
+ uxy

∂Z

∂ux
+ uyy

∂Z

∂uy
,

Y = −DxZ = −
∂Z

∂x
− ux

∂Z

∂u
− uxx

∂Z

∂ux
− uxy

∂Z

∂uy
,

(8.22)

then the corresponding N is identically zero. We can thus choose Z in order that either
C or D in (8.20) is zero.

As usual, adding the null Lagrangian (8.19) to the original L does not alter the
Euler–Lagrange equation, but does affect the natural boundary conditions. The resulting
formulas can be found by replacing L by L+N in (8.11), but are quite complicated, and,
at least to me, not especially enlightening. We will therefore leave this final step to the
motivated reader to try to ascertain to what extent the natural boundary conditions for a
second order Lagrangian can be modified through this process.

9. Conclusions.

The flexibility afforded by the addition of a null Lagrangian serves to enlarge the
possible variationally admissible boundary conditions for the Euler–Lagrange equations
associated with a variational problem. However, not every boundary condition is varia-
tionally admissible; the classification of those that are forms the subject of this paper.
However, this analysis becomes increasingly complicated as the order of the Lagrangian
increases, and we have therefore focussed on the simplest and most important cases for
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applications. For variational problems arising in continuum mechanics, most of the varia-
tionally admissible boundary conditions have an evident physical interpretation, and can
be applied in a range of practical problems.

Various further directions of research are indicated. It would be of much interest to
extend this analysis to other types of elastic materials, including, for example, general rod,
plate, and shell theories, and Cosserat (micropolar) continua, [3, 11, 16]. We restricted
our attention to null Lagrangians that have the same order as the variational problem;
higher order null Lagrangians could produce interesting higher order boundary conditions,
as arising, for instance, in the modeling of plates supported on an elastic foundation,
[24]. The impact of these methods on the design of finite element and other numerical
approximation schemes for such boundary value problems, [9, 41], is also worthy of de-
velopment. Another interesting direction would be to extend this analysis to constrained
variational problems, including incompressible and inextensible materials. Moreover, it
would be worth investigating the effect of null Lagrangians and the associated boundary
conditions on the standard variational tests for minima and maxima (second variation,
conjugate points, etc.), [19, 20, 26, 35]. Finally, we have exclusively studied the boundary
value problems arising in statics; extending this analysis to initial-boundary value problems
arising in dynamics would also be worth pursuing.
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