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11. Numerical Solution of
the Heat and Wave Equations

In this part, we study numerical solution methodss for the two most important equa-
tions of one-dimensional continuum dynamics. The heat equation models the diffusion of
thermal energy in a body; here, we treat the case of a one-dimensional bar. The wave
equation describes vibrations and waves in continuous media, including sound waves, wa-
ter waves, elastic waves, electromagnetic waves, and so on. For simplicity, we restrict our
attention to the case of waves in a one-dimensional medium, e.g., a string, bar, or column
of air.

We begin with a general discussion of finite difference formulae for numerically ap-
proximating derivatives of functions. The basic finite difference scheme is obtained by
replacing the derivatives in the equation by the appropriate numerical differentiation for-
mulae. However, there is no guarantee that the resulting numerical scheme will accurately
approximate the true solution, and further analysis is required to elicit bona fide, conver-
gent numerical algorithms. In dynamical problems, the finite difference schemes replace
the partial differential equation by an iterative linear matrix system, and the analysis of
convergence relies on the methods covered in Section 7.1.

We will only introduce the most basic algorithms, leaving more sophisticated variations
and extensions to a more thorough treatment, which can be found in numerical analysis
texts, e.g., [5,7, 28].

11.1. Finite Differences.

In general, to approximate the derivative of a function at a point, say f'(x) or f”(x),
one constructs a suitable combination of sampled function values at nearby points. The
underlying formalism used to construct these approximation formulae is known as the
calculus of finite differences. Its development has a long and influential history, dating
back to Newton. The resulting finite difference numerical methods for solving differential
equations have extremely broad applicability, and can, with proper care, be adapted to
most problems that arise in mathematics and its many applications.

The simplest finite difference approximation is the ordinary difference quotient

u(z + h) —u(zx)
h

~ u'(z), (11.1)
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Figure 11.1.  Finite Difference Approximations.

used to approximate the first derivative of the function u(x). Indeed, if u is differentiable
at x, then u/(x) is, by definition, the limit, as h — 0 of the finite difference quotients.
Geometrically, the difference quotient equals the slope of the secant line through the two
points (ac,u(ac)) and (:1: + h,u(x + h)) on the graph of the function. For small h, this
should be a reasonably good approximation to the slope of the tangent line, u'(x), as
illustrated in the first picture in Figure 11.1.

How close an approximation is the difference quotient? To answer this question, we
assume that u(z) is at least twice continuously differentiable, and examine the first order
Taylor expansion

u(z +h) =u(z) +u'(z) h+ $u" (&) B> (11.2)

We have used the Cauchy formula for the remainder term, in which & represents some point
lying between x and x + h. The error or difference between the finite difference formula
and the derivative being approximated is given by

u(x + h) —u(zx)
h

— (x) = 3u"(¢) h. (11.3)

Since the error is proportional to h, we say that the finite difference quotient (11.3) is a
first order approximation. When the precise formula for the error is not so important, we

will write

o (z) = “<x+h2b_“(f”) +O(h). (11.4)

The “big Oh” notation O(h) refers to a term that is proportional to h, or, more rigorously,
bounded by a constant multiple of h as h — 0.

Example 11.1. Let u(x) = sinz. Let us try to approximate u/(1) = cosl =
0.5403023 ... by computing finite difference quotients

sin(1 4 h) —sin1
h :

The result for different values of h is listed in the following table.

Cosl =~
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h 1 1 .01 .001 .0001
approximation 0.067826 0.497364 0.536086 0.539881 0.540260

error —0.472476  —0.042939 —0.004216 —0.000421  —0.000042

We observe that reducing the step size by a factor of %0 reduces the size of the error by
approximately the same factor. Thus, to obtain 10 decimal digits of accuracy, we anticipate
needing a step size of about h = 10~ !!. The fact that the error is more of less proportional
to the step size confirms that we are dealing with a first order numerical approximation.

To approximate higher order derivatives, we need to evaluate the function at more
than two points. In general, an approximation to the nt® order derivative u(”)(a:) requires
at least n+1 distinct sample points. For simplicity, we shall only use equally spaced points,
leaving the general case to the exercises.

For example, let us try to approximate u”(x) by sampling u at the particular points x,
x+h and  — h. Which combination of the function values u(z — h), u(x), u(x + h) should
be used? The answer to such a question can be found by consideration of the relevant
Taylor expansions

/ 1" h2 " h3 4
(i + ) = ulr) o (@) o+ o (2) o () 4 O, .
u(x — h) = u(r) — v (x) h + v’ (x) % —u"(z) % + O(hh),

where the error terms are proportional to h*. Adding the two formulae together gives
u(z + h) +ulz — h) = 2u(z) +u”(z) h* + O(h?).
Rearranging terms, we conclude that

W () = u(z + h) —2u(x) + u(z — h)
72

The result is known as the centered finite difference approzimation to the second derivative
of a function. Since the error is proportional to h?, this is a second order approximation.

+ O(h?), (11.6)

Example 11.2. Let u(z) = e*, with u”(z) = (422 + 2)e* . Let us approximate
u”(1) = 6e = 16.30969097 ... by using the finite difference quotient (11.6):

e(1+h)? _ 9, + e(1=h)?

be ~ %
The results are listed in the following table.
h 1 1 .01 .001 .0001
approximation | 50.16158638 16.48289823 16.31141265 16.30970819 16.30969115
error 33.85189541  0.17320726  0.00172168  0.00001722  0.00000018

Each reduction in step size by a factor of % reduces the size of the error by a factor of
ﬁ and results in a gain of two new decimal digits of accuracy, confirming that the finite

difference approximation is of second order.
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However, this prediction is not completely borne out in practice. If we take! A = .00001
then the formula produces the approximation 16.3097002570, with an error of 0.0000092863
— which is less accurate that the approximation with h = .0001. The problem is that
round-off errors have now begun to affect the computation, and underscores the difficulty
with numerical differentiation. Finite difference formulae involve dividing very small quan-
tities, which can induce large numerical errors due to round-off. As a result, while they
typically produce reasonably good approximations to the derivatives for moderately small
step sizes, to achieve high accuracy, one must switch to a higher precision. In fact, a similar
comment applied to the previous Example 11.1, and our expectations about the error were
not, in fact, fully justified as you may have discovered if you tried an extremely small step
size.

Another way to improve the order of accuracy of finite difference approximations is
to employ more sample points. For instance, if the first order approximation (11.4) to the
first derivative based on the two points z and = + h is not sufficiently accurate, one can try
combining the function values at three points x, x + h and z — h. To find the appropriate
combination of u(x —h), u(z), u(x+h), we return to the Taylor expansions (11.5). To solve
for u'(x), we subtract’ the two formulae, and so

3
w(x +h) —u(z —h) =24 (z)h + " () % + O(h).
Rearranging the terms, we are led to the well-known centered difference formula

u(x 4+ h) —u(x — h)
2h

which is a second order approximation to the first derivative. Geometrically, the cen-
tered difference quotient represents the slope of the secant line through the two points
(ac — hyu(x — h) ) and (x + h,u(z + h) ) on the graph of u centered symmetrically about
the point z. Figure 11.1 illustrates the two approximations; the advantages in accuracy in
the centered difference version are graphically evident. Higher order approximations can be
found by evaluating the function at yet more sample points, including, say, x +2h,x —2h,
etc.

u' () =

+ O(h?), (11.7)

Example 11.3. Return to the function u(x) = sinz considered in Example 11.1.
The centered difference approximation to its derivative v/(1) = cos 1 = 0.5403023 ... is
sin(1 4+ h) — sin(1 — h)

2h '

cosl =

The results are tabulated as follows:

T This next computation depends upon the computer’s precision; here we used single precision
in MATLAB.

T The terms O(h4) do mnot cancel, since they represent potentially different multiples of h.
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h 1 .01 .001 .0001
approximation 0.53940225217 0.54029330087 0.54030221582 0.54030230497

error —0.00090005370  —0.00000900499 —0.00000009005 —0.00000000090

As advertised, the results are much more accurate than the one-sided finite difference
approximation used in Example 11.1 at the same step size. Since it is a second order
approximation, each reduction in the step size by a factor of 1—10 results in two more decimal
places of accuracy.

Many additional finite difference approximations can be constructed by similar manip-
ulations of Taylor expansions, but these few very basic ones will suffice for our subsequent
purposes. In the following subsection, we apply the finite difference formulae to develop
numerical solution schemes for the heat and wave equations.

11.2. Numerical Algorithms for the Heat Equation.
Consider the heat equation

ou  d*u

0<z <, t >0, (11.8)

ot a2

representing a homogeneous diffusion process of, sqy, heat in bar of length ¢ and constant
thermal diffusivity v > 0. The solution u(t,x) represents the temperature in the bar at
time ¢ > 0 and position 0 < x < £. To be concrete, we will impose time-dependent Dirichlet
boundary conditions

u(t,0) = a(t), u(t, £) = B(t), t>0, (11.9)
specifying the temperature at the ends of the bar, along with the initial conditions
u(0,z) = f(x), 0<z</, (11.10)

specifying the bar’s initial temperature distribution. In order to effect a numerical approx-
imation to the solution to this initial-boundary value problem, we begin by introducing a
rectangular mesh consisting of points (;, z;) with

O=2p <z <<z, =4 and 0=ty <ty <ty <---.

For simplicity, we maintain a uniform mesh spacing in both directions, with

representing, respectively, the spatial mesh size and the time step size. It will be essential
that we do not a priori require the two to be the same. We shall use the notation
U5 = ulty, ) where t; =ik, z;=jh, (11.11)

to denote the numerical approximation to the solution value at the indicated mesh point.
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As a first attempt at designing a numerical method, we shall use the simplest finite
difference approximations to the derivatives. The second order space derivative is approx-
imated by (11.6), and hence

@ (t,,x.) ~ ulty, @j0) = 2ulty, ;) +ulty, 75,

2
53 (2, +0(h?)

2
u 2u, ; + 3 (11.12)
Uy~ 2u i1 )

~ h;J T2 4+ O(h?),
where the error in the approximation is proportional to h2. Similarly, the one-sided finite
difference approximation (11.4) is used for the time derivative, and so

ou u(tyyq, ;) —ult;, ;) Uiyr,5 = Uy

——(t,x,) ~ J 124 O(k) ~ -1 ) 4 O(k), (11.13)

o (t7,) , (k) . (k)
where the error is proportion to k. In practice, one should try to ensure that the approxi-
mations have similar orders of accuracy, which leads us to choose

k ~ h?.
Assuming h < 1, this requirement has the important consequence that the time steps must

be much smaller than the space mesh size.

Remark: At this stage, the reader might be tempted to replace (11.13) by the second
order central difference approximation (11.7). However, this produces significant compli-
cations, and the resulting numerical scheme is not practical.

Replacing the derivatives in the heat equation (11.14) by their finite difference ap-
proximations (11.12), (11.13), and rearranging terms, we end up with the linear system

Uiy = Pt i+ (1= 2p)u; 5+ pug 5, ;;2:1’2: ;1”_,1, (11.14)
in which
w= Zb—f . (11.15)
The resulting numerical scheme takes the form of an iterative linear system for the solution
values u, ; ~ u(t;,z;), j =1,...,n — 1, at each time step ¢,.

The initial condition (11.10) means that we should initialize our numerical data by
sampling the initial temperature at the mesh points:

uw, = f, = f(x,), j=1,...,n—1 (11.16)
Similarly, the boundary conditions (11.9) require that
uz70 — OC,L — Oé(tz), uz’n = ﬁl == ﬁ(tz), /1: == O, 1, 2, c e (11.17)

For consistency, we should assume that the initial and boundary conditions agree at the
corners of the domain:

fo = f(0)=u(0,0) = a(0) = o, [ =f0) =u(0,0) = 3(0) = j,.
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Figure 11.2. A Solution to the Heat Equation.

The three equations (11.14-17) completely prescribe the numerical approximation algo-
rithm for solving the initial-boundary value problem (11.8-10).
Let us rewrite the scheme in a more transparent matrix form. First, let
» T T
ul® = (ui’l, U gy oy Uy ) ~ (u(ti, xy),u(t;, xy), ..., ult, x, 1) ) (11.18)
be the vector whose entries are the numerical approximations to the solution values at
time ¢, at the interior nodes. We omit the boundary nodes z, = 0, z, = ¢, since those
values are fixed by the boundary conditions (11.9). Then (11.14) assumes the compact
vectorial form

ulh) = Au® 4 b, (11.19)
where
1=2p H M
7 1—2p 7 0
7 1=2p p , 0
A= PR , bW = . [ (11.20)
W 1—2p 1 B;

The coefficient matrix A is symmetric and tridiagonal. The contributions (11.17) of the
boundary nodes appear in the vector b(®. This numerical method is known as an explicit
scheme since each iterate is computed directly without relying on solving an auxiliary
equation — unlike the implicit schemes to be discussed below.

Example 11.4. Let us fix the diffusivity v = 1 and the bar length ¢ = 1. Consider
the initial temperature profile

—x, 0§x§%,
2 1 7

u(0,7) = f(x) = = -z, = <x <45, (11.21)
11—z, 1—70§x§1,
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Figure 11.3. Numerical Solutions for the Heat Equation
Based on the Explicit Scheme.

on a bar of length 1, plotted in the first graph in Figure 11.2. The solution is plotted
at the successive times t = .,.02,.04,...,.1. Observe that the corners in the initial data
are immediately smoothed out. As time progresses, the solution decays, at an exponential
rate of 72 ~ 9.87, to a uniform, zero temperature, which is the equilibrium temperature
distribution for the homogeneous Dirichlet boundary conditions. As the solution decays
to thermal equilibrium, it also assumes the progressively more symmetric shape of a single
sine arc, of exponentially decreasing amplitude.

In our numerical solution, we take the spatial step size h = .1. In Figure 11.3 we
compare two (slightly) different time step sizes on the same initial data as used in (11.21).
The first sequence uses the time step k = h? = .01 and plots the solution at times ¢ =
0.,.02,.04. The solution is already starting to show signs of instability, and indeed soon
thereafter becomes completely wild. The second sequence takes k = .005 and plots the
solution at times ¢t = 0.,.025,.05. (Note that the two sequences of plots have different
vertical scales.) Even though we are employing a rather coarse mesh, the numerical solution
is not too far away from the true solution to the initial value problem, which can be found
in Figure 11.2.

In light of this calculation, we need to understand why our scheme sometimes gives
reasonable answers but at other times utterly fails. To this end, let us specialize to homo-
geneous boundary conditions

u(t,0) =0 = u(t, ?), whereby a,=03,=0 for all 1=0,1,2,3,...,
(11.22)
and so (11.19) reduces to a homogeneous, linear iterative system

ulth) = Au®. (11.23)

According to Proposition 7.8, all solutions will converge to zero, u'” — 0 — as they are
supposed to (why?) — if and only if A is a convergent matrix. But convergence depends
upon the step sizes. Example 11.4 is indicating that for mesh size h = .1, the time step
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k = .01 yields a non-convergent matrix, while k& = .005 leads to a convergent matrix and
a valid numerical scheme.

As we learned in Theorem 7.11, the convergence property of a matrix is fixed by
its spectral radius, i.e., its largest eigenvalue in magnitude. There is, in fact, an explicit
formula for the eigenvalues of the particular tridiagonal matrix in our numerical scheme,
which follows from the following general result.

Lemma 11.5. The eigenvalues of an (n—1) x (n—1) tridiagonal matrix all of whose
diagonal entries are equal to a and all of whose sub- and super-diagonal entries are equal
to b are k

A, =a+2bcos —, k=1,....,n—1. (11.24)
n

Proof: The corresponding eigenvectors are
T
kT . 2kmw . nkw
v, =|(sin—, sin— , ... sin—— | .
n n n

Indeed, the jt entry of the eigenvalue equation Av, = A\, v, reads

K — 1)k + 1)k k K
asinu + b (sinu —i—sinw) = (a—|—2bcos—7r) sinu,
n n n n n
which follows from the trigonometric identity
Sinoz—}-sinﬂ:QCOSa;ﬁSin&;—ﬁ. Q.FE.D.

In our particular case, a = 1 — 2 and b = pu, and hence the eigenvalues of the matrix
A given by (11.20) are

k
Ay =1—2pu+2pucos —, k=1,...n—1.
n
Since the cosine term ranges between —1 and +1, the eigenvalues satisfy
1—4p < <L

Thus, assuming that 0 < p < % guarantees that all |\, | < 1, and hence A is a convergent
matrix. In this way, we have deduced the basic stability criterion
M:Lk<l or k<h—2 (11.25)
h?2 — 2’ — 2y '
With some additional analytical work, [28], it can be shown that this is sufficient to
conclude that the numerical scheme (11.14-17) converges to the true solution to the initial-
boundary value problem for the heat equation.

Since not all choices of space and time steps lead to a convergent scheme, the numerical
method is called conditionally stable. The convergence criterion (11.25) places a severe
restriction on the time step size. For instance, if we have h = .01, and v = 1, then we can
only use a time step size £ < .00005, which is minuscule. It would take an inordinately
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large number of time steps to compute the value of the solution at even a moderate times,
e.g., t = 1. Moreover, owing to the limited accuracy of computers, the propagation of
round-off errors might then cause a significant reduction in the overall accuracy of the
final solution values.

An unconditionally stable method — one that does not restrict the time step — can
be constructed by using the backwards difference formula

ou u(t'7$j> _u(t'—lwxj) k
—(t..x.) ~ ¢ L + O(h 11.26
T (t;, ;) k (h%) ( )

to approximate the temporal derivative. Substituting (11.26) and the same approximation
(11.12) for u,, into the heat equation, and then replacing ¢ by i + 1, leads to the iterative
system

i=0,1,2,...,

Wigr g = 1 (Ui = 2+ i 1) = Uy, (11.27)

j=1,...,n—1,
where the parameter u = v k/h? is as above. The initial and boundary conditions also
have the same form (11.16), (11.17). The system can be written in the matrix form

Auli+d) = y@ § p+D), (11.28)

where A is obtained from the matrix A4 in (11.20) by replacing pu by —p. This defines an
implicit method since we have to solve a tridiagonal linear system at each step in order
to compute the next iterate u(t!). However, as we learned in Section 4.5, tridiagonal
systems can be solved very rapidly, and so speed does not become a significant issue in the
practical implementation of this implicit scheme.

Let us look at the convergence properties of the implicit scheme. For homogeneous
Dirichlet boundary conditions (11.22), the system takes the form
wlitd) — 41 u®,

and the convergence is now governed by the eigenvalues of A~!. Lemma 11.5 tells us that
the eigenvalues of A are

k
)\k:1+2,u—2;¢cos7r—, k=1,...,n—1.
n

As a result, its inverse A~! has eigenvalues

1 1
= k=1,...,n—1.

Ay kY
k 1+2,u(1—cos7r—)
n

Since p > 0, the latter are always less than 1 in absolute value, and so A is always a
convergent matrix. The implicit scheme (11.28) is convergent for any choice of step sizes
h, k, and hence unconditionally stable.
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Figure 11.4. Numerical Solutions for the Heat Equation
Based on the Implicit Scheme.

Example 11.6. Consider the same initial-boundary value problem considered in
Example 11.4. In Figure 11.4, we plot the numerical solutions obtained using the implicit
scheme. The initial data is not displayed, but we graph the numerical solutions at times
t = .2,.4,.6 with a mesh size of h = .1. On the top line, we use a time step of k = .01,
while on the bottom k£ = .005. Unlike the explicit scheme, there is very little difference
between the two — both come much closer to the actual solution than the explicit scheme.
Indeed, even significantly larger time steps give reasonable numerical approximations to
the solution.

Another popular numerical scheme is the Crank—Nicolson method

M
Uity ~ Uig = 5 (ui—i—l,j—i-l = 20Uy U g T U — 20 U ). (11.29)

which can be obtained by averaging the explicit and implicit schemes (11.14,27). We can
write the iterative system in matrix form

Bulth = cul® + %(b(i) + plitD) ),

where
1—'I'u 3 1 11_M e 1
—ok 1+p —3p g l—p gp
B= , o= 11.30
—3H Iy (11.30)

Convergence is governed by the generalized eigenvalues of the tridiagonal matrix pair
B, C, or, equivalently, the eigenvalues of the product B~! C, which are

k
1—;1(1—005%)
)\k_

= e
1+u(1—cos7r—)
n
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Figure 11.5. Numerical Solutions for the Heat Equation
Based on the Crank—Nicolson Scheme.

Since p > 0, all of the eigenvalues are strictly less than 1 in absolute value, and so the
Crank—Nicolson scheme is also unconditionally stable. A detailed analysis will show that
the errors are of the order of k2 and h?, and so it is reasonable to choose the time step to
have the same order of magnitude as the space step, k =~ h. This gives the Crank—Nicolson
scheme one advantage over the previous two methods. However, applying it to the initial
value problem considered earlier points out a significant weakness. Figure 11.5 shows the
result of running the scheme on the initial data (11.21). The top row has space and time
step sizes h = k = .1, and does a rather poor job replicating the solution. The second row
uses h = k = .01, and performs better except near the corners where an annoying and
incorrect local time oscillation persists as the solution decays. Indeed, since most of its
eigenvalues are near —1, the Crank—Nicolson scheme does not do a good job of damping
out the high frequency modes that arise from small scale features, including discontinuities
and corners in the initial data. On the other hand, most of the eigenvalues of the fully
implicit scheme are near zero, and it tends to handle the high frequency modes better,
losing out to Crank-Nicolson when the data is smooth. Thus, a good strategy is to first
evolve using the implicit scheme until the small scale noise is dissipated away, and then
switch to Crank—Nicolson to use a much larger time step for final the large scale changes.

11.3. Numerical Solution Methods for the Wave Equation.

Let us now look at some numerical solution techniques for the wave equation. Al-
though this is in a sense unnecessary, owing to the explicit d’Alembert solution formula,
the experience we gain in designing workable schemes will serve us well in more compli-
cated situations, including inhomogeneous media, and higher dimensional problems, when
analytic solution formulas are no longer available.

Consider the wave equation

62 62
5= o O<az<tl, >0, (11.32)
X

modeling vibrations of a homogeneous bar of length ¢ with constant wave speed ¢ > 0. We
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impose Dirichlet boundary conditions
u(t,0) = a(t), u(t,l) = B(t), t>0. (11.33)

and initial conditions

0
u(0,z) = f(z), G_TZ (0,z) = g(x), 0<z </ (11.34)
We adopt the same uniformly spaced mesh
l
t, =1k, z; =jh, where h=—.
n

In order to discretize the wave equation, we replace the second order derivatives by
their standard finite difference approximations (11.6), namely

62“ u(tz y L ) - QU(tzv 4y ) + u(ti— y L )

gz (tomy) ~ = o, (11.35)
0%u u(tiwxj—l—l) — 2u(t;, xj) + u(t,, xj—l) 2 '
W(tiwxj) ~ 12 + O(k )7

Since the errors are of orders of k2 and h?, we anticipate to be able to choose the space
and time step sizes of comparable magnitude:
k ~ h.

Substituting the finite difference formulae (11.35) into the partial differential equation
(11.32), and rearranging terms, we are led to the iterative system
i=1,2,...,

P (11.36)

_ 2 2 2 B
Uipr ;=0 ;5 21 —0%)u; 5 +07u; 51 —u;_yj,

for the numerical approximations u, ; & u(t;, z;) to the solution values at the mesh points.
The positive parameter
o=">0 (11.37)

depends upon the wave speed and the ratio of space and time step sizes. The boundary
conditions (11.33) require that

uz70 — Oé,b — Oé(tz>, uz’n - ﬁl - ﬁ(tl)7 i — 07 1,27 e (11.38)
This allows us to rewrite the system in matrix form
u = Bu® — ul=Y £ b, (11.39)
where
2(1 —202) o? o Uy oa,
g 2 (1 — 0 ) g u2,j 0
B— o2 , ul) = b)) —
. 0'2 un_27j 20
o? 2(1—0’2) Up—1,5 o ﬁj
(11.40)
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Figure 11.6. Numerically Stable Waves.

The entries of u(® are, as in (11.18), the numerical approximations to the solution values

at the interior nodes. Note that the system (11.39) is a second order iterative scheme,

since computing the next iterate u*) requires the value of the preceding two, u® and
(i-1)

u .

The one difficulty is getting the method started. We know u(®) since ug; =f; =171 (x j)

is determined by the initial position. However, we also need to find u(? with entries
(CRE u(k,xj) at time ¢t; = k in order launch the iteration, but the initial velocity
u,(0,2) = g(x) prescribes the derivatives u,(0,z;) = g; = g(x;) at time ¢, = 0 instead.
One way to resolve this difficult would be to utilize the finite difference approximation

ou wk,z,;) —u(0,2;)  u;;—g,
95 =5 (0,z;) =~ J . S Jk J (11.41)
to compute the required values
uy ;= f; +kgj

However, the approximation (11.41) is only accurate to order k, whereas the rest of the
scheme has error proportional to k2. Therefore, we would introduce an unacceptably large
error at the initial step.

To construct an initial approximation to u(?) with error on the order of k%, we need
to analyze the local error in more detail. Note that, by Taylor’s theorem,

u(k, ;) —u(0,z;)  Ou k 0%u ou Ak 0%u
2 NE(Oaxj)+§w(oaxj)_E(Oaxj)—}_T @(0,%),

where the error is now of order k2, and, in the final equality, we have used the fact that u
is a solution to the wave equation. Therefore, we find

ou 2 k? 9%u
62k2 .y CQ 2
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Figure 11.7. Numerically Unstable Waves.

where we can use the finite difference approximation (11.6) for the second derivative of
f(zx) if no explicit formula is known. Therefore, when we initiate the scheme by setting

u ;=50 [+ (=0 f;+50° f_1 +kgj, (11.42)
or, in matrix form,
u® =f, u) =1 Bu® 4 kg + 1bO), (11.43)
we will have maintained the desired order k% (and h?) accuracy.
Example 11.7. Consider the particular initial value problem
u(0,x) = e 400 (2=3)° u,(0,2) =0, 0<z<1,
u(t,0) = u(1,0) = 0, t >0,

utt = umx’

subject to homogeneous Dirichlet boundary conditions on the interval [0,1]. The initial
data is a fairly concentrated single hump centered at x = .3, and we expect it to split into
two half sized humps, which then collide with the ends. Let us choose a space discretization

consisting of 90 equally spaced points, and so h = % = .0111.... If we choose a time
step of £ = .01, whereby o = .9, then we get reasonably accurate solution over a fairly
long time range, as plotted in Figure 11.6 at times ¢t =0, .1,.2,...,.5. On the other hand,

if we double the time step, setting k£ = .02, so ¢ = 1.8, then, as plotted in Figure 11.7
at times t = 0,.05,.1,.14,.16, .18, we observe an instability eventually creeping into the
picture that eventually overwhelms the numerical solution. Thus, the numerical scheme
appears to only be conditionally stable.

The stability analysis of this numerical scheme proceeds as follows. We first need to
recast the second order iterative system (11.39) into a first order system. In analogy with

. (1)
Example 7.4, this is accomplished by introducing the vector z(9) = w € R?"2,
Th u(z 1)

en

2zt = 0z 4 (), where C= (? _OI ) (11.44)
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Therefore, the stability of the method will be determined by the eigenvalues of the coeffi-

. . . . u .

cient matrix C'. The eigenvector equation C'z = A\ z, where z = , can be written out
e e 1 v

in its individual components:

Bu—v=A\u, u=A\v.
Substituting the second equation into the first, we find
1
(AB—-X—-1)v =0, or BV:()\—FX)V.
The latter equation implies that v is an eigenvector of B with A + A~! the corresponding
eigenvalue. The eigenvalues of the tridiagonal matrix B are governed by Lemma 11.5, in
which a = 2(1 — ¢?) and b = 02, and hence are
k

1
)\+—:2(1—0'2+0'2COS7T—), k=1,...,n—1.
A n

Multiplying both sides by A leads to a quadratic equation for the eigenvalues,

k
M —2a, A+ 1=0, where 1—202<ak:1—02+020087r— <1. (11.45)
n

Each pair of solutions to these n — 1 quadratic equations, namely

N =a, £4/a2 —1, (11.46)

yields two eigenvalues of the matrix C. If a;, > 1, then one of the two eigenvalues will
be larger than one in magnitude, which means that the linear iterative system has an
exponentially growing mode, and so ||u” || — oo as i — oo for almost all choices of
initial data. This is clearly incompatible with the wave equation solution that we are
trying to approximate, which is periodic and hence remains bounded. On the other hand,
if |a, | < 1, then the eigenvalues (11.46) are complex numbers of modulus 1, indicated
stability (but not convergence) of the matrix C. Therefore, in view of (11.45), we should

require that

% <1, o k< % (11.47)

which places a restriction on the relative sizes of the time and space steps. We conclude
that the numerical scheme is conditionally stable.

o =

The stability criterion (11.47) is known as the Courant condition, and can be assigned
a simple geometric interpretation. Recall that the wave speed c is the slope of the charac-
teristic lines for the wave equation. The Courant condition requires that the mesh slope,
which is defined to be the ratio of the space step size to the time step size, namely h/k,
must be strictly greater than the characteristic slope c. A signal starting at a mesh point
(t;, ;) will reach positions z; & k/c at the next time ¢, ; =, + k, which are still between
the mesh points z;_; and x; ;. Thus, characteristic lines that start at a mesh point are
not allowed to reach beyond the neighboring mesh points at the next time step.

For instance, in Figure 11.8, the wave speed is ¢ = 1.25. The first figure has equal
mesh spacing & = h, and does not satisfy the Courant condition (11.47), whereas the
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Figure 11.8. The Courant Condition.

second figure has k = %h, which does. Note how the characteristic lines starting at a
given mesh point have progressed beyond the neighboring mesh points after one time step
in the first case, but not in the second.
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