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Turiel’s complete list of canonical forms for finite-dimensional, nondegenerate, compatible pairs of Hamiltonian structures is
used to determine the precise local integrability of bi-Hamiltonian systems of ordinary differential equations. Also, classification
of incompatible Hamiltonian pairs in four dimensions and the relationship between compatibility and integrability are discussed.

1. Introduction

A system of differential equations is called bi-Hamiltonian [1,2], if it can be written in Hamiltonian form
in two distinct ways:

)IT=J1VH1 =JzVHO, xeM. (l)

Here M is a real or complex n-dimensional manifold, Hy(x), H,(x) are the two Hamiltonian functions, and
Jy (x), Jo(x) are skew symmetric 7 X n Hamiltonian matrices, not constant multiples of each other, determining
Poisson brackets on M:

{F, G}, =VFT](x)VG, v=1,2. (2)

The Jacobi identity requires that each J, (x) satisfy a quadratically nonlinear system of partial differential equa-
tions (cf. ref. [2; proposition 6.8]). We call the structure defined by J,, J, a Hamiltonian pair. The Hamil-
tonian pair is compatible if the sum J, (x) +J,(x) also determines a Poisson bracket, which, owing to the qua-
dratic nature of the Jacobi identity, implies that any constant coefficient linear combination of J, and J, is
also a valid Poisson bracket. In the symplectic case, each J,(x) is nonsingular (so » is necessarily even), and
the nonlinear Jacobi conditions can be replaced by the linear condition that the symplectic two-forms

Q=4 dxTAK,(x) dx, K,(x)=J,(x)" (3)
are closed, i.e. dQ2,=0. Compatibility is equivalent to the closure of the two-form
JaxTA [K(x)7 '+ K (x) '] dx.

According to the fundamental theorem of Magri [1], [2; theorem 7.24], provided certain technical hy-
potheses hold, bi-Hamiltonian systems for compatible Hamiltonian pairs are completely integrable.

Theorem 1. Suppose J,, J, form a compatible Hamiltonian pair, with J, symplectic. For each associated bi-
Hamiltonian system (1), there exists a hierarchy of Hamiltonian functions Hy, H,, H,, H;, ..., all in involution
with respect to either Poisson bracket, {H;, H,},=0, generating mutually commuting bi-Hamiltonian flows
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X=J1VHk=12VHk_1 . (4)

Thus such bi-Hamiltonian systems are completely integrable in the classical sense provided enough of the
Hamiltonians in the associated hierarchy are functionally independent. The goals of the present paper are two:
first to investigate in more detail the integrability of particular bi-Hamiltonian systems; second, to determine
the proper role that the compatibility condition plays in the integrability of such systems. Both investigations
will rest on the determination of canonical forms for such Hamiltonian pairs, and then explicitly determining
all associated bi-Hamiltonian systems. Note that for a given pair, the corresponding bi-Hamiltonian systems
are found by solving the linear system of partial differential equations

VH,=MVH,, M=J;'J,=K,K;", (5)

where M is the transpose of the recursion operator [2]. We remark here that the simple system of differential

equations (5), which arises in a surprising number of different contexts, is not well understood, except in the

particular case when the matrix M is constant, in which case the general solution can be found in ref. [3].
A Hamiltonian pair is called nondegenerate at the point x if the skew-symmetric matrix pencil

Li(x)=l(x)-A (x), AeCu{co}, (6)

is nonsingular for at least one (and hence for all but a finite number of ) A. (For A=00, set J;(x)=J/,(x).) In
this case, the A’s for which J,{x) is singular are called the eigenvalues of the pair. If the pair is compatible, and
nondegenerate, we can assume without loss of generality that J; is symplectic, i.e. A=o00 is not an eigenvalue.
The complete algebraic type of a nondegenerate pair of skew-symmetric matrices is given by the elementary
divisors and Segre characteristic of the matrix pencil J;(x), cf. ref. [4]. (Degenerate pairs of skew-symmetric
matrices are handled by the more detailed Kronecker theory.) A pair is called elementary at x if it has just
one complex eigenvalue. A nondegenerate pair is called irreducible at x if it has Segre characteristic [ (nm)]
(analogous to a single Jordan block), so every elementary pair is the direct sum of irreducible pairs all having
the same eigenvalue. Every nondegenerate complex skew-symmetric matrix pencil is algebraically the direct
sum of irreducible skew-symmetric matrix pencils.

Theorem 2. The eigenvalues, elementary divisors and Segre characteristic of a Hamiltonian pair are invariant
under the flow of any associated bi-Hamiltonian system.

Definition 3. A (nondegenerate) Hamiltonian pair is generic on a domain M if it has constant Segre char-
acteristic over all of M, i.e. the algebraic type of the pair does not vary from point to point, and also the number
of functionally independent eigenvalues does not vary, i.e. the dimension of the subspace of T*M |, spanned
by their differentials {dA |, ..., d4,} is independent of x. (In particular, each eigenvalue 1, is either constant or
has no critical points on M.)

Nongeneric points are singularities of the pair, and must be handled by more sophisticated techniques; see
ref. [5] for the case of a single Poisson structure in the plane. According to theorem 2, as far as the flow of
any bi-Hamiltonian system is concerned, we can safely restrict our attention to a domain where the pair is
generic,

According to the results of Turiel [6,7], any complex-analytic generic nondegenerate compatible Hamil-
tonian pair can be locally expressed as the Cartesian product of elementary pairs, each having just one eigen-
value. (Turiel’s classification results extend to real Hamiltonian pairs, as do our classifications of bi-Hamil-
tonian systems, but, for simplicity, we will restrict our attention here to complex analytic systems. ) In the case
of constant eigenvalue, any elementary pair is in turn the Cartesian product of irreducible pairs; however, this
does not hold in the case of nonconstant eigenvalue. We will present the details of the Turiel classification and
the structure of associated bi-Hamiltonian systems in five stages, corresponding to
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(I) irreducible, constant eigenvalue pairs;

(1) elementary, constant eigenvalue pairs;

(III) irreducible, nonconstant eigenvalue pairs;

(IV) elementary, nonconstant eigenvalue pairs;

(V) general generic, compatible, nondegenerate Hamiltonian pairs.

We assume that neither 0 nor oo is an eigenvalue, so the Hamiltonian pair is determined by two compatible
symplectic forms. Darboux’ theorem [2; theorem 6.22], implies that we can write the first symplectic form in
canonical form,

Q, =dpy Adqo+dp, Adg; +...+dp, Adg,. @)

Therefore, the problem reduces to how to place the second form £2, into a canonical form using canonical trans-
formations of the phase space.

2. (I) Irreducible, constant eigenvalue pairs

Theorem 4. Any irreducible compatible Hamiltonian pair with constant nonzero eigenvalue A has the ca-
nonical form

£, =p8 +dpo Adg, +dp, Adgy +..dP,_, Adg,, (8)
where £, is given by (7), and u=A4""'

The associated symplectic matrices for the pair (7), (8) are

0 I 0 w+U
k=(2 o) B=(Lulor 15°): ®

which is the canonical algebraic form of Weierstrass for a nondegenerate pair of skew-symmetric complex ma-
trices [4]. Here I is the (n+1) X (n+1) identity matrix, and U is the upper triangular matrix of the same size
with 1’s on the super-diagonal and 0’s elsewhere. Inverting the matrices (9) will give a canonical form for the
Hamiltonian matrices J,, although these are somewhat complicated to work with directly. However, this pair
assumes the simpler canonical form

0 I 0 AI+U
1=(% ) n=(L e M3Y) (10)

under the canonical transformation (p, q)—(4"p, A~'q), where the matrix A4 is such that
A(uI+U)~'4A-'=AI+ Uis in Jordan canonical form. The general form for any associated bi-Hamiltonian sys-
tem follows from the solution to (5) using the methods of ref. [3].

Theorem 5. Suppose H,(x), Hy(x), x= (p, ¢), are analytic functions which define a bi-Hamiltonian system
(1) relative to the canonical irreducible constant eigenvalue Hamiltonian pair (7), (8) on a convex open sub-
set. Then there exist scalar-valued functions F(¢&, ), k=0, ..., n, such that

Hoy(x)=H{ (x)-H§ (x)+..+HE (x), H\(x)=H{O(x)+H{"(x)+..+H{"(x),

with

k k—1
HP ()= az Fu(n(s), 0(s))|  +k o= Fuats), m(s))|
s=0 s=0
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ak

H®(x)= s Fu(n(s), m(s))| (11)
as 0

where

n(s)=po+sp, +5°p, +..+5"p,, @O(s)=q,+5Gs_1 +5%qu_z+...+5"q, . (12)

Example 6. Consider the case n=2. Then
n(s)=po+sp +5°p2, O(s)=g2+5q,+5%q.

Substituting into (11), we find that the general solution to (5) in this case is a sum of three particular types
of solution:

HE =puFo(po, ;) , H{P =Fy(po, 42) »

daF, aF,

HE =pH{" +F (po, 02), H{V=-—"p,+—q,

§ uH§ 1(Do> @2) { 3% y ! 342 q1
Héz)_ §2)+2a_l:‘lp2+2_a_}:_‘2.q0,

0q;
d%F 9%F. d°F. dF. aF.

H»=21"2p24 2 2 2 offy

{ ap(z)pl zam P1¢11+6241+260 +Zaqzq0s

where F,, F,, F, are arbitrary functions of the variables py, ¢-.

Similarly, it can be shown that the general Hamiltonians determined by (11) are polynomials in the minor
variables p,, ..., Dy, 4o, --» Gn—1, Whose coefficients are certain derivatives of the arbitrary smooth functions F,(p,
g,) of the remaining two major variables, p,, q,. In outline, the proof of this and similar subsequent results
proceeds in two steps. First one verifies by direct, elementary computation that (11) really do define solutions
to the system (5). Then, to show that these are the only solutions, we cross-differentiate to deduce that the
general solution must be an affine function of the top order minor variables p,, go, and, moreover, the coef-
ficients of these variables can be matched by a suitable choice of the solution (11) for k=n. The linearity of
(5) and an easy induction will complete the argument.

Theorem 5 demonstrates the complete integrability of any bi-Hamiltonian system corresponding to an ir-
reducible, constant eigenvalue Hamiltonian pair. Indeed, the subsystem governing the time evolution of the
major variables is the autonomous two-dimensional (one degree of freedom) Hamiltonian system with Ham-
iltonian n'F,(py, 4,),

OF,  day _3H, _ 0F,

dt T dgo " 6gq, At dp,  9po’

(13)

and is easily integrated by quadrature. (Curiously, the canonically conjugate variables p,, g, for the reduced
system (13) are not canonically conjugate for the standard symplectic structure given by £2,, nor are they con-
jugate for £2,.) The time evolution of the minor variables is then determined by successively solving a hierarchy
of two-dimensional forces linear Hamiltonian systems in the variables py, g,_, each of the form

doe __ (9%, | 9%F, ) ddn_s (a F, , 9°F, )
dt (apoaqnp + aqz q’l k Gk(t) ’ dt =n apz pk apoaqn qn—-k +Gk(t) ? (14)

where G, G, are certain explicit functions of (Pg, ..., Pk—1 @ms - Gn—i+1), Whose time evolution has thus already
been determined. We conclude that any bi-Hamiltonian system for an irreducible, constant eigenvalue Ham-
iltonian pair can be integrated by solving a single two-dimensional autonomous Hamiltonian system, followed
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by a sequence of forced linear, nonautonomous two-dimensional Hamiltonian systems.

3. (II) Elementary, constant eigenvalue pairs

Theorem 7. Every compatible Hamiltonian pair with constant eigenvalue(s) is (locally) the Cartesian prod-
uct of irreducible pairs.

We can therefore introduce local coordinates
x=,q)=0",...p" ¢, ...q"), P'=(Db,...0L), €'=(4b,..q%), (15)

such that 2, =0} +...+ Q7, where each (2n,+2)-dimensional sub-pair £, £, is irreducible, compatible, tak-
ing the canonical form (7), (8) in its coordinates (#°, ¢'). Restricting attention to the case of just one eigen-
value, assume that the sub-pairs are arranged in order of size: n,>n,>...>n,,. For k>0, let m;, denote the
number of irreducible sub-pairs of dimension greater than 2k+ 1, which, according to our ordering, will be the
first m, sub-pairs. In particular my=m.

Theorem 8. The most general bi-Hamiltonian system for a canonical elementary Hamiltonian pair with con-
stant eigenvalue A= ~! has the form (1) with

Ho(x)=HY(x)+H" (x)+..+H™ , H (x)=H{O(x)+H{V(x)+..+H{™,

where

k
HEP(5) = g Ful(1(5), B(5) , oy T78(5), TH(5))

s=0
ak—l
kg Fe(@ (), @1 (8), o B7(5), @™(8)))
s s=0
k
HEO(2)= 5o (1), B (5), - T (5), () (16)
s=0

Here n‘(s), @'(s) are the parametrized variables for the ith sub-pair, given by expressions (12), with n=n,,
and the additional index i on all the variables p!, ¢.

As in the irreducible case, we find that these Hamiltonians are polynomials in the minor variables
Pl 4h.;, j= 1, whose coefficients are certain derivatives of arbitrary functions of the major variables pj, ¢5,.
Therefore, to solve such a bi-Hamiltonian system, we must integrate an autonomous m-dimensional Hamil-
tonian system in the major variables, followed by a sequence of linear non-autonomous Hamiltonian systems
in the appropriate minor variables p%, q%,_, for all i with n,>k>1.

4. (II1) Irreducible, nonconstant eigenvalue pairs

Theorem 9. A generic irreducible compatible Hamiltonian pair with nonconstant eigenvalue A=1/p, can be
put into the canonical form

Q=Y dpiadg,, = -...; ijdpk/‘dql- 17)
J+k=

i=0
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The sum in Q, is over all j, k, / from O to n satisfying j+k=1.
The coordinates employed here are different from those in ref. [6], although the transformation between

the two is not hard. This particular bi-Hamiltonian structure has several remarkable properties. Define the
(n+1)X(n+1) banded upper triangular matrix

Po D P» D3 Dn
Po D P2 Pn—1
P.(p)=P(p)= bo By | (18)
Do
Do

Then the skew-symmetric matrix giving the symplectic two-form £, is

0 P(p)>.

ko= (_pipye g

The Hamiltonian matrix J,(p) =K,(p)~' is much more complicated, involving the inverse R(p)=P(p) !,
which has the same banded upper triangular form as P with entries

RP)=—, n@= ¥ (=Pl ey (19)
Do 4l 4o tig=k Do
vzl
However, the explicit change of coordinates
p=r(»), §=P(p)q, (20)

is a canonical involution, which maps Pto P(§)=P(p) "', and so changes the second Hamiltonian matrix into
its inverse. Thus the pair has the alternative canonical form

0 1 0 PG)
1= o) 2= (ot 0 @D

with eigenvalue A= j,. Therefore, as in the constant eigenvalue case, we conclude that both P(p) and its inverse
determine isomorphic Hamiltonian matrices!

Theorem 10. Suppose H,(x), Hy(x), x= (p, ¢), are analytic functions which define a bi-Hamiltonian system
relative to the canonical irreducible nonconstant eigenvalue Hamiltonian pair (17) on a convex open subset.
Then there exist scalar-valued functions (&), A(&), Fx(& 1), k=0, ..., n—1, such that

Ho(x)=h(p)+HL (x)+..+H§V(x), H(x)=h(p)+H®(x)+..+H{"(x),
where A’ (£) =&h’ (&), and

k k
Hé"’(x)=gs—k[u(S)ﬂ’(S)Fk(n(S),w(S))] , H?"’(x)=56?[ﬂ’(S)Fk(u(S),w(S))] . (22)

=0 =0

Here n(s), @(s) are given by (12), and #’ (s) is the derivative of z with respect to s.

Example 11. If n=2, the general bi-Hamiltonian system is given by a sum of the following three particular
types of Hamiltonians:
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H =h(po), H{® =h(po), K (po)=poh’(po),
H{Y =poP1 Fo(Po, 42) , H{V =p,Fo(po, a2)

oF dF
HE® = (2pop> +01)F, (o, 42) + 00 07 —— +poD1 1 — >
apo dq,
dF aF
H) =2p,F\(po, g2) +P3 3 +piqi 7.
P2 Fy (Do, ¢2) plapo 1201 F7)

In general, note that by theorem 2, the eigenvalue A is a constant, hence p, is a first integral for such Ham-
iltonian systems. Once its value is fixed, the other minor variable, g,, is found by solving a single autonomous
ordinary differential equation. The minor variables satisfy a sequence of forced, linear planar Hamiltonian
systems.

5. (IV) Elementary, nonconstant eigenvalue pairs

Theorem 12. Any generic elementary compatible Hamiltonian pair with nonconstant eigenvalue A=1/p, can
be written in the canonical form

m ni R R m . . R
Q, =dpo rdgo+ Z,- ldp}-Adq}, £, =po dpo ndgo+ _Z] .+Zk)[ p;dpi adgj. (23)
i=1j= i= J =
Jrk+1%0

Beyond the eigenvalue coordinate p, and its canonical conjugate g, the coordinates come in conjugate sets
pi=(pi, .., L), @=(q}, .., qL,), i=1, .., m. We also set p)=p, for all i by convention. The interior sum in
Q,isoverallj, k, [=0, ..., n; except the case j=k=1I=0, which already appears outside the double summation.

Note that this particular pair is algebraically reducible, but not reducible by canonical transformations. The
corresponding symplectic matrix for £, is

K2=( 0 P*(p)),

-P*)T 0
where
P P j SSEEEEE |
P, (5") 0 0
P*(p)= P, ($*) : . (24)
an(ﬁm)

Here p” = (po, PT, ..., P, ) (recall p§ =p,) and the P, are the corresponding upper triangular matrices of size
n,,Xn,, as given in (18). Note that the algebraically irreducible sub-blocks corresponding to just the variables
P™, §™ are isomorphic to the irreducible pair (17), but these sub-blocks are all entangled since the eigenvalue
A=1/p, is the same in all cases.

To describe the general form for any associated bi-Hamiltonian system, we let
n'(s)=po+sp} +5ph +...+5"ph,,

{{()=pi +sph+..+5"ph =57 [ (8) ~po] ,
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0'(8)=qh+5qh_1 ..+ g1, (25)
ru—ls [C (S)]”'H dn 1 |

K= Y = e T,

SOOI A 1 de'(0)]
CEO=ant L T TOr @

=2,..,m,

=2, s M.

Remark. The expansions of #' and ¢* involve truncations of the remarkable nonlinear series differential
operator

d
_ —l: Du - n— l n 2
P=D""':¢* 1+,,Z=ln D D, D=, (26)

where u=u(t). The colons a normal ordering of the noncommuting operators D and « analogous to the Wick
ordering in quantum mechanics. This operator has the surprising property that it commutes with any analytic
function @ (u):

20(u)=D(2u) .
See ref. [8] for details and applications of this operator to deriving new derivative identities.
Theorem 13. The most general bi-Hamiltonian system for an elementary, nonconstant eigenvalue generic
Hamiltonian pair (24) is given by
Ho(x) =h(po) + HY(x) +..+ HE" =D (x) , Hy(x)=h(po) +H{® (x)+..+ H{"~D(x),

where

ki
s=0

HP (x)= (SC (S)—Fk(n (5), 2(8), o, #™(5), @' (5), 6% (5), -y a'"*(S)))

, 27

5=0

{"’(x)—gg-(dn Fi(m' (), p2(8), ..., ™ (s), @' (8), 6%(5), ..., a'”‘(S)))

where h(&), A(&), Fu(&,, .., Emis M1 s oons i) k=0, ..., n—2, are scalar-valued functions, 2’ (&) =&’ (£). We as-
sume as before that the blocks are arranged in decreasing order n, > n,>...2>n,,, and m, denotes the number
of blocks of size n,>k.

Example 14. Consider the case of two sub-blocks of size n, =n,=2, with coordinates (po, P1, P2, P1> P2>90
d1, 92, 41, g5). The important variables for (27) are
nl(s)=po+sp; +5°p2, @'(s)=qx+sq:+5%q,
ws)= 5—31 +:(§?1 - %i,]—f"-) , a(s)=q} +sp;“1’
The general pair of Hamiltonians is a sum of the following two:
H§® =pop, Fo(po, 1, 42, 93) » HE =p Fo(po, 1, %2, 43) ,
HE =poH{» +p}Fi(po, 1, 42, 43) ,

aF 2 .7
H{» =2p,F\(po, 1, 42, 42) +Pi 5— D, +p; (gf p;gz)
i

1

dF, daF, qul aFl
_._+ —_—
ar P, T agy
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where Fp, F| are arbitrary smooth functions of the variables po, r=p,/p1, 42, ¢5. Note that the corresponding
bi-Hamiltonian system reduces to a system of three equations for the two top order positions ¢, g5, and the
homogeneous momentum coordinate r; the remaining variables can be then determined by quadratures and
solving linear systems.

In general, as in the example, such bi-Hamiltonian systems reduce to the integration of a (2m—2)-dimen-
sional Hamiltonian system for the coordinates p!, ¢.,, i=1, ..., m, followed by a sequence of forced linear Ham-
iltonian systems. The final coordinate g, is determined by quadrature. Actually, the initial Hamiltonian system
can be reduced in order to 2m~ 3 since it only involves the homogeneous ratios of momenta ri=pi/pl, i>2,
as can be seen from the formula for 4.

6. (V) The general case

Theorem 15. Every generic nondegenerate, compatible Hamiltonian pair can be locally expressed as a Carte-
sian product of elementary (constant and nonconstant eigenvalue) Hamiltonian pairs. Every associated bi-
Hamiltonian system decomposes into independent subsystems corresponding to each elementary subpair,
Therefore the solution of the bi-Hamiltonian system reduces to a collection of autonomous Hamiltonian sys-
tems whose dimensions are determined by the number of irreducible sub-pairs in each distinct elementary pair,
along with a sequence of linear, nonautonomous Hamiltonian systems.

As demonstrated by Turiel [6,7], all these results have real counterparts, obtained by taking real and im-
aginary parts of the complex pairs corresponding to complex eigenvalues. In particular, as in ref. [3], complex
eigenvalue bi-Hamiltonian systems are necessarily analytic Hamiltonians. We note that theorem 15 gives a re-
fined version of the integrability results appearing in refs. [9,10). Moreover, this result can be applied to give
a more complete version of the result in ref. [11], which demonstrates that the existence of enough bi-Ham-
iltonian vector fields implies that the two Hamiltonian structures must be constant multiples of each other.

This completes out classification of compatible nondegenerate bi-Hamiltonian systems. A significant open
problem which has not been addressed is to extend these results to degenerate compatible Hamiltonian pairs.

7. Hamiltonian pairs in four dimensions

In 1946, Debever [12] used Cartan’s equivalence method, cf. ref. [13], to classify pairs of symplectic two-
forms on a four-dimensional complex manifold up to local (analytic) diffeomorphism. Debever does not im-
pose any compatibility condition (which was not known at the time), but does impose an algebraic restriction,
cf. (28) below; consequently the classification of Hamiltonian pairs in four dimensions is not complete. Never-
theless, Debever’s result does produce new and interesting explicit examples of incompatible Hamiltonian pairs,
and is worth reviewing in the context of Magri’s theorem.

Theorem 16. Let £2,, £2, be analytic, symplectic two-forms on a four-dimensional complex manifold M sat-
isfying the algebraic condition

Ql A 92 =0. (28)
Then there exist local coordinates (p;, p,, 41, ¢2) such that
£, =dp, Adq, +dp, Adq,, (29)

and, up to constant multiple, £, is equivalent to one of the three canonical forms
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Q4 =dp; ndgq, —dp, Ardg;,
Q5P =e” (dp, ndg, —dp; Adq; —podp; A dg,)
Q§) =e”*7(dp, ndg, —dp, Adg, + (g, +4:)dp, Adp,) . (30)

Moreover, the canonical symplectic two-form £2, is compatible with the symplectic two-form 5!, but is not
compatible with either 252’ or 24§3.

Determining the general structure and integrability of bi-Hamiltonian systems associated with these Ham-
iltonian pairs is not difficult. In the compatible case 1, the pair has two distinct constant eigenvalues, + 4. Ac-
cording to theorem 15, any bi-Hamiltonian system for this pair decouples into a pair of autonomous planar
Hamiltonian systems, and is thereby integrable, as can also be verified directly.

In case 2, the general bi-Hamiltonian system has Hamiltonians of the general form

H,=F(p,e”/?, q;)e~"2+g(p,), Ho=—F(p,e”? ¢,)e”?+§(p,), (31)
where §' (s) =e~°¢’ (s). The corresponding bi-Hamiltonian system is

d, d

—dpt—‘ =0, —dq;'- =1F(p,e7/?, g)e P2~ ip, Fi(pe”V?, q2) +8' (1) ,

D o Fpien e, S (e gy, (32)

the subscripts on F indicating partial derivatives. Once the constant value of p, is fixed, the integration of this
system reduces to solving a single autonomous planar Hamiltonian system for p,, ¢,, with Hamiltonian function
f(p2e7V%, q,)e ~P'/2, The remaining function ¢, can then be determined by a single quadrature.

In case 3, the Hamiltonians have the general form

Hy=c(qi @) +/(p1,p2), Hy=c(q—a)+f(ps, p2),

where ¢ is a constant, and where

8 _enrn T pn (33)

ap g’ 6p, 2

Note that the integrability condition for (33) implies that f satisfies the partial differential equation
2f,,+f,+/,=0. The associated bi-Hamiltonian system is

a dp do, _ of dg, _ of (34)

- & T & T ey A apy

whose integration is trivial, reducing to just two quadratures.

Thus, by direct analysis, we are led to a strengthened version of Magri’s theorem for this particular case: Any
four-dimensional bi-Hamiltonian system satisfying the algebraic condition (28), compatible or not, is com-
pletely integrable. Indeed, the compatible bi-Hamiltonian structure leads to systems which reduce to the two
decoupled planar autonomous Hamiltonian systems, whereas for the incompatible pairs given by 4*’ and
€24 the systems reduce to one planar Hamiltonian system and one quadrature, or just two quadratures, re-
spectively. It would be extremely interesting to extend Debever’s classification to all possible nondegenerate
pairs of two-forms on C*; this would go a long way to elucidating the precise role of the compatibility condition
in the integrability of bi-Hamiltonian systems ¥!. Indeed, based on the evidence so far (including results on

#! This problem also has significant applications in Anderson’s recent work on the Jesse Douglas inverse problem for second order
systems [14].
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quasi-linear hyperbolic systems [15]) it would appear that incompatible bi-Hamiltonian systems are, in a sense,
even more integrable than compatible ones! '
The proofs and further details on these results will appear in an expanded version to be published elsewhere.
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