
Chapter 3

Jets and Differential Invariants

Transformation groups figure prominently in Lie’s theory of symmetry groups of dif-
ferential equations, which we discuss in Chapter 4. They will act on the basic space
coordinatized by the independent and dependent variables relevant to the system of differ-
ential equations under consideration. Since we are dealing with differential equations we
must be able to handle the derivatives of the dependent variables on the same footing as
the independent and dependent variables themselves. This chapter is devoted to a detailed
study of the proper geometric context for these purposes —the so-called “jet spaces” or
“jet bundles”, well known to nineteenth century practitioners, but first formally defined by
Ehresmann, [16]. After presenting a simplified version of the basic construction, we then
discuss how group transformations are “prolonged” so that the derivative coordinates are
appropriately acted upon, and, in the case of infinitesimal generators, deduce the explicit
prolongation formula.

A differential invariant is merely an invariant, in the standard sense, for a prolonged
group of transformations acting on the jet space Jn. Just as the ordinary invariants of a
group action serve to characterize invariant equations, so differential invariants will com-
pletely characterize invariant systems of differential equations for the group, as well as
invariant variational principles. As such they form the basic building blocks of many phys-
ical theories, where one begins by postulating the invariance of the differential equations, or
the variational problem, under a prescribed symmetry group. Historically, the subject was
initiated by Halphen, [21], and then developed in great detail, with numerous applications,
by Lie, [33], and Tresse, [53]. In this chapter, we discuss the basic theory of differential
invariants, and some fundamental methods for constructing them. Applications of these
results to the study of differential equations and variational problems will be discussed in
the following chapters.

Transformations and Functions

A general system of (partial) differential equations involves p independent variables
x = (x1, . . . , xp), which we can view as local coordinates on the Euclidean space X ≃ R

p,
and q dependent variables u = (u1, . . . , uq), coordinates on U ≃ R

q. The total space will be
the Euclidean space E = X ×U ≃ R

p+q coordinatized by the independent and dependent
variables.† The symmetries we will focus on are (locally defined) diffeomorphisms on the

† It should be remarked that all these considerations extend to the more general global con-
text, in which the total space is replaced by a vector bundle E over the base X coordinatized by
the independent variables, the fibers being coordinatized by the dependent variables. Since our
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space of independent and dependent variables:

(x̄, ū) = g · (x, u) = (χ(x, u), ψ(x, u)). (3.1)

These are often referred to as point transformations since they act pointwise on the total
space E. However, it is convenient to specialize, on occasion, to more restrictive classes of
transformations. For example, base transformations are only allowed to act on the inde-
pendent variables, and so have the form x̄ = χ(x), ū = u. If we wish to preserve the bundle
structure of the space E, we must restrict to the class of fiber-preserving transformations

in which the changes in the independent variable are unaffected by the dependent variable,
and so take the form

(x̄, ū) = g · (x, u) = (χ(x), ψ(x, u)). (3.2)

Most, but not all, important group actions are fiber-preserving.

In the case of connected groups, the action of the group can be recovered from that
of its associated infinitesimal generators. A general vector field

v =

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

ϕα(x, u)
∂

∂uα
, (3.3)

on the space of independent and dependent variables generates a flow exp(tv), which is a
local one-parameter group of point transformations on E. The vector field will generate a
one-parameter group of fiber-preserving transformations if and only if the coefficients ξi =
ξi(x) do not depend on the dependent variables. The group consists of base transformations
if and only if the vector field is horizontal, meaning that all the vertical coefficients vanish:
ϕα = 0. Vice versa, vertical vector fields, which are characterized by the vanishing of the
horizontal coefficients, ξi = 0, generate groups of vertical transformations; an important
physical example is provided by the gauge transformations.

A (classical) solution‡ to a system of differential equations will be described by a
smooth function u = f(x). (In the more general bundle-theoretic framework, solutions
are described by sections of the bundle.) The graph of the function, Γf = {(x, f(x))},
determines a regular p-dimensional submanifold of the total space E. However, not every
regular p-dimensional submanifold of E defines the graph of a smooth function. Globally,
it can intersect each fiber {x0} × U in at most one point. Locally, it must be transverse,
meaning that its tangent space contains no vertical tangent directions. The Implicit Func-
tion Theorem demonstrates that, locally, the transversality condition is both necessary
and sufficient for a submanifold to represent the graph of a smooth function.

primary considerations are local, we shall not lose anything by specializing to (open subsets of)
Euclidean space, which has the added advantage of avoiding excessive abstraction. Moreover, the
sophisticated reader can easily supply the necessary translations of the machinery if desired. Inci-
dentally, an even more general setting for these techniques, which avoids any a priori distinction
between independent and dependent variables, is provided by the extended jet bundles defined in
[43; Chapter 3].

‡ To avoid technical complications, we will only consider smooth or analytic solutions, although
extensions of these results to more general types of solutions are certainly possible, [49, 50].
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Proposition 3.1. A regular p-dimensional submanifold Γ ⊂ E which is transverse
at a point z0 = (x0, u0) ∈ Γ coincides locally, i.e., in a neighborhood of x0, with the graph
of a single-valued smooth function u = f(x).

Any point transformation (3.1) will act on a function u = f(x) by pointwise trans-
forming its graph. In other words if Γf = {(x, f(x))} denotes the graph of f , then the

transformed function f̄ = g · f will have graph

Γf̄ = {(x̄, f̄(x̄))} = g · Γf = {g · (x, f(x))}. (3.4)

In general, we can only assert that the transformed graph is another p-dimensional sub-
manifold of E, and so the transformed function will not be well defined unless g · Γf is
(at least) transverse. Transversality will, however, be ensured if the transformation g is
sufficiently close to the identity transformation, and the domain of f is compact.

Example 3.2. Consider the one-parameter group of rotations

gt · (x, u) = (x cos t− u sin t, x sin t+ u cos t), (3.5)

acting on the space E ≃ R
2 consisting of one independent and one dependent variable.

Such a rotation transforms a function u = f(x) by rotating its graph; therefore, the
transformed graph gt · Γf will be the graph of a well-defined function only if the rotation

angle t is not too large. The equation for the transformed function f̄ = gt · f is given in
implicit form

x̄ = x cos t− f(x) sin t, ū = x sin t+ f(x) cos t,

so that ū = f̄(x̄) is found by eliminating x from these two equations. For example, if
u = ax+ b is affine, then the transformed function is also affine, and given explicitly by

ū =
sin t+ a cos t

cos t− a sin t
x̄ +

b

cos t− a sin t
, (3.6)

which is defined provided cot t 6= a, i.e., provided the graph of f has not been rotated to
be vertical.

In general, given a point transformation as in (3.1), the transformed function ū = f̄(x̄)
is found by eliminating x from the parametric equations ū = ψ(x, f(x)), x̄ = χ(x, f(x)),
provided this is possible. If the transformation is fiber-preserving, then x̄ = χ(x) is a local
diffeomorphism, and so the transformed function is always well defined, being given by
ū = ψ(χ−1(x̄), f(χ−1(x̄))).

Invariant Functions

Given a group of point transformations G acting on E ≃ X ×U , the characterization
of all G-invariant functions u = f(x) is of great importance.

Definition 3.3. A function u = f(x) is said to be invariant under the transformation
group G if its graph Γf is a (locally) G-invariant subset.
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For example, the graph of any invariant function for the rotation group SO(2) acting
on R

2 must be an arc of a circle centered at the origin, so u = ±
√
c2 − x2. Note that there

are no globally defined invariant functions in this case.

Remark : In this framework, it is important to distinguish between an “invariant func-
tion”, which is a section u = f(x) of the bundle E, and an “invariant”, which, as in Def-
inition 2.25, is a real-valued function I(x, u) defined (locally) on E. It is hoped that this
will not cause too much confusion in the sequel.

In general, since any invariant function’s graph must, locally, be a union of orbits, the
existence of invariant functions passing through a point z = (x, u) ∈ E requires that the
orbit O through z be of dimension at most p, the number of independent variables, and,
furthermore, be transverse. Since the tangent space to the orbit TO|z = g|z agrees with the
space spanned by the infinitesimal generators of G, the transversality condition requires
that, at each point, g|z contain no vertical tangent vectors. For example, the infinitesimal
generator of the rotation group is v = −u∂x + x∂u, which is vertical at u = 0. Thus, the
rotation group fails the transversality criterion on the x-axis, and, as we saw, there are
no smooth, rotationally invariant functions u = f(x) passing through such points. In the
case the group acts both (semi-)regularly and transversally, then we can characterize the
invariant functions by the use of the functionally independent (real-valued) invariants of
the group action. The following result is a direct corollary of Theorem 2.34.

Theorem 3.4. Let G be a transformation group acting semi-regularly and transver-
sally on E ≃ X × U with s-dimensional orbits. Let

I1(x, u), . . . , Ip−s(x, u), J1(x, u), . . . , Jq(x, u),

be a complete set of functionally independent invariants for G. Then any G-invariant
function u = f(x), can, locally, be written in the implicit form

w = h(y), where y = I(x, u), w = J(x, u). (3.7)

In the fiber-preserving case, if we assume that the orbits of the projected action of G
on X also have dimension s, then we can take the first p− s invariants I1(x), . . . , Ip−s(x)
to depend only on the independent variables, and forming a complete system of invariants
on X .

Example 3.5. A “similarity solution” of a system of partial differential equations is
just an invariant function for a group of scaling transformations. As a specific example,
consider the one-parameter scaling group (x, y, u) 7→ (λx, λαy, λβu). The independent
invariants are provided by the ratios y = y/xα, w = u/xβ, so any scale-invariant function
can be written as w = h(y), or, explicitly, u = xβh(y/xα).

As usual, the most convenient characterization of the invariant functions is based on
an infinitesimal condition. Since the graph of a function is defined by the vanishing of
its components uα − fα(x), our general invariance Theorem 2.71 imposes the infinitesimal
invariance conditions

0 = v(uα − fα(x)) = ϕα(x, u) −
p∑

i=1

ξi(x, u)
∂fα

∂xi
, α = 1, . . . , q,
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which must hold whenever u = f(x), for every infinitesimal generator v ∈ g, as in (3.3).
These first order partial differential equations are known in the literature as the “invariant
surface conditions” associated with the given transformation group, cf. [9].

Definition 3.6. The characteristic of the vector field v given by (2.7) is the q-tuple
of functions Q(x, u(1)), depending on x, u and first order derivatives of u, defined by

Qα(x, u(1)) = ϕα(x, u)−
p∑

i=1

ξi(x, u)
∂uα

∂xi
, α = 1, . . . , q. (3.8)

Theorem 3.7. A function u = f(x) is invariant under a connected group of point
transformations if and only if it is a solution to the first order system of quasi-linear partial
differential equations

Qα(x, u(1)) = 0, α = 1, . . . , q, (3.9)

determined by all the characteristics Q(x, u(1)) of the set of infinitesimal generators v ∈ g.

For example, the characteristic of the rotation vector field −u∂x +x∂u is Q = x+uux.
Any rotationally invariant function must satisfy the differential equation x + uux = 0.
This equation can be readily integrated: x2 + u2 = c, and hence the graph is an arc of
a circle. Similarly, the infinitesimal generator of the scaling group of Example 3.5 is the
vector field x∂x + αy∂y + βu∂u. The characteristic is Q = βu − xux − αyuy, and the
scale-invariant functions constitute the general solution to the linear partial differential
equation xux + αyuy = βu.

Jets and Prolongations

Since we are interested in studying the symmetries of differential equations, we need
to know not only how the group transformations act on the independent and dependent
variables, but also how they act on the derivatives of the dependent variables. In the
last century, this was done automatically, without fretting about the precise mathematical
foundations of the method; in more recent times, geometers have formalized this geomet-
rical construction through the general definition of the “jet space” (or bundle) associated
with the total space of independent and dependent variables. The jet space coordinates
will represent the derivatives of the dependent variables. We describe a simple, direct
formulation of these spaces using local coordinates.

A smooth, scalar-valued function f(x1, . . . , xp) depending on p independent variables

has pk =

(
p+ k − 1

k

)
different kth order partial derivatives ∂Jf(x) =

∂kf

∂xj1∂xj2 · · ·∂xjk

,

indexed by all unordered (symmetric) multi-indices J = (j1, . . . , jk), 1 ≤ jκ ≤ p, of order
k = #J . Therefore, if we have q dependent variables (u1, . . . , uq), we require qk = qpk

different coordinates uα
J , 1 ≤ α ≤ q, #J = k, to represent all the kth order derivatives

uα
J = ∂Jf

α(x) of a function u = f(x). For the total space E = X × U ≃ R
p × R

q, the nth

jet space Jn = JnE = X ×U (n) is the Euclidean space of dimension p+ q(n) ≡ p+ q
(
p+n

n

)
,

whose coordinates consist of the p independent variables xi, the q dependent variables uα,
and the derivative coordinates uα

J , α = 1, . . . , q, of orders 1 ≤ #J ≤ n. The points in the
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vertical space (fiber) U (n) are denoted by u(n), and consist of all the dependent variables
and their derivatives up to order n; thus the coordinates of a typical point z ∈ Jn are
denoted by (x, u(n)). Since the derivative coordinates u(n) form a subset of the derivative
coordinates u(n+k), there is a natural projection πn+k

n : Jn+k → Jn on the jet spaces, with
πn+k

n (x, u(n+k)) = (x, u(n)). In particular, πn
0 (x, u(n)) = (x, u) is the projection from Jn to

E = J0. If M ⊂ E is an open subset, then JnM = (πn
0 )−1M ⊂ JnE is the open subset of

the nth jet space which projects back down to M .

A smooth function u = f(x) from X to U has nth prolongation u(n) = f (n)(x) (also
known as the n-jet and denoted jnf), which is the function from X to U (n) defined by
evaluating all the partial derivatives of f up to order n; thus the individual coordinate
functions of f (n) are uα

J = ∂Jf
α(x). In particular, f (0) = f . Note that the graph of the

prolonged function f (n), namely Γ
(n)
f = {(x, f (n)(x))}, will be a p-dimensional submanifold

of Jn. At a point x ∈ X , two functions have the same nth order prolongation, and so
determine the same point of Jn, if and only if they have nth order contact , meaning that
they and their first n derivatives agree at the point, which is the same as requiring that
they have the same nth order Taylor polynomial at the point x. Thus, a more intrinsic
way of defining the jet space Jn is to consider it as the set of equivalence classes of smooth
functions using the equivalence relation of nth order contact. Note that the process of
prolongation is compatible with the jet space projections, so πn+k

n
◦f (n+k) = f (n).

If g is a (local) point transformation (3.1), then g acts on functions by transforming
their graphs, and hence also naturally acts on the derivatives of the functions. This
allows us to define the induced prolonged transformation (x̄, ū(n)) = g(n) · (x, u(n)) on

the jet space Jn. More specifically, given a point z0 = (x0, u
(n)
0 ), choose a representative

smooth function u = f(x) whose nth prolongation has the prescribed derivatives at x0,
so z0 = (x0, f

(n)(x0)) ∈ Jn. The transformed point z̄0 = g(n) · z0 is found by evaluating
the derivatives of the transformed function f̄ = g · f at the image point x̄0, defined so

that (x̄0, ū0) = (x̄0, f̄(x̄0)) = g · (x0, f(x0)); therefore z̄0 = (x̄0, ū
(n)
0 ) = (x0, f̄(x0)). This

definition assumes that f̄ is smooth at x̄0 — otherwise the prolonged transformation is not

defined at (x0, u
(n)
0 ). Thus, the prolonged transformation g(n) maps the graph Γ

(n)
f of the

nth prolongation of a function u = f(x) to the graph of the nth prolongation of its image
f̄ = g · f :

g(n) · Γ(n)
f = Γ

(n)
g·f . (3.10)

A straightforward chain rule argument shows that the construction does not depend on
the particular function f used to represent the point of Jn; in particular, in view of the
identification of the points in Jn with Taylor polynomials of order n, it suffices to determine
how the point transformations act on polynomials of degree at most n. Note that the
prolongation process preserves compositions, (g ◦h)(n) = g(n) ◦h(n), and is compatible with
the jet space projections, πn+k

n
◦g(n+k) = g(n). Given a (local) group of transformations

acting on E, we define the prolonged group action, denoted by G(n), on the jet space
JnE by prolonging the individual transformations in G. In general, prolongation may only
define a local action of the group G, although certain classes, e.g., global fiber-preserving
actions, do have global prolongations.
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Example 3.8. For a rotation in the one-parameter group considered in Example 3.2,

the first prolongation g
(1)
t will act on the space coordinatized by (x, u, p), where, in accor-

dance with classical notation, we use p to represent the derivative coordinate ux. Given a
point (x0, u0, p0), we choose the linear polynomial u = f(x) = p0(x−x0)+u0 as represen-
tative, noting that f(x0) = u0, f

′(x0) = p0. The transformed function is given by (3.6),
so

f̄(x̄) =
sin t+ p0 cos t

cos t− p0 sin t
x̄+

u0 − p0x0

cos t− p0 sin t
.

Then, x̄0 = x0 cos t − u0 sin t, so f̄(x̄0) = ū0 = x0 sin t + u0 cos t, as we already knew,
and p̄0 = f̄ ′(x̄0) = (sin t + p0 cos t)/(cos t − p0 sin t), which is defined provided p0 6=
cot t. Therefore, dropping the 0 subscripts, the first prolongation of the rotation group is
explicitly given by

g
(1)
t · (x, u, p) =

(
x cos t− u sin t, x sin t+ u cos t,

sin t+ p cos t

cos t− p sin t

)
, (3.11)

defined for p 6= cot t. Note, in particular, that even though the original group action is
globally defined, its first prolongation is only a local transformation group.

Example 3.9. Example 3.8 is a particular case of a general point transformation

x̄ = χ(x, u), ū = ψ(x, u), (3.12)

on the space E ≃ R × R coordinatized by a single independent and a single dependent
variable. In view of the ordinary calculus chain rule, the derivative coordinate p = ux on
the jet space J1 will transform under the first prolongation of (3.12) according to a linear
fractional transformation

p̄ =
α p+ β

γ p+ δ
, (3.13)

whose coefficients

α =
∂ψ

∂u
, β =

∂ψ

∂x
, γ =

∂χ

∂u
, δ =

∂χ

∂x
, (3.14)

are certain derivatives of the functions χ, ψ determining our change of variables. Further
applications of the chain rule will yield the higher order prolongations in this case — see,
for instance, (3.16) below.

Exercise 3.10. Before proceeding further, the reader should try to compute the
second prolongation of the rotation group SO(2).

Total Derivatives

The chain rule computations used to compute prolongations are significantly simplified
if we introduce the useful concept of a total derivative. We first define the functions that
are to be differentiated.

Definition 3.11. A smooth, real-valued function F : Jn → R, defined on an open
subset of the nth jet space is called a differential function of order n.
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Any nth order differential equation will be determined by the vanishing of a differential
function of order n. For example, the planar Laplace equation uxx+uyy = 0 is given by the

second order differential function F (x, u(2)) = uxx+uyy defined on J2E, where E = R
2×R

has coordinates x, y, u. Note that any differential function of order n automatically defines
a differential function on any higher order jet space merely by treating the coordinates
(x, u(n)) of Jn as a subset of the coordinates (x, u(n+k)) of Jn+k — this is the same as
composing F with the projection πn+k

n : Jn+k → Jn. In the sequel, we will not distinguish
between F and its compositions F ◦πn+k

n . The order of a differential function will typically
only refer to the minimal order jet space on which it is defined, which is the same as the
maximal order derivative coordinate upon which it depends. Thus uxx + uyy is a second

order differential function, even though it also defines a function on any jet space Jk for
k ≥ 2.

Definition 3.12. Let F (x, u(n)) be a differential function of order n. The total

derivative F with respect to xi is the (n+ 1)st order differential function DiF satisfying

DiF (x, f (n+1)(x)) =
∂

∂xi
F (x, f (n)(x)),

for any smooth function u = f(x).

For example, in the case of one independent variable x and one dependent variable
u, the total derivative of a given differential function F (x, u(n)) with respect to x has the
general formula

DxF =
∂F

∂x
+ ux

∂F

∂u
+ uxx

∂F

∂ux

+ uxxx

∂F

∂uxx

+ · · · . (3.15)

For example, Dx(xuuxx) = uuxx + xuuxxx + xuxuxx.

As a first application, note that the chain rule prolongation formula (3.13) can now
be simply written

p̄ =
dū

dx̄
=
Dxψ

Dxχ
.

Using this notation, the action of the second prolongation of the point transformation
(3.12) on the second order derivative coordinate q = uxx can be compactly written as

q̄ =
d2ū

dx̄2
=

1

Dxχ
Dx

(
Dxψ

Dxχ

)
=
Dxχ ·D2

xψ −Dxψ ·D2
xχ

(Dxχ)3
. (3.16)

For example, in the case of the rotation group SO(2) acting on R
2, formula (3.16) implies

the explicit form

(
x cos t− u sin t, x sin t+ u cos t,

sin t+ p cos t

cos t− p sin t
,

q

(cos t− p sin t)3

)
, (3.17)

for the second prolongation, thereby solving Exercise 3.10.
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In the general framework, the total derivative with respect to the ith independent
variable xi is the first order differential operator

Di =
∂

∂xi
+

q∑

α=1

∑

J

uα
J,i

∂

∂uα
J

, (3.18)

where uα
J,i = Di(u

α
J ) = uα

j1...jki. The sum in (3.18) is over all symmetric multi-indices J of
arbitrary order. Even though Di involves an infinite summation, when applying the total
derivative to any particular differential function, only finitely many terms (namely, those
for #J ≤ n, where n is the order of F ) are needed. In particular, each total derivative
DiF of an (n+ 1)st order differential function depends linearly on the (n+ 1)st derivative
coordinates. Higher order total derivatives are defined in the obvious manner, so that
DJ = Dj1

· . . . ·Djk
for any multi-index J = (j1, . . . , jk), 1 ≤ jν ≤ p.

Exercise 3.13. Prove that F (x, u(n)) is a differential function all of whose total
derivatives vanish, DiF = 0, i = 1, . . . , p, if and only if F is constant.

Prolongation of Vector Fields

Given a vector field v generating a one-parameter group of point transformations
exp(tv) on E ≃ X × U , the associated nth order prolonged vector field v(n) is the vector
field on the jet space Jn which is the infinitesimal generator of the prolonged one-parameter
group exp(tv)(n). Thus, according to (1.7), at any point (x, u(n)) ∈ Jn,

v(n)
∣∣
(x,u(n))

=
d

dt
exp(tv)(n) · (x, u(n))

∣∣∣∣
t=0

. (3.19)

The explicit formula for the prolonged vector field is provided by the following “prolonga-
tion formula”. Although the formula can be proved by direct computation based on the
definition (3.19), cf. [43], we will wait in order to present an alternative useful proof based
on the contact structure of the jet space later in this chapter.

Theorem 3.14. Let v be a vector field given by (3.3), and let Q = (Q1, . . . , Qq) be
its characteristic, as in (3.8). The nth prolongation of v is given explicitly by

v(n) =

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

n∑

#J=j=0

ϕα
J (x, u(j))

∂

∂uα
J

, (3.20)

with coefficients

ϕα
J = DJQ

α +

p∑

i=1

ξi uα
J,i. (3.21)

Example 3.15. Suppose we have just one independent and dependent variable. A
general vector field v = ξ(x, u)∂x + ϕ(x, u)∂u has characteristic

Q(x, u, ux) = ϕ(x, u) − ξ(x, u)ux. (3.22)
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The second prolongation of v is a vector field

v(2) = ξ(x, u)
∂

∂x
+ ϕ(x, u)

∂

∂u
+ ϕx(x, u(1))

∂

∂ux

+ ϕxx(x, u(2))
∂

∂uxx

, (3.23)

on J2, whose coefficients ϕx, ϕxx are given by (3.21), hence

ϕx = DxQ+ ξuxx = ϕx + (ϕu − ξx)ux − ξuu
2
x,

ϕxx = D2
xQ+ ξuxxx = ϕxx + (2ϕxu − ξxx)ux + (ϕuu − 2ξxu)u2

x −
− ξuuu

3
x + (ϕu − 2ξx)uxx − 3ξuuxuxx.

(3.24)

In (3.24) the subscripts on ξ and ϕ indicate partial derivatives. For example, the second
prolongation of the generator v = −u∂x + x∂u of the rotation group is given by

v(2) = −u ∂

∂x
+ x

∂

∂u
+ (1 + u2

x)
∂

∂ux

+ 3uxuxx

∂

∂uxx

. (3.25)

The group transformations (3.17) can be readily recovered by integrating the system of
ordinary differential equations governing the flow of v(2), as in (1.5); these are

dx

dt
= −u, du

dt
= x,

dp

dt
= 1 + p2,

dq

dt
= 3pq,

where we have used p and q to stand for ux and uxx to avoid confusing derivatives with
jet space coordinates. Note also that the first prolongation of v is obtained by omitting
the second derivative terms in (3.23), or, equivalently, projecting back to J1.

Example 3.16. As a second example, suppose we have two independent variables,
x and t, and one dependent variable u. A vector field

v = ξ(x, t, u)∂x + τ(x, t, u)∂t + ϕ(x, t, u)∂u

has characteristic
Q = ϕ− ξux − τut.

The second prolongation of v is the vector field

v(2) = ξ∂x + τ∂t + ϕ∂u + ϕx∂ux
+ ϕt∂ut

+ ϕxx∂uxx
+ ϕxt∂uxt

+ ϕtt∂utt
, (3.26)

where, for example,

ϕx = DxQ+ ξuxx + τuxt = ϕx + (ϕu − ξx)ux − τxut − ξuu
2
x − τuuxut,

ϕt = DtQ+ ξuxt + τutt = ϕt − ξtux + (ϕu − τt)ut − ξuuxut − τuu
2
t ,

ϕxx = D2
xQ+ ξuxxx + τuxxt

= ϕxx + (2ϕxu − ξxx)ux − τxxut + (ϕuu − 2ξxu)u2
x −

− 2τxuuxut − ξuuu
3
x − τuuu

2
xut + (ϕu − 2ξx)uxx −

− 2τxuxt − 3ξuuxuxx − τuutuxx − 2τuuxuxt.

(3.27)

See Chapter 4 for applications of these formulae to the study of symmetries of differential
equations.
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Exercise 3.17. Prove that the coefficients (3.21) of the prolonged vector field satisfy
the classical recursive formula

ϕα
J,i = Diϕ

α
J −

p∑

j=1

Diξ
j uα

J,j . (3.28)

In particular, the coefficients of the first prolongation of v are given by

ϕα
i = Diϕ

α −
p∑

j=1

(
Diξ

j
)
uα

j . (3.29)

For instance, formulae (3.27) can also be written in the form

ϕx = Dxϕ− (Dxξ)ux − (Dxτ)ut, ϕt = Dtϕ− (Dtξ)ux − (Dtτ)ut,

ϕxx = Dxϕ
x − (Dxξ)uxx − (Dxτ)uxt.

An alternative approach to the prolongation formula for vector fields is to introduce
the evolutionary vector field

vQ =

q∑

α=1

Qα(x, u(1))
∂

∂uα
, (3.30)

based on the characteristic of our vector field v, cf. (3.8); vQ is an example of a “gener-
alized” vector field in that it no longer depends on just the independent and dependent
variables, but also on their derivatives, and so does not determine a well-defined geomet-
rical transformation on the total space E; see [4, 43], for a survey of the general theory.
Let

v
(n)
Q =

q∑

α=1

∑

#J≥0

DJQ
α(x, u(1))

∂

∂uα
J

, (3.31)

be the corresponding formal prolongation of vQ. Then the nth prolongation of v can be
written as

v(n) = v
(n)
Q +

p∑

i=1

ξiD
(n)
i , (3.32)

where D
(n)
i denotes the order n truncation of the total derivative operator (3.18), i.e.,

restricting the sum to #J ≤ n.

Since the prolongation process respects the composition of maps, the commutator
formula (1.13) immediately proves that it preserves Lie brackets:

[v,w](n) = [v(n),w(n)], (3.33)

and therefore defines a Lie algebra homomorphism from the space of vector fields on E
to the space of prolonged vector fields on JnE. Thus, the nth prolongation g(n) of a Lie
algebra of vector fields on E defines an isomorphic Lie algebra of vector fields on Jn,
generating the nth prolongation of the associated transformation group.
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Example 3.18. According to the classification tables in [44], there are three dis-
tinct, locally inequivalent actions of the unimodular Lie group SL(2) on a two-dimensional
complex manifold. Interestingly, the process of prolongation can be used to relate all three
actions. Consider first the usual linear fractional action

(x, u) 7−→
(
αx+ β

γx+ δ
, u

)
,

whose infinitesimal generators

v− = ∂x, v0 = x∂x, v+ = x2∂x, (3.34)

span the intransitive Lie algebra of Type 3.3; see also Example 2.60. Using p = ux to
denote the derivative coordinate, we find that the first prolongation of this group action is
generated by the vector fields

v
(1)
− = ∂x, v

(1)
0 = x∂x − p∂p, v

(1)
+ = x2∂x − 2xp∂p, (3.35)

which, in accordance with (3.33), form a Lie algebra having the same sl(2) commutation
relations. The Lie algebra (3.35) clearly projects to the (x, p)–plane, thereby defining the
Lie algebra of vector fields of Type 1.1 in our tables. Further, setting q = uxx, the second
prolongation of the vector fields (3.34) yields the Lie algebra

v
(2)
− = ∂x, v

(2)
0 = x∂x − p∂p − 2q∂q, v

(2)
+ = x2∂x − 2xp∂p − (4xq + 2p)∂q, (3.36)

again having the same sl(2) commutation relations. Define

w =
q

2p
=
px

2p
=
uxx

2ux

, (3.37)

and use (x, u, p, w) instead of (x, u, p, q) as coordinates on {p 6= 0} ⊂ J2. The vector fields
(3.36) then have the form

v
(2)
− = ∂x, v

(2)
0 = x∂x − p∂p − w∂w, v

(2)
+ = x2∂x − 2xp∂p − (2xw + 1)∂w. (3.38)

Again, we can project this action to the (x, w)–plane, on which the vector fields (3.38)
span a Lie algebra of Type 1.2. The associated group action is

(x, w) 7−→
(
αx+ β

γx+ δ
, (γx+ δ)2w + γ(γx+ δ)

)
.

Contact Forms

We have already remarked on how the nth order jet space can be abstractly constructed
using the equivalence relation of nth order contact. We now investigate the contact struc-
ture of jet spaces in some detail, determining a remarkable system of differential forms
— the contact forms — which serve to characterize precisely prolonged functions and
transformations. One immediate consequence of this approach is a simple proof of the
prolongation formula (3.20).
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To begin with, recall that each (smooth) function u = f(x) determines a prolonged
function u(n) = f (n)(x) from X to the nth jet space Jn. The (easy) inverse problem is
to characterize those sections of the jet space, meaning functions F :X → Jn given by
u(n) = F (x), which come from prolonging ordinary functions. This is essentially the same
as the problem of determining which p-dimensional submanifolds of Jn are the graphs of the
prolongations of functions. Although in local coordinates the solution to both problems is
completely trivial — one just checks that the derivative coordinates match up properly —
there is a more interesting and useful solution to these problems based on an intrinsically
defined system of differential forms.

Definition 3.19. A differential one-form θ on the jet space Jn is called a contact

form if it is annihilated by all prolonged functions. In other words, if u = f(x) is any
smooth function with nth prolongation f (n):X → Jn, then the pull-back of θ to X via f (n)

must vanish: (f (n))∗ θ = 0.

Example 3.20. Consider the case of one independent and one dependent variable.
On the first jet space J1, with coordinates x, u, p = ux, a general one-form takes the form
θ = a dx+ b du+ c dp, where a, b, c are functions of x, u, p. A function u = f(x) has first
prolongation p = f ′(x), hence (f (1))∗θ equals

[
a(x, f(x), f ′(x)) + b(x, f(x), f ′(x))f ′(x) + c(x, f(x), f ′(x))f ′′(x)

]
dx.

This will vanish for all functions f if and only if c = 0 and a = −bp; hence θ = b(x, u, p)θ0
must necessarily be a multiple of the basic contact form θ0 = du − p dx = du − ux dx.
Proceeding to the second jet space J2, with additional coordinate q = uxx, a similar
calculation shows that a one-form θ = a dx + b du + c dp + e dq is a contact form if and
only if θ = b θ0 + c θ1, where θ1 = dp − q dx = dux − uxx dx is the next basic contact
form. (Here, as we did earlier with differential functions, we are identifying the form θ0
with its pull-back (π2

1)
∗θ0 to J2.) In general, provided x, u ∈ R, the general contact form

can be written as a linear combination of the basic contact forms θk = duk − uk+1 dx,

k = 0, . . . , n− 1, where uk = Dk
xu is the kth order derivative of u.

Similar elementary computations show that, in the case of two dependent variables
u, v, every contact form is a linear combination of the basic contact forms for u and
analogous ones for v, i.e., dv − vx dx, dvx − vxx dx, etc. On the other hand, for two
independent and one dependent variable, there is one basic contact form θ0 = du−ux dx−
uy dy on J1, two basic contact forms θx = dux−uxx dx−uxy dy, θy = duy−uxy dx−uyy dy,

on J2, and so on. A similar argument provides us with the complete characterization of
all contact forms.

Theorem 3.21. Every contact form on Jn can be written as a linear combination,
θ =

∑
J,α P

α
J θ

α
J , with smooth coefficient functions Pα

J (x, u(n)), of the basic contact forms

θα
J = duα

J −
p∑

i=1

uα
J,i dx

i, α = 1, . . . , q, 0 ≤ #J < n. (3.39)

In (3.39), we call #J the order of the contact form θα
J . Note especially that the

contact forms on Jn have orders at most n− 1.

11/8/12 60 c© 2012 Peter J. Olver



Theorem 3.22. A section u(n) = F (x) of the jet space Jn is the prolongation of
some function u = f(x), meaning F = f (n), if and only if F annihilates all the contact
forms on Jn:

F∗θα
J = 0, α = 1, . . . , q, 0 ≤ #J < n. (3.40)

A transverse p-dimensional submanifold Γ(n) ⊂ Jn is (locally) the graph of a prolonged
function u = f (n)(x) if and only if all the contact forms vanish on it: θα

J | Γ(n) = 0.

The general argument will be clear from consideration of the following two special
cases. Let x, u ∈ R. A section F of J1 is described by a pair of functions u = f(x),
p = g(x). The section annihilates the single contact form θ0 = du − p dx provided 0 =
F∗θ0 = df − g dx = [f ′(x) − g(x)] dx, which vanishes if and only if g(x) = f ′(x), showing
that F is just the first prolongation of f . Similarly, a section F of J2 is given by u = f(x),
p = g(x), q = h(x). It annihilates the two basic contact forms provided 0 = F∗(du−p dx) =
df − g dx = [f ′(x) − g(x)] dx, so g(x) = f ′(x), and 0 = F∗(dp − q dx) = dg − h dx =
[g′(x) − h(x)] dx, which implies h(x) = g′(x) = f ′′(x). Therefore F = f (2) as desired.

The contact forms also provide us with a nice intrinsic characterization of the total
derivative operators defined earlier. A one-form ω is called horizontal if it annihilates all
the vertical tangent directions in Jn. Thus, in local coordinates, the horizontal one-forms
are just linear combinations, ω =

∑
Qi(x, u

(n))dxi, of the coordinate one-forms on the
base X . To any one-form ω on Jn, there is an intrinsically defined horizontal form ωH on
Jn+1, called the horizontal component of ω, which is defined so that ω = ωH + θ where θ
is a contact form of order n. In coordinates, using the general formula (3.39), we find

ω =

p∑

i=1

Qi(x, u
(n)) dxi +

q∑

α=1

∑

#J≤n

P J
α (x, u(n)) duα

J

=

p∑

i=1



Qi +

q∑

α=1

∑

#J≤n

uα
J,iP

J
α



 dxi +

q∑

α=1

∑

#J≤n

P J
α θ

α
J .

The second summand is a contact form, and hence

ωH =

p∑

i=1



Qi(x, u

(n)) +

q∑

α=1

∑

#J≤n

uα
J,iP

J
α (x, u(n))



 dxi. (3.41)

Warning : The horizontal component ωH of a form ω on Jn depends on (n+1)st order
derivatives. This occurs because we are including the nth order contact forms, which are
only defined on Jn+1, in the decomposition ω = ωH + θ. For example, if p = q = 1, the
horizontal component of ω = Qdx+ P du is ωH = (Q+ uxP ) dx.

Definition 3.23. Let F : Jn → R be a differential function of order n. Then the
total differential of F is the horizontal component of its ordinary differential dF , written
DF = (dF )H .
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To compute the total differential DF , first note that

dF =

p∑

i=1

∂F

∂xi
dxi +

q∑

α=1

∑

#J≤n

∂F

∂uα
J

duα
J , (3.42)

Thus, by (3.41) and (3.18), the total differential of F is given in terms of the total deriva-
tives of F by the formula

DF =

p∑

i=1

DiF dx
i. (3.43)

For example, if F (x, u, p, q) is a second order differential function, with x, u ∈ R, p = ux,
q = uxx, then

dF = Fx dx+ Fu du+ Fp dp+ Fq dq = (Fx + pFu + qFp + rFq) dx +

+ Fu(du− p dx) + Fp(dp− q dx) + Fq(dq − r dx),

where r = uxxx. The total differential DF = DxF dx is the first component. Formula
(3.42) proves the invariance of the total differential (and hence the “covariance” of the
total derivatives) under general point transformations.

The decomposition dF = DF + θ of an nth order differential function into horizontal
and contact components does not work on Jn. However, on Jn we have the alternative
decomposition

dF = D̂F + dnF + ϑ. (3.44)

Here ϑ is a contact form of order at most n− 1, and

dnF =

q∑

α=1

∑

#J=n

∂F

∂uα
J

duα
J . (3.45)

is the (intrinsically defined) nth order differential of F . Furthermore,

D̂F =

p∑

i=1

D̂iF dx
i (3.46)

is the “truncated total differential” of F . In (3.46), the operator D̂i is the nth order
truncation of the total derivative (3.18), obtained by restricting the multi-index summation
to run only over J ’s with #J ≤ n− 1. For example, if F = uuxx, then

dF = uxx du+ u duxx = uxuxx dx+ u duxx + uxx(du− ux dx)

= (uuxxx + uxuxx) dx+ uxx(du− ux dx) + u(duxx − uxxx dx).

Therefore, DF = DxF dx = (uuxxx + uxuxx) dx, while D̂F = uxuxx dx and d2F = u duxx.

The nth prolongation g(n): Jn → Jn of any point transformation g can be characterized
by the property that it maps the prolonged graph of any function to the prolonged graph
of the transformed function. Theorem 3.22 immediately implies that g(n) maps contact
forms to contact forms. Indeed, this latter property, coupled with its compatibility with
the projection πn

0 : Jn → E, serves to essentially define the prolongation of g.
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Remark : Bäcklund’s Theorem, [4, 44], shows that, when the number of dependent
variables q > 1, any transformation that preserves the contact forms is necessarily the
prologation of a point transformation. On the other hand, when q = 1, there are first
order contact transformations that preserve the contact forms and yet are not prolonged
point transformations. On the other hand, any higher order contact transformation is the
prolongaiton of a first order one.

The infinitesimal version of the preceding property is:

Proposition 3.24. A prolonged vector field v(n) has the property that the Lie
derivative v(n)(θ) of any contact form is itself a contact form.

Let us use this result to prove the prolongation formula in Theorem 3.14. Let

v(n) =

p∑

i=1

ξi(x, u(n))
∂

∂xi
+

q∑

α=1

n∑

#J=0

ϕα
J (x, u(n))

∂

∂uα
J

, (3.47)

be the prolonged vector field on Jn. Taking the Lie derivative of the contact form (3.39)
with respect to (3.47), we find

v(n)(θα
J ) = dϕα

J −
p∑

i=1

[
ϕα

J,i dx
i + uα

J,i dξ
i
]
, #J < n. (3.48)

Now, if this is to be a contact form on Jn, its horizontal component must vanish. Equations
(3.41, 42) imply that the coefficients of v(n) satisfy the inductive form of the prolongation
formula (3.28). Since (3.28) serves to uniquely specify the higher order coefficients in terms
of ξi and ϕα, we deduce that the coefficients of a general contact vector field on Jn are
given by the same prolongation formula (3.21) as with a prolonged point transformation;
in particular, this observation serves to complete the proof of the prolongation formula.

Differential Invariants

The basic problem to be addressed in this section is the classification of the differential
invariants of a given group action. We will be considering general point transformation
groups G acting on the space of independent and dependent variables E. We let G(n)

denote the corresponding prolonged action on the nth jet space Jn = JnE. We use the
notation g(n) to denote the (prolonged) action of the individual group elements g ∈ G on
Jn, and v(n) for the associated infinitesimal generators.

Definition 3.25. Let G be a group of point transformations. A differential invariant

for G is a differential function I: Jn → R which satisfies I(g(n) · (x, u(n))) = I(x, u(n)) for
all g ∈ G and all (x, u(n)) ∈ Jn where g(n) · (x, u(n)) is defined.

As usual, the differential invariant I may only be defined on an open subset of the jet
space Jn, although, in accordance with our usual convention, we shall still write I: Jn → R.
Note that, as with general differential functions, any lower order differential invariant
I(x, u(k)), k < n can also be viewed as an nth order differential invariant.
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Example 3.26. Consider the usual action of the rotation group SO(2) on E ≃ R
2,

cf. Example 3.8. The radius r =
√
x2 + u2 is an (ordinary) invariant of SO(2) (and, a

fortiori , a differential invariant too). The first prolongation SO(2)(1) was given in (3.11),
and has one-dimensional orbits at each point of J1; therefore, by Theorem 2.30, besides the
radius r, there is one additional first order differential invariant, which can be taken to be
the function w = (xux−u)/(x+uux), provided x 6= −uux. (Alternative pairs of differential
invariants must be used near the points on J1 where x+uux = 0.) Geometrically, w = tanφ,
where φ is the angle between the line from the origin to the point (x, u) = (x, f(x)) and
the tangent to the graph of u = f(x) at that point. The second prolongation SO(2)(2) is
given by (3.17), and also has one-dimensional orbits. (Indeed, the dimension of the orbits
can never exceed that of the group.) The radius r and first order differential invariant
w still provide two independent differential invariants on J2, and the curvature κ =
(1 + u2

x)−3/2uxx is the additional second order differential invariant.

As with ordinary invariants, we shall classify differential invariants up to functional
independence, since any function H(I1, . . . , Ik) of a collection of differential invariants
I1, . . . , Ik is also a differential invariant. In accordance with Proposition 1.36, the differ-
ential functions F1, . . . , Fk: Jn → R are functionally independent if their differentials are
pointwise independent: dF1 ∧ · · · ∧dFk 6= 0. Since, as noted above, lower order differential
invariants are also considered as nth order differential invariants, it will be important to
distinguish the differential invariants which genuinely depend on the nth order derivative
coordinates. We will call a set of differential functions on Jn strictly independent if, as
functions of the nth order derivative coordinates alone, they are functionally independent.
More specifically, we make the following definition.

Definition 3.27. A collection of nth order differential functions

F1(x, u
(n)), . . . , Fk(x, u(n))

is called strictly independent if they and the derivative coordinate functions x, u(n−1), of
order less than n, are all functionally independent.

For example, in the case of the rotation group discussed above, the second order
differential invariants r, w, κ are functionally independent, but not strictly independent
since r and w have order less than two. Indeed, there is only one strictly independent
second order differential invariant — the curvature κ (or any function thereof).

Proposition 3.28. The differential functions F1, . . . , Fk are strictly independent if
their nth order differentials, as given by

dnF =

q∑

α=1

∑

#J=n

∂F

∂uα
J

duα
J . (3.49)

are linearly independent at each point: dnF1 ∧ dnF2 ∧ · · · ∧ dnFk 6= 0.

In particular, strict independence implies that none of the Fν ’s, or any function thereof,
can be of order strictly less than n. In the regular case, then, the number of strictly
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independent functions in a collection {F1, . . . , Fk} is equal to the rank of their k × qn top
order Jacobian matrix

(
∂Fν/∂u

α
J

)
, #J = n.

Dimensional Considerations

In order to study the differential invariants of a group of transformations, a more
detailed knowledge of the structure of the prolonged group action is required. Of particular
importance is an understanding of the dimension of the (generic) orbits of the different
prolongations G(n) on Jn. Recall first that the dimension of the jet space Jn is denoted by
p+ q(n), where q(n) = q

(
p+n

n

)
. The number of derivative coordinates of order exactly n is

denoted by

qn = dimJn − dimJn−1 = q(n) − q(n−1) = q

(
p+ n− 1

n

)
. (3.50)

We let sn denote the maximal (generic) orbit dimension of G(n), so that G(n) acts semi-
regularly on the open subset V n ⊂ Jn which consists of all points contained in the orbits
of maximal dimension. (If G is a group of point transformations, then sn is well defined
for each n ≥ 0, whereas for a group of contact transformations, sn is defined only for
n ≥ 1.) If G acts analytically, then the subset V n is dense in Jn. For the time being, we
restrict our attention to the subset V n, thereby avoiding more delicate questions concerning
singularities of the prolonged group action. Note that sn equals the maximal dimension of
the subspace g(n)|z ⊂ TJn|z spanned by the prolonged infinitesimal generators of the group
action at points z ∈ Jn. According to Proposition 2.63, the prolonged orbit dimensions
can also be computed as sn = r − hn, where hn denotes the dimension of the isotropy

subgroup H(n)
z ⊂ G at any point z ∈ V n.

According to Theorem 2.30, there are

in = p+ q(n) − sn = p+ q(n) − r + hn (3.51)

functionally independent differential invariants of order at most n defined in a neighbor-
hood of any point z ∈ V n. Since each differential invariant of order less than n is included
in this count, the integers in form a nondecreasing sequence: i0 ≤ i1 ≤ i2 ≤ · · · . The
difference

jn = in − in−1 = qn − sn + sn−1 = qn + hn − hn−1 (3.52)

will count the number of strictly independent nth order differential invariants. For groups
of point transformations, we set j0 = i0 to be the number of ordinary invariants. Note that
jn cannot exceed the number of independent derivative coordinates of order n, so jn ≤ qn,
which implies the elementary inequalities

in−1 ≤ in ≤ in−1 + qn. (3.53)

For example, in the case of the rotation group discussed in Example 3.26, each prolongation
has one-dimensional orbits (indeed, SO(2) acts regularly on all of Jn for n ≥ 1), and hence
s0 = s1 = s2 = · · · = 1. Equation (3.2) implies that i0 = 1, so there is one ordinary
invariant — the radius r. Furthermore, i1 = 2, so there is j1 = i1 − i0 = 1 additional first
order differential invariant, which can be chosen to be the angle φ. In general, in = n+ 1,
so there is precisely jn = in − in−1 = 1 additional differential invariant at each order n.
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Beyond the curvature κ, the higher order differential invariants for the rotation group will
be constructed in Example 3.37 below.

If O(n) ⊂ Jn is any orbit of G(n), then, for any k < n, its projection πn
k (O(n)) ⊂ Jk is

an orbit of the kth prolongation G(k). Therefore, the maximal orbit dimension sn of G(n)

is also a nondecreasing function of n, bounded by r, the dimension of G itself:

s0 ≤ s1 ≤ s2 ≤ · · · ≤ r. (3.54)

On the other hand, since the orbits cannot increase in dimension any more than the increase
in dimension of the jet spaces themselves, we have the the elementary inequalities

sn−1 ≤ sn ≤ sn−1 + qn, (3.55)

governing the orbit dimensions. Note that, in view of equations (3.50) and (3.51), the
inequalities (3.55) are equivalent to those in (3.53). Also note that (3.55) implies that the
isotropy subgroups H(n)

z , z ∈ V n, have nonincreasing dimensions: hn−1 ≥ hn = r − sn.

This follows directly from the observation that the isotropy subgroupH(k)
w of the projection

w = πn
k (z) ∈ Jk of a point z ∈ Jn is always contained in the isotropy subgroup H(n)

z .

The inequalities (3.54) imply that the maximal orbit dimension eventually stabilizes,
so that there exists an integer s such that sm = s for all m sufficiently large. In particular,
if the orbit dimension is ever the same as that ofG, meaning sn = r for some n, then sm = r
for all m ≥ n. We shall call s the stable orbit dimension, and the minimal order n for
which sn = s the order of stabilization of the group. Once we’ve reached the stabilization
order, the number of higher order differential invariants is immediate.

Proposition 3.29. Let n denote the order of stabilization of the group G. Then, for
every m > n there are precisely qm strictly independent mth order differential invariants.

Consequently, any (finite-dimensional) group of transformations has an infinite num-
ber of differential invariants of arbitrarily large order.

Infinitesimal Methods

As with ordinary invariants, it is easier to determine differential invariants (of con-
nected groups) using an infinitesimal approach. The basic infinitesimal invariance condition
for differential invariants is an immediate corollary of Theorem 2.66.

Proposition 3.30. A function I: Jn → R is a differential invariant for a connected
transformation group G if and only if it is annihilated by all the prolonged infinitesimal
generators:

v(n)(I) = 0 for all v ∈ g. (3.56)

Example 3.31. In the case of the rotation group SO(2), its second prolongation has
infinitesimal generator v(2) given by (3.25). Applying this vector field to the functions given
in Example 3.26, we find v(2)(r) = v(2)(w) = v(2)(κ) = 0, re-proving the fact that r, w, κ
are differential invariants. Note that these differential invariants can be deduced directly
from the form of v(2) using the method of characteristics, as was done in Example 2.67.
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Example 3.32. Consider the three-parameter similarity group

(x, u) 7→ (λx+ a, λu+ b), (x, u) ∈ E ≃ R
2,

consisting of translations and scalings, and generated by the vector fields ∂x, ∂u, x∂x +u∂u.
There are no ordinary invariants since the group acts transitively on E = R

2. Furthermore,
all three vector fields happen to coincide with their first prolongations, and hence there
is one independent first order differential invariant, namely ux. The second prolongations
are ∂x, ∂u, x∂x + u∂u − uxx∂uxx

, and hence there are no differential invariants of (strictly)
second order. There is a single third order differential invariant, namely u−2

xxuxxx, a single
fourth order invariant, u−3

xxuxxxx, and, in general, a single nth order differential invariant
u1−n

xx Dn
xu. Therefore, the number of strictly independent differential invariants is given

by j0 = j2 = 0, j1 = j3 = · · · = jn = 1, n ≥ 3. This implies that i0 = 0, i1 = i2 = 1,
i3 = 2, . . . , in = n − 1, and hence the maximal orbit dimensions are s0 = s1 = 2, s2 =
s3 = · · · = 3 = dimG, a fact that can also be deduced by looking at the dimension of
the space spanned by the prolonged infinitesimal generators. Note, in particular, that the
orbit dimensions “pseudo-stabilized” at order 0 since s0 = s1, but that the true order of
stabilization is n = 2. Thus, the fact that sk = sk+1 does not , in general, imply that k is
the order of stabilization of a transformation group G. However, this pseudo-stabilization
phenomenon is quite rare.

The preceding example corresponds to a particular case of our classification tables
for Lie group actions in the plane — namely Case 1.7 with α = k = 1. More generally,
consider Case 1.7 with α = k = r − 2 ≥ 1, which is the r parameter group generated by
the vector fields

∂x, ∂u, x∂u, . . . , xr−3∂u, x∂x + (r − 2)u∂u.

(What is the associated group action?) Using the prolongation formula (3.21), it is not
hard to see that the prolonged orbit dimensions are given by s0 = 2, s1 = 3, . . . , sr−3 =
sr−2 = r − 1, sr−1 = sr = · · · = r. In this case, the orbit dimensions pseudo-stabilize at
order r − 3 and stabilize at order r − 1. Consequently, the prolonged orbit dimensions of
a transformation group can pseudo-stabilize at an arbitrarily high order.

Exercise 3.33. Find the differential invariants of the latter case.

Exercise 3.34. Prove that the orbit dimensions for Case 1.7 with α 6= k do not

pseudo-stabilize.

Invariant Differential Operators

Since any transformation group action has differential invariants of arbitrarily high
order, it is incumbent upon us to find a more systematic method for determining them all.
The basic tool is the use of certain “invariant” differential operators, introduced by Lie,
[33], and Tresse, [53], which have the property of mapping nth order differential invariants
to (n + 1)st order differential invariants, and thus, by iteration, produce hierarchies of
differential invariants of arbitrarily large order. In fact, we can guarantee the existence of
sufficiently many such differential operators and differential invariants so as to completely
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generate all the higher order independent differential invariants of the group by successively
differentiating the lower order differential invariants. Thus, a complete description of all
the differential invariants is provided by a collection of low order “fundamental” differential
invariants along with the requisite invariant differential operators. To introduce the general
method, we begin with the simplest case when there is only one independent variable, where
the construction of higher order differential invariants is facilitated by the following result.

Proposition 3.35. Suppose X = R and G is a transformation group acting on
E ≃ X × U . Let s = I(x, u(n)) and v = J(x, u(n)) be functionally independent differen-
tial invariants, at least one of which has order exactly n. Then the derivative dv/ds =
(DxJ)/(DxI) is an (n+ 1)st order differential invariant.

Proof : The statement can be verified directly, but we provide a more generally ap-
plicable proof based on the contact structure of Jn. According to Proposition 2.73, if
I(x, u(n)) is a differential invariant, its differential dI is an invariant one-form on Jn.
As in Definition 3.23, we decompose dI into its horizontal and contact components,
dI = DxI dx + θI , where θI is a contact form on Jn+1. Similarly, if J is any other
nth order differential invariant, then, on the open subset of Jn+1 where DxI 6= 0, we have
dJ = DxJ dx+ θJ = [(DxJ)/(DxI)] dI + ϑ for some contact form ϑ. The prolonged group
transformations in G(n+1) map contact forms to contact forms. Therefore, the invariance
of both dI and dJ immediately implies that the coefficient DxJ/DxI must be an invariant
function for G(n+1). Finally, the functional independence of I and J is enough to guarantee
that (DxJ)/(DxI) has order n+ 1. Q.E.D.

Let us reinterpret this result. If s = I(x, u(n)) is any given differential invariant,
then D = d/ds = (DxI)

−1Dx is an invariant differential operator for the prolonged group
actions, since if J is any other differential invariant, so is DJ . Therefore, we can iterate
D, producing a sequence DkJ = dkJ/dsk, k = 0, 1, 2, . . ., of higher and higher order
differential invariants. Let us first apply this result when there is just one independent and
one dependent variable. In this case, once we know two independent differential invariants,
all higher order differential invariants can be calculated by successive differentiation with
respect to the invariant differential operator D.

Theorem 3.36. Suppose G is a connected group of point transformations acting on
the jet spaces corresponding to E ≃ R × R. Then, for some n ≥ 0, there are precisely two
functionally independent differential invariants I, J of order n (or less). Furthermore for
any k ≥ 0, a complete system of functionally independent differential invariants of order
n+ k is provided by I, J , DJ, . . . ,DkJ , where D = (DxI)

−1Dx is the associated invariant
differential operator.

We will call the differential invariants I and J the fundamental differential invariants

for the group G. Note that the differential invariants constructed by this method are
well defined on the open subset of Jn+k where I and J are defined and where DxI 6= 0.
At the points where DxI = 0, one must use an alternative differential invariant to avoid
singularities.

Example 3.37. For the rotation group SO(2), as discussed in Example 3.26, we
can apply Theorem 3.36 when n = 1, since r and w provide two independent first order
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differential invariants. The second order differential invariant resulting from Theorem 3.36,
however, is not exactly the curvature, but the more complicated second order differential
invariant

dw

dr
=
Dxw

Dxr
=

√
x2 + u2

(x+ uux)3

[
(x2 + u2)uxx − (1 + u2

x)(xux − u)
]
.

However, since we know that there is only one independent second order differential invari-
ant, we must be able to re-express the curvature in terms of this new differential invariant;
we find

κ = (1 + u2
x)−3/2uxx = (1 + w2)−3/2

[
wr + r−1(w + w3)

]
.

If we replace w = tanφ by the angle φ described in Example 3.26, then we find the
interesting SO(2)-invariant formula κ = φr cosφ+ r−1 sinφ expressing the curvature of a
curve in terms of the radial variation of the angle φ. Higher order differential invariants
are given by successive derivatives dkw/drk (or, alternatively, dkφ/drk). These can be
rewritten explicitly in terms of x and u using the invariant differential operator Dr =
r(x+ uux)−1Dx, or, more simply, the alternative invariant differential operator r−1Dr =
(x+ uux)−1Dx.

Invariant Differential Forms

The construction of differential invariants described above admits an additional im-
portant simplification, based on the following observation. Note that the proof of Propo-
sition 3.35 relies on a simple fact: if I is any differential invariant, its total differential
DI = DxI dx, cf. Definition 3.23, is a “contact-invariant” one-form, in the following sense.

Definition 3.38. A differential one-form ω on Jn is called contact-invariant under
a transformation group G if and only if, for every g ∈ G, we have (g(n))∗ω = ω + θ for
some contact form θ = θg.

Contact forms are trivially contact-invariant, so only the horizontal contact-invariant
forms are of interest. In the scalar case, if ω = P dx is a horizontal contact-invariant
one-form (e.g., ω = DI is the total differential of a differential invariant I, in which
case P = DxI), then every other horizontal contact-invariant one-form is of the form
J ω = JP dx, where J is an arbitrary differential invariant. Thus, if we know two horizontal
contact-invariant one-forms P dx, P̃ dx, their ratio J = P̃ /P defines a differential invariant.
A contact-invariant one-form serves to define an invariant differential operator.

Proposition 3.39. LetG be a group of point transformations, and let ω = P (x, u(n)) dx
be a contact-invariant horizontal one-form on Jn. Then the associated differential operator
D = (1/P )Dx is G-invariant, so that whenever I is a differential invariant, so is DI.

The infinitesimal criterion for contact-invariance is that the Lie derivative v(n)(ω) of
the form with respect to the prolonged infinitesimal generators be a contact form for every
infinitesimal generator v ∈ g. If v = ξ∂x + ϕ∂u, then the Lie derivative of a horizontal
one-form P (x, u(n)) dx with respect to the prolonged vector field is readily computed using
the intrinsic formulation of the total derivative:

v(n)(P dx) = v(n)(P ) dx+ P dξ =
[
v(n)(P ) + PDxξ

]
dx+ θ, (3.57)
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for some contact form θ. Therefore, P dx is contact-invariant under the group G if and
only if v(n)(P )+PDxξ = 0 for each infinitesimal generator. In other words, the differential
function P is a relative differential invariant corresponding to the infinitesimal divergence
multiplier v(n) +Dxξ.

Theorem 3.40. If n is the stabilization order of a transformation group, then there
exists a nontrivial horizontal contact-invariant one-form ω = P (x, u(n)) dx of order at most
max{1, n}.

Note that, in the ordinary cases, for an r-dimensional group action, the simplest dif-
ferential invariant I has order r−1, and produces the rth order contact-invariant one-form
DI, whereas the stabilization order is n = r − 2, and Theorem 3.40 shows that there is a
contact-invariant of order r − 2. The formula for the simplest contact-invariant one-form
for each of the transformation groups in Lie’s classification of complex group actions is
provided in Table 5. Note that in roughly half of the cases (specifically 1.2, 1.3, 1.7, 1.8,
1.9, 1.11, 2.2, and the three intransitive cases 3.1, 3.2, 3.3) the invariant one-form is of
lower order than the order of stabilization of the group. It is not clear, though, how to rec-
ognize this phenomenon in advance. In all the cases except the pseudo-stabilization cases,
the invariant one-form is of order strictly less than the order of the fundamental differen-
tial invariant, and a complete system of differential invariants is provided by successively
applying the invariant differential operator to the fundamental differential invariant. The
pseudo-stabilization Case 1.7a is unusual, in that it is the only one whose fundamental
contact-invariant one-form is the total differential of the lowest order differential invariant,
and hence requires a second fundamental differential invariant to generate all the higher
order ones.

Example 3.41. The Euclidean group SE(2) = SO(2) ⋉ R
2 acts via rotations and

translations on E ≃ R
2. Every (x, u)-independent rotational differential invariant, as

given in Example 3.37, will provide a Euclidean differential invariant. In particular, the
fundamental Euclidean invariant is the curvature κ = (1 + u2

x)−3/2uxx. The simplest
contact-invariant one-form is ω =

√
1 + u2

x dx, which is the Euclidean arc length element,
often denoted ds. Proposition 3.39 implies the classical result that every Euclidean differ-
ential invariant is a function of the curvature and its derivatives dkκ/dsk with respect to
arc length.

The geometrical interpretation of the fundamental invariant one-form and differential
invariant in the Euclidean case extends to other transformation groups, such as the special
affine group SA(2), which is Case 2.1, and the projective group SL(3), which is Case 2.3, of
importance in both differential geometry, [20], and, more recently, computer vision, [45].
In both cases, the simplest invariant one-form is identified with the group-invariant arc
length element, while the fundamental differential invariant is identified with the group-
invariant curvature. One is tempted to make a similar definition in all other cases (with the
possible exceptions of the intransitive and pseudo-stabilization cases), so that a complete
system of G-invariant differential invariants is provided by the G-invariant curvature and
its derivatives with respect to the G-invariant arc length.

11/8/12 70 c© 2012 Peter J. Olver



Example 3.42. Consider the Euclidean group SE(2) = SO(2) ⋉ R
2 acting on the

plane. The stabilization order is n = 1, and SE(2) acts transitively on J1. Its first
prolongation has infinitesimal generators ∂x, ∂u, −u∂x + x∂u + (1 + u2

x)∂ux
. Fixing a

point in J1, we can locally identify J1 with a neighborhood of the identity in SE(2), in
such a way that the group acts on itself by left multiplication. As such, the Maurer-Cartan
forms provide a G-invariant coframe, explicitly constructed (in two ways) in Example 2.81.
Translating that result into the present notation, we find that a Euclidean invariant coframe
is

ω1 =
du− ux dx√

1 + u2
x

, ω2 =
dux

1 + u2
x

,

ω3 =
√

1 + u2
x dx+

ux√
1 + u2

x

(du− ux dx).

The first element is a contact form; the third is equivalent, modulo a contact form, to
the contact-invariant Euclidean arc length form. The horizontal component of the second
one-form is the second order contact-invariant one-form ω2

H = (1 + u2
x)−1uxx dx. Dividing

by the arc-length form produces the fundamental curvature invariant κ = (1 +u2
x)−3/2uxx

for the Euclidean group.

Exercise 3.43. Construct an invariant coframe and fundamental differential invari-
ant for the similarity group, consisting of translations, rotations, and scalings (x, u) 7→
λ(x, u). A considerably more substantial exercise is to do this for the special affine, affine,
and projective groups — Cases 2.1, 2.2, and 2.3 in the Tables; see [20].
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