FM 5001 Fall 2011, Final Exam Ending time for in-person students: 8:00 pm on Wednesday 14 December 2011 **Time for exam: 1.5 HOURS (ONE AND ONE HALF HOURS)**

For PROCTORS of online students: Email scan to: adams@math.umn.edu Preferred FAX: 612-624-6702 Alternate FAX: 612-626-2017 Exam must be received by 24 hours after the ending time for in-person students. Thank you.

STUDENT, PLEASE PRINT NAME:

Remember to read to the bottom and to SIGN YOUR NAME BELOW!

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Show work; a correct answer, by itself, may be insufficient for credit.

I understand the above, and I understand that cheating has **severe consequences**, from a failing grade to expulsion.

STUDENT, PLEASE REMEMBER TO SIGN YOUR NAME:

- I. Definitions: Complete the following sentences.
- a. (Topic 0031(15), 3 pts.) A matrix $R \in \mathbb{R}^{n \times n}$ is a rotation matrix if...

b. (Topic 0022(16), 3 pts.) Let V and W be two subspaces and let $T: V \to W$ be a linear transformation. The **kernel** of T is $\ker(T) = \cdots$

c. (Topic 0016(9), 3 pts.) Let $f : \mathbb{R} \to \mathbb{R}$ be smooth. The *k*th order Maclaurin approximation to f is the polynomial $P : \mathbb{R} \to \mathbb{R}$ such that ...

d. (Topic 0029(36), 3 pts.) Let $Q : \mathbb{R}^n \to \mathbb{R}$ be a quadratic form. The **polarization** of Q is the bilinear form $B : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ such that ...

e. (Topic 0034(12), 3 pts.) A matrix $M \in \mathbb{R}^{n \times n}$ is rotationally diagonalizable if ...

f. (Topic 0023(46), 3 pts.) Two matrices $A, B \in \mathbb{R}^{n \times n}$ are **conjugate** if ...

g. (Topic 0032(53), 3 pts.) Let $M \in \mathbb{R}^{n \times n}$ and let a be an eigenvalue of M. Then the *a*-eigenspace of M is...

h. (Topic 0024(12), 3 pts.) Let $M \in \mathbb{R}^{n \times n}$. Then the **exponential** of M is the matrix defined by $e^M = \cdots$

II. True or False. (No partial credit.)

a. (Topic 0002(11), 2 pts.) Any compact subset of \mathbb{R}^n is bounded.

b. (Topic 034(17), 2 pts.) Any symmetric real matrix is rotationally diagonalizable.

c. (Topic 0027(19,24), 2 pts.) For any $A, B \in \mathbb{R}^{n \times n}$, if A and B are conjugate, then $\det(A) = \det(B)$.

d. (Topic 0033(10), 2 pts.) Every eigenvalue of an antisymmetric real matrix is a real number.

e. (Topic 0017(26), 2 pts.) If a series converges, then any rearrangement of it converges as well.

f. (Topic 0033(20), 2 pts.) Any 2×2 Jordan block is diagonalizable.

g. (Topic 0036(2), 2 pts.) For any matrix M, there is a nonzero polynomial f such that F(M) = 0, where F is the matrix extension of f.

h. (Topic 0024(6), 2 pts.) Every nilpotent matrix is invertible.

THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE ON THIS PAGE

I.a-d.		
I.e-h.		
II.a-d.		
II.e-h.		
III(1).		
III(2,3).		
III(4).		
III(5).		
III(6).		
III(7).		
III(8).		

III. Computations. Some of your answers may involve Φ , the cumulative distribution function of the standard normal distribution. (Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.)

1. In this problem, all answers can be expressed using trigonometric functions. You don't need to calculate, e.g., $\sin 3$.

a. (Topic 0019(27), 5 pts.) Compute real numbers a, b, c, d such that $e^{3i} = a + bi$ and $e^{4i} = c + di$.

b. (Topic 0019(15), 5 pts.) Using a, b, c, d from Part a, expand (a+bi)(c+di), and compute its real part.

c. (Topic 0019(27), 5 pts.) Compute the real part of e^{7i} .

2. (Topic 0008(10-16), 20 pts.) How many monomials are there of degree = 7 in 15 variables? Write your answer as a product of integers.

- 3. Let $M := \begin{bmatrix} -1 & 0 \\ 0 & 3 \end{bmatrix}$ and $N := \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$.
- a. (Topic 0023(19), 5 pts.) Compute $M \oplus N$.

b. (Topic 0023(20), 10 pts.) Compute $M \otimes N$.

4. (Topic 0026(41), 20 pts.) Let
$$M := \begin{bmatrix} 1 & 6 & 8 \\ 1 & 7 & 6 \\ 0 & 1 & -3 \end{bmatrix}$$
. Find M^{-1} .

5. (Topic 0026(26), 20 pts.) Find the dimensions of the image and kernel of

Γ1	2	4	2	ך 0
1	1	2	2	0
2	3	6	4	0
$\lfloor 3 \rfloor$	4	8	6	1

•

6. (Topic 0027(19) and 0027(23) and 0028(42) and 0028(43), 20 pts.) Compute the determinant of $\begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix}$

$$A := \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & -1 & 2 & 0 \\ 2 & 3 & 6 & 4 \\ 3 & 4 & 9 & 6 \end{bmatrix}.$$

7. (Topic 0034(22-36), 25 pts.) Define $Q : \mathbb{R}^2 \to \mathbb{R}$ by $Q(x, y) = 9x^2 + 4xy + 6y^2$. Find a 2×2 rotation matrix R such that $Q \circ L_R$ is a diagonal quadratic form.

8. (Topic 0024(23), 0032(27), 25 pts.) Let $S = \begin{bmatrix} 73 & 36 \\ 36 & 52 \end{bmatrix}$. Find a symmetric matrix $T \in \mathbb{R}^{2 \times 2}$ such that $T^2 = S$. *Hint:* Let $R = \frac{1}{5} \begin{bmatrix} 3 & 4 \\ -4 & 3 \end{bmatrix}$. Then $R^t SR = \begin{bmatrix} 25 & 0 \\ 0 & 100 \end{bmatrix}$.