FM 5001 Fall 2011, Final Exam

Ending time for in-person students: 8:00 pm on Wednesday 14 December 2011
Time for exam: 1.5 HOURS (ONE AND ONE HALF HOURS)
For PROCTORS of online students:
Email scan to: adams@math.umn.edu
Preferred FAX: 612-624-6702 Alternate FAX: 612-626-2017
Exam must be received by 24 hours after the ending time for in-person students. Thank you.

STUDENT, PLEASE PRINT NAME:

Remember to read to the bottom and to SIGN YOUR NAME BELOW!
Closed book, closed notes, no calculators/PDAs; no reference materials of any kind.
Show work; a correct answer, by itself, may be insufficient for credit.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

STUDENT, PLEASE REMEMBER TO SIGN YOUR NAME:
I. Definitions: Complete the following sentences.
a. (Topic $0031(15), 3$ pts.) A matrix $R \in \mathbb{R}^{n \times n}$ is a rotation matrix if. . .
b. (Topic $0022(16), 3 \mathrm{pts}$.$) Let V$ and W be two subspaces and let $T: V \rightarrow W$ be a linear transformation. The kernel of T is $\operatorname{ker}(T)=\cdots$
c. (Topic $0016(9), 3$ pts.) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be smooth. The k th order Maclaurin approximation to f is the polynomial $P: \mathbb{R} \rightarrow \mathbb{R}$ such that \ldots
d. (Topic $0029(36), 3$ pts.) Let $Q: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a quadratic form. The polarization of Q is the bilinear form $B: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that \ldots
e. (Topic $0034(12), 3$ pts.) A matrix $M \in \mathbb{R}^{n \times n}$ is rotationally diagonalizable if ...
f. (Topic $0023(46), 3$ pts.) Two matrices $A, B \in \mathbb{R}^{n \times n}$ are conjugate if \ldots
g. (Topic $0032(53), 3$ pts.) Let $M \in \mathbb{R}^{n \times n}$ and let a be an eigenvalue of M. Then the a-eigenspace of M is...
h. (Topic $0024(12), 3 \mathrm{pts}$.) Let $M \in \mathbb{R}^{n \times n}$. Then the exponential of M is the matrix defined by $e^{M}=\ldots$.
II. True or False. (No partial credit.)
a. (Topic $0002(11), 2$ pts.) Any compact subset of \mathbb{R}^{n} is bounded.
b. (Topic $034(17), 2$ pts.) Any symmetric real matrix is rotationally diagonalizable.
c. (Topic $0027(19,24), 2 \mathrm{pts}$.) For any $A, B \in \mathbb{R}^{n \times n}$, if A and B are conjugate, then $\operatorname{det}(A)=\operatorname{det}(B)$.
d. (Topic 0033(10), 2 pts.) Every eigenvalue of an antisymmetric real matrix is a real number.
e. (Topic $0017(26), 2$ pts.) If a series converges, then any rearrangement of it converges as well.
f. (Topic $0033(20), 2$ pts.) Any 2×2 Jordan block is diagonalizable.
g. (Topic $0036(2), 2 \mathrm{pts}$.) For any matrix M, there is a nonzero polynomial f such that $F(M)=0$, where F is the matrix extension of f.
h. (Topic 0024(6), 2 pts.) Every nilpotent matrix is invertible.

THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE ON THIS PAGE
I.a-d.
I.e-h.
II.a-d.
II.e-h.

III(1).

III(2,3).

III(4).

III(5).

III(6).

III(7).

III(8).
III. Computations. Some of your answers may involve Φ, the cumulative distribution function of the standard normal distribution. (Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.) 1. In this problem, all answers can be expressed using trigonometric functions. You don't need to calculate, e.g., $\sin 3$.
a. (Topic 0019(27), 5 pts.) Compute real numbers a, b, c, d such that $e^{3 i}=a+b i$ and $e^{4 i}=c+d i$.
b. (Topic $0019(15), 5$ pts.) Using a, b, c, d from Part a, expand $(a+b i)(c+d i)$, and compute its real part.
c. (Topic $0019(27), 5$ pts.) Compute the real part of $e^{7 i}$.
2. (Topic 0008(10-16), 20 pts.) How many monomials are there of degree $=7$ in 15 variables? Write your answer as a product of integers.
3. Let $M:=\left[\begin{array}{cc}-1 & 0 \\ 0 & 3\end{array}\right]$ and $N:=\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]$.
a. (Topic 0023(19), 5 pts.) Compute $M \oplus N$.
b. (Topic $0023(20), 10 \mathrm{pts}$.) Compute $M \otimes N$.
4. (Topic $0026(41), 20$ pts.) Let $M:=\left[\begin{array}{ccc}1 & 6 & 8 \\ 1 & 7 & 6 \\ 0 & 1 & -3\end{array}\right]$. Find M^{-1}.
5. (Topic $0026(26), 20 \mathrm{pts}$.$) Find the dimensions of the image and kernel of$

$$
\left[\begin{array}{lllll}
1 & 2 & 4 & 2 & 0 \\
1 & 1 & 2 & 2 & 0 \\
2 & 3 & 6 & 4 & 0 \\
3 & 4 & 8 & 6 & 1
\end{array}\right] .
$$

6. (Topic $0027(19)$ and $0027(23)$ and $0028(42)$ and $0028(43), 20$ pts.) Compute the determinant of

$$
A:=\left[\begin{array}{cccc}
1 & -1 & 0 & 0 \\
1 & -1 & 2 & 0 \\
2 & 3 & 6 & 4 \\
3 & 4 & 9 & 6
\end{array}\right]
$$

7. (Topic $0034(22-36), 25$ pts.) Define $Q: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $Q(x, y)=9 x^{2}+4 x y+6 y^{2}$. Find a 2×2 rotation matrix R such that $Q \circ L_{R}$ is a diagonal quadratic form.
8. (Topic $0024(23), 0032(27), 25$ pts.) Let $S=\left[\begin{array}{ll}73 & 36 \\ 36 & 52\end{array}\right]$. Find a symmetric matrix $T \in \mathbb{R}^{2 \times 2}$ such that $T^{2}=S$. Hint: Let $R=\frac{1}{5}\left[\begin{array}{cc}3 & 4 \\ -4 & 3\end{array}\right]$. Then $R^{t} S R=\left[\begin{array}{cc}25 & 0 \\ 0 & 100\end{array}\right]$.
