FM 5002 Spring 2012, Final Exam

Ending time for in-person students: 8:00pm on Wednesday 9 May 2012
Time for exam: 1.5 HOURS (ONE AND ONE HALF HOURS)
For PROCTORS of online students:
Email scan to: adams@math.umn.edu
Preferred FAX: 612-624-6702 Alternate FAX: 612-626-2017
Exam must be received by 24 hours after the ending time for in-person students. Thank you.

STUDENT, PLEASE PRINT NAME:

Remember to read to the bottom and to SIGN YOUR NAME BELOW!

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.
I. Definitions: Complete the following sentences.

1. (10 pts, Topic $0038(2)$.$) A vector field on \mathbb{R}^{n}$ is \ldots
2. (10 pts , Topic $0040(21)$.) Let $f, g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be smooth and let $c \in \mathbb{R}$ be a constant. We say that $p \in \mathbb{R}^{2}$ is a critical point for the constrained optimization problem with objective f and constraint $g=c$ if $g(p)=c$ and...
3. (10 pts, Topic 0042(20).) Let $\omega=[(f(x, y)) d x]+[(g(x, y)) d y]$ be a one-form in x and y. Its exterior derivative is given by $d \omega=\cdots$
4. (10 pts, Topic $0045(6)$.$) Let X$ be a PCRV. We say that X is deterministic if \ldots
5. (10 pts, Topic $0047(12)$.$) Let X$ and Y be PCRVs. Then X and Y are said to be independent if
6. (10 pts, Topic $0047(14)$.) Let P, Q and R be events. We say that P, Q and R are jointly independent if they are pairwise-independent and ...
7. (10 pts, Topic $0049(22)$.$) Let \Omega:=[0,1]$. Let X be a PCRV, and let \mathcal{P} be a partition of Ω by finite unions of intervals. Then $\mathrm{E}[X \mid \mathcal{P}]$ is the PCRV defined by the rule: For all $\omega \in \Omega$, if $\omega \in A \in \mathcal{P}$ (and if A is not of zero size), then $(\mathrm{E}[X \mid \mathcal{P}])(\omega)=\cdots$
8. (10 pts, Topic $0037(56)$.) The Hessian $H f$ of a smooth function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is defined by $(H f)(x, y)=\cdots$
9. (10 pts, Topic $0042(34)$.) Let $p, q \in \mathbb{C}$ and let $L=(p, q)$ be the directed line segment in \mathbb{C} from p to q. Let $\phi:[0,1] \rightarrow \mathbb{C}$ be the standard parametrization of L. Then $\int_{L} f(z) d z=\cdots$.
10. (10 pts, Topic 0038(3).) Let $V: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a vector field. A smooth function $c:(a, b) \rightarrow \mathbb{R}^{n}$ is said to be a flowline of V if \ldots
II. True or False. (No partial credit.)
11. (10 pts, Topic $0045(36)$.$) Any two standard PCRVs are identically distributed.$
12. (10 pts, Topic 0046(2-9).) Let M be any matrix with real entries. Then both $M^{t} M$ and $M M^{t}$ are symmetric and positive semidefinite.
13. (10 pts, Topic 0063(18).) Let X and Y be any two independent PCRVs whose distributions have Fourier transforms $f(t)$ and $g(t)$. Then the Fourier transform of the distribution of $X+Y$ is $[f(t)][g(t)]$.
14. (10 pts, Topic $0047(29-31)$.) Let X be a PCRV with mean $\mathrm{E}[X]=\mu$ and variance $\operatorname{Var}[X]=\sigma^{2}$. Then $\mathrm{E}\left[e^{X}\right]=e^{\mu+\left(\sigma^{2} / 2\right)}$.
15. (10 pts, Topic $0047(20)$.$) Let X_{1}, \ldots, X_{n}$ be independent PCRVs. Assume, for all integers $j \in[1, n]$, that $\mathrm{E}\left[e^{X_{j}}\right]=2$. Then $E\left[e^{X_{1}+\cdots+X_{n}}\right]=2^{n}$.

> THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES. PLEASE DO NOT WRITE BELOW THE LINE.
I.1-5.
I.6-10.
II.

III1.a.
III1.bc.
III2.
III3.
III4.
III5.
III6.
III7.
III8.
III9.
III. Computations. Some of your answers may involve Φ, the cumulative distribution function of the standard normal distribution.

1. Let C_{1}, C_{2}, \ldots be an independent sequence of PCRVs such that, for all integers $j \geq 1$, $\operatorname{Pr}\left[C_{j}=1\right]=0.5=\operatorname{Pr}\left[C_{j}=-1\right]$. For all integers $n \geq 1$, let $Z_{n}:=\left(C_{1}+\cdots+C_{n}\right) / \sqrt{n}$.
a. (10 pts, Topic 0047 (20).) Find a sequence a_{n} such that, for all integers $n \geq 1$, $\mathrm{E}\left[e^{Z_{n}}\right]=\cosh ^{n}\left(a_{n}\right)$. (Hints: The function $\cosh : \mathbb{R} \rightarrow \mathbb{R}$ is defined by $\cosh t:=\left(e^{t}+e^{-\bar{t}}\right) / 2$. Recall that, if A and B are independent, then e^{A} and e^{B} are as well. Recall that, if P and Q are uncorrelated, then $E[P Q]=(E[P])(E[Q])$.
2. (continued) Recall: C_{1}, C_{2}, \ldots is an independent sequence of standard PCRVs such that, for all integers $j \geq 1, \operatorname{Pr}\left[C_{j}=1\right]=0.5=\operatorname{Pr}\left[C_{j}=-1\right]$. For all integers $n \geq 1$, let $Z_{n}:=\left(C_{1}+\cdots+C_{n}\right) / \sqrt{n}$.
b. (20 pts, Topic $0047(28)$.$) Compute \lim _{n \rightarrow \infty} \mathrm{E}\left[Z_{n}^{6}\right]$.
c. (20 pts, Topic $0047(28)$.$) For all integers n \geq 1$, let $X_{n}:=\left(C_{1}+\cdots+C_{n}\right) / n$. Compute $\lim _{n \rightarrow \infty} \mathrm{E}\left[X_{n}^{6}\right]$.
3. (20 pts, Topic 0040(31).) Find the maximum value of $8 x+27 y$ subject to the constraint that $x^{4}+y^{4}=97 / 16$.
4. (15 pts, Topic 0046(43).) Let

$$
M:=\left[\begin{array}{cc}
13 & -3 \\
-3 & 1
\end{array}\right]
$$

Find a upper triangular matrix A such that $A A^{t}=M$ and such that all diagonal entries of A are nonnegative.
4. (15 pts, Topic $0048(26)$.$) Let A, B$ and C be events. Suppose $\operatorname{Pr}[A]=0.2$. Suppose

$$
\operatorname{Pr}[B \mid A]=0.4, \quad \operatorname{Pr}[B \mid(\operatorname{not} A)]=0.2
$$

Suppose

$$
\operatorname{Pr}[C \mid(B \text { and } A)]=0.5, \quad \operatorname{Pr}[C \mid(B \text { and }(\operatorname{not} A))]=0.1
$$

Compute Odds $[A \mid(B$ and $C)]$.
5. (20 pts, Topic $0044(21)$.$) Compute \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(x-5)^{4} e^{6 x} e^{-x^{2} / 2} d x$.
6. (20 pts, Topic 0066(9).) For every integer $n \geq 1$, let $X_{n} \in \sum^{n} \mathcal{B}_{0.5, d_{n}}^{0.5, u_{n}}$. Suppose, for all integers $n \geq 1$, that $\mathrm{E}\left[X_{n}\right]=0.03$ and $\mathrm{SD}\left[X_{n}\right]=0.23$. Find u_{n} and d_{n}, as explicit expressions in n.
7. (20 pts, Topic 0049(41).) Define a PCRV X by

$$
X(\omega)= \begin{cases}4, & \text { if } 0 \leq x \leq 0.25 \\ 8, & \text { if } 0.25<x \leq 1\end{cases}
$$

Let $\mathcal{P}:=\{[0,0.5),[0.5,1]\}$. Let $Y:=\mathrm{E}\left[X^{2} \mid \mathcal{P}\right]$. Compute $\mathrm{E}[Y]$.
8. (20 pts, Topic 0050(48).) Stirling's formula asserts that
$n!$ is asymptotic to $\sqrt{2 \pi n}(n / e)^{n}, \quad$ as $n \rightarrow \infty$.
Find constants C, k and $a>0$ such that
the binomial coefficient $\binom{2 n}{n}$ is asymptotic to $C n^{k} a^{n}, \quad$ as $n \rightarrow \infty$.
9. (20 pts, Topic $0064(30)$.) For all integers $n \geq 1$, let

$$
p_{n}:=\frac{1}{2}-\frac{1}{3 n} \quad \text { and } \quad q_{n}:=\frac{1}{2}+\frac{1}{3 n}, \quad \text { and suppose } X_{n} \in \Sigma^{n} \mathcal{B}_{q_{n}}^{p_{n}}
$$

Assume that $\lim _{n \rightarrow \infty} \mathrm{E}\left[X_{n}\right]=0$ and that $\lim _{n \rightarrow \infty} \mathrm{E}\left[X_{n}^{2}\right]=1 / 9$. Compute $\lim _{n \rightarrow \infty} \mathrm{E}\left[X_{n}^{10}+X_{n}^{9}\right]$.

