FM 5002 Spring 2012, Second midterm exam
Ending time for in-person students: 8:00pm on Wednesday 4 April 2012
Time for exam: 1 HOUR (ONE HOUR)
For PROCTORS of online students:
Email scan to: adams@math.umn.edu
Preferred FAX: 612-624-6702 Alternate FAX: 612-626-2017
Exam must be received by 24 hours after the ending time for in-person students. Thank you.

STUDENT, PLEASE PRINT NAME:

Remember to read to the bottom and to SIGN YOUR NAME BELOW!

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.
I. Definitions: Complete the following sentences.
a. (Topic $0045(28), 3$ pts.) The covariance of two PCRVs X and Y is defined by $\operatorname{Cov}[X, Y]=\cdots$.
b. (Topic $0045(10), 3$ pts.) Let X be a PCRV and let $F:=\{x \in \mathbb{R} \mid \operatorname{Pr}[X=x]>0\}$. The distribution of X is the function $h: F \rightarrow(0,1]$ defined by $h(x)=\cdots$.
c. (Topic $0045(28), 3$ pts.) Two PCRVs X and Y are uncorrelated if ...
d. (Topic $0045(36), 3$ pts.) A PCRV X is standard if
e. (Topic $0042(43), 3$ pts.) A function $f: \mathbb{C} \rightarrow \mathbb{C}$ is complex differentiable at $z \in \mathbb{C}$ if \ldots.
II. True or False. (No partial credit.)
a. (Topic $0045(41), 3 \mathrm{pts}$.) If X and Y are PCRVs with the same distribution, then $\operatorname{Cov}[X, Y]=\operatorname{Var}[X]=\operatorname{Var}[Y]$.
b. (Topic $0045(17,37), 3$ pts.) If X is a PCRV and $\mathrm{SD}[X]=0$, then X is deterministic.
c. (Topic $0046(2-12), 3$ pts.) Any symmetric, positive semidefinite matrix is the variancecovariance matrix of some ordered set of PCRVs.
d. (Topic 0047(13), 3 pts.) If X and Y are independent PCRVs, then the distributions of X and Y cannot be the same.
e. (Topic $0045(14), 3$ pts.) If the joint distribution of (A, B) is the same as that of (X, Y), then the distribution of $A+B$ is the same as that of $X+Y$.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

I. abcde
II.abcde

III(1).
III(2,3)
III(4).
III(5).
III(6).
III. Computations. Some of your answers may involve Φ, the cumulative distribution function of the standard normal distribution. (Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.)

1. (Topic $0044(17-21), 10$ pts.) Compute $\int_{-\infty}^{\infty} x e^{x} e^{-x^{2} / 2} d x$.
2. (Topic $0045(49-52), 10$ pts.) Let X and Y be PCRVs. Assume $\mathrm{SD}[X]=3, \mathrm{SD}[Y]=5$ and $\operatorname{Corr}[X, Y]=0.4$. Find the number s that minimizes $\operatorname{SD}[X-s Y]$.
3. (Topic $0045(30), 10$ pts.) Let $X_{1}, X_{2}, X_{3}, \ldots, X_{100}$ be identically distributed sequence of PCRVs, all with mean μ and standard deviation σ. Assume, for all integers $j, k \in[1,100]$ that, if $j \neq k$, then $\operatorname{Cov}\left[X_{j}, X_{k}\right]=0$. (That is, assume that $X_{1}, X_{2}, X_{3}, \ldots, X_{100}$ are pairwise uncorrelated.) Let $Y:=X_{1}+\cdots+X_{100}$. Suppose $\mathrm{E}[Y]=200$ and $\mathrm{SD}[Y]=50$. Compute μ and σ.
4. (Topic 0046(38), 10 pts.) Let X and Y be two uncorrelated standard PCRVs. Choose $a, b, c \in \mathbb{R}$ such that $\operatorname{Var}[a X]=9, \operatorname{Var}[b X+c Y]=50$ and $\operatorname{Cov}[a X, b X+c Y]=21$ and such that $a, c \geq 0$.
5. (Topic $0042(23), 15 \mathrm{pts}$.) Let $\omega:=5 x d y+3 y d x$ and let R be the rectangle $(2,5) \times(6,8)$
in \mathbb{R}^{2}. Compute $\int_{\partial R} \omega$.
6. (Topic 0038(49), 15 pts.) Let $M:=\left[\begin{array}{cc}5 & 1 \\ -2 & 2\end{array}\right]$, let $p:=\left[\begin{array}{c}1 \\ -2\end{array}\right]$ and let $q:=\left[\begin{array}{c}1 \\ -1\end{array}\right]$. I give you the eigenvalues and eigenvectors of M :

$$
M p=3 p \quad \text { and } \quad M q=4 q
$$

Define a vector field $V: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ by $V(x, y)=L_{M}(x, y)=(5 x+y,-2 x+2 y)$. The flowline $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ of V footed at $(1,-2)$ has the form

$$
\gamma(t)=\left(a e^{r t}, b e^{s t}\right)
$$

for some constants a, b, r and s. Find a, b, r and s.

