Financial Mathematics Counting monomials

Definition:

A monomial is a word in a certain alphabet, in which the letters commute.

e.g.: abbab is a monomial in a and b, but it is the same as bbaab; canonical form is aabbb, more commonly written a^2b^3 .

e.g.: $x^3y^7z^{1,000,000}$ is a monomial in x, y, z. Its **degree** is 3+7+1,000,000=1,000,010

Question:

How many monomials are there degree $\leq d$ in n variables?

e.g.: How many monomials are there degree
$$\leq 3$$
 in 2 variables?

Let's use x and y for the variables.

$$\underbrace{1, \ x, y, \ x^2, xy, y^2,}_{1+2} + \underbrace{x^3, x^2y, xy^2, y^3}_{4} = 10$$

$$\binom{3+2}{2} = \binom{3+2}{3} = \frac{5!}{(2!)(3!)} = 10$$

Coincidence? I think not.

e.g.: How many monomials are there degree ≤ 3 in 4 variables?

Exercise: List them, and count.

Check that there are 35.

Coincidence? I think not.

e.g.: How many monomials are there degree ≤ 8 in 4 variables?

Solution: List them?

$$\binom{8+4}{4} = \frac{12 \cdot 11 \cdot 10 \cdot 9}{\cancel{4} \cdot \cancel{3} \cdot 2 \cdot 1} = 11 \cdot 5 \cdot 9 = 495$$

NO WAY!!

Can we count them without listing them?

e.g.: How many monomials are there degree \leq 8 in 4 variables?

$$\begin{pmatrix} 8+4\\4 \end{pmatrix}$$

Why do these two counts come out the same?

We set up a one-to-one correspondence between #choices of four from a b c d e f g h i j k l = $\begin{pmatrix} 8+4 \\ 4 \end{pmatrix}$ and

monomials of degree < 8 in w, x, y, z

Why do these two counts come out the same? We set up a one-to-one correspondence between e.g.: $\{c,g,h,j\}$ choices of four from a b c d e f g h i j kand monomials of degree < 8 in ψ , x, y, zcount this yields

Why do these two counts come out the same? We set up a one-to-one correspondence between $e.g.: \{d, ??i,k\}$ choices of four from a b c d e f g h i j kand monomials of degree 8 in w_{x}, y, z yields $g \mid h \mid i \mid j \mid k \mid l$ don't this

Solution:
$$\binom{d+n}{d} = \binom{d+n}{n} \qquad \frac{d : \rightarrow 6}{n : \rightarrow 3}$$

Question: How many monomials are there

degree $\equiv d$ in n variables? e.g.: How many monomials are there degree = 6 in 4 variables?

#{monomials of degree = 6 in
$$\{x, y, z, t\}$$
}
Claim:||Pf...

#{monomials of degree ≤ 6 in $\{x, y, z\}$ } $\begin{pmatrix} 6+3 \\ 6 \end{pmatrix} = \begin{pmatrix} 6+3 \\ 3 \end{pmatrix} \stackrel{\text{exercise}}{=} 84$

Solution:
$$\binom{d+n}{d} = \binom{d+n}{n}$$

Question: How many monomials are there degree = d in n variables? e.g.: How many monomials are there

degree = 6 in 4 variables?

{monomials of degree = 6 in $\{x, y, z, t\}$ }

We will set up a 1-1 coorespondence $\{x,y,z\}\}$ between this and this...

{monomials of degree
$$\leq$$
 6 in $\{x,y,z\}\}$

Solution:
$$\begin{pmatrix} d+n \\ d \end{pmatrix} = \begin{pmatrix} d+n \\ n \end{pmatrix}$$

Question: How many monomials are there degree
$$= d$$
 in n variables?

e.g.: How many monomials are there degree = 6 in 4 variables?

{monomials of degree ≤ 6 in $\{x, y, z\}$ }

{monomials of degree = 6 in $\{x, y, z, t\}$ }

{monomials of degree = 6
$$x^2y^2zt$$
—eliminate all ts x^2y^2z

Solution:
$$\binom{d+n}{d} = \binom{d+n}{n}$$

degree
$$=d$$
 in n variables?
 $e.g.:$ How many monomials are there degree $=6$ in 4 variables?
 $\{\text{monomials of degree}=6 \text{ in } \{x,y,z,t\}\}$

Question: How many monomials are there

$$\{ \text{monomials of degree} = 6 \text{ in } \{x,y,z,t\} \}$$

$$x^2y^2zt \qquad xy^2t^3 \qquad xy^2zt^2 \qquad x^2yz^3$$

$$x^2y^2z \qquad xy^2 \qquad xy^2z \qquad x^2yz^3$$

$$\{ \text{monomials of degree} \leq 6 \text{ in } \{x,y,z\} \}$$

Solution:
$$\binom{d+n}{d} = \binom{d+n}{n}$$

Question: How many monomials are there degree = d in n variables?

e.g.: How many monomials are there

 $\label{eq:degree} \mbox{degree} = 6 \mbox{ in 4 variables?} \\ \mbox{\{monomials of degree} = 6 \mbox{ in } \{x,y,z,t\} \}$

$$xyz^{2}t^{2}$$

$$\uparrow$$

$$xyz^{2} \leftarrow -\text{add in } ts \text{ until degree} = 6$$

monomials of degree \leq 6 in $\{x,y,z\}\}$ 14

Solution:
$$\binom{d+n}{d} = \binom{d+n}{n}$$

degree
$$= d$$
 in n variables?
 $e.g.$: How many monomials are there
degree $= 6$ in 4 variables?

Question: How many monomials are there

{monomials of degree = 6 in $\{x, y, z, t\}$ } xyz^2t^2 xy^3zt xy^3z $x^2y^2z^2$ $x^{3}t^{3}$ $x^2y^2z^2$ {monomials of degree ≤ 6 in $\{x, y, z\}$ }

Solution:
$$\binom{d+n}{d} = \binom{d+n}{n} \qquad n : \to n-1$$

Question: How many monomials are there degree = d in n variables?

Solution:

$$\#\{ \text{monomials of degree} \leq d \text{ in } n-1 \text{ variables} \}$$

$$\begin{pmatrix} d+n-1 \\ d \end{pmatrix} = \begin{pmatrix} d+n-1 \\ n-1 \end{pmatrix}$$

Solution:
$$\binom{d+n}{d} = \binom{d+n}{n}$$

Question: How many monomials are there degree = d in n variables?

Solution:
$$\begin{pmatrix} d+n-1 \\ d \end{pmatrix} = \begin{pmatrix} d+n-1 \\ n-1 \end{pmatrix}$$

#{monomials of degree
$$\leq 2$$
 in 5 variables}
 $(d+n-1)+(d+n-1)$ #{monomials of degree $= 3$ in 5 variables}
 $(n-1)$

Solution:
$$\binom{d+n}{d} = \binom{d+n}{n}$$

Question: How many monomials are there degree = d in n variables?

Solution:
$$\begin{pmatrix} d+n-1 \\ d \end{pmatrix} = \begin{pmatrix} d+n-1 \\ n-1 \end{pmatrix}$$

#{monomials of degree \leq 2 in 5 variables} + #{monomials of degree = 3 in 5 variables}

 $\#\{\text{monomials of degree} \leq 3 \text{ in 5 variables}\}$

$$\begin{pmatrix} 2+5 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 3+5 \\ 3 \end{pmatrix}$$

Solution:
$$\begin{pmatrix} d+n-1 \\ d \end{pmatrix} = \begin{pmatrix} d+n-1 \\ n-1 \end{pmatrix}$$

#{monomials of degree ≤ 2 in 5 variables}

#{monomials of degree = 3 in 5 variables}

 $\#\{\text{monomials of degree} \leq 3 \text{ in 5 variables}\}$

$$\begin{pmatrix} 2+5 \\ 2 \end{pmatrix} \qquad \begin{pmatrix} 3+5-1 \\ 3 \end{pmatrix} \qquad \begin{pmatrix} 3+5 \\ 3 \end{pmatrix}$$

#{monomials of degree ≤ 2 in 5 variables} #{monomials of degree = 3 in 5 variables} #{monomials of degree ≤ 3 in 5 variables}

$$\binom{2+5}{2} + \binom{3+5-1}{3} = \binom{3+5}{3}$$

Solution:
$$\begin{pmatrix} d+n-1 \\ d \end{pmatrix} = \begin{pmatrix} d+n-1 \\ n-1 \end{pmatrix}$$

#{monomials of degree \leq 2 in 5 variables} #{monomials of degree = 3 in 5 variables}

 $\#\{\text{monomials of degree} \leq 3 \text{ in 5 variables}\}$

