Financial Mathematics

The Intermediate Value Theorem and the Mean Value Theorem

Definition:

An output of a function is called a value of the function.

Intermediate Value Theorem:

```
Let f be continuous on [a, c].
```

Suppose
$$f(a) = s$$
 and $f(c) = u$.

Let t be a number strictly between s and u.

Then, for some $b \in (a, c)$,

$$f(b) = t$$
.

(I.e., let
$$m:=\min\{s,u\}$$
, let $M:=\max\{s,u\}$, and let $t\in(m,M)$.)

Buzz phrase:

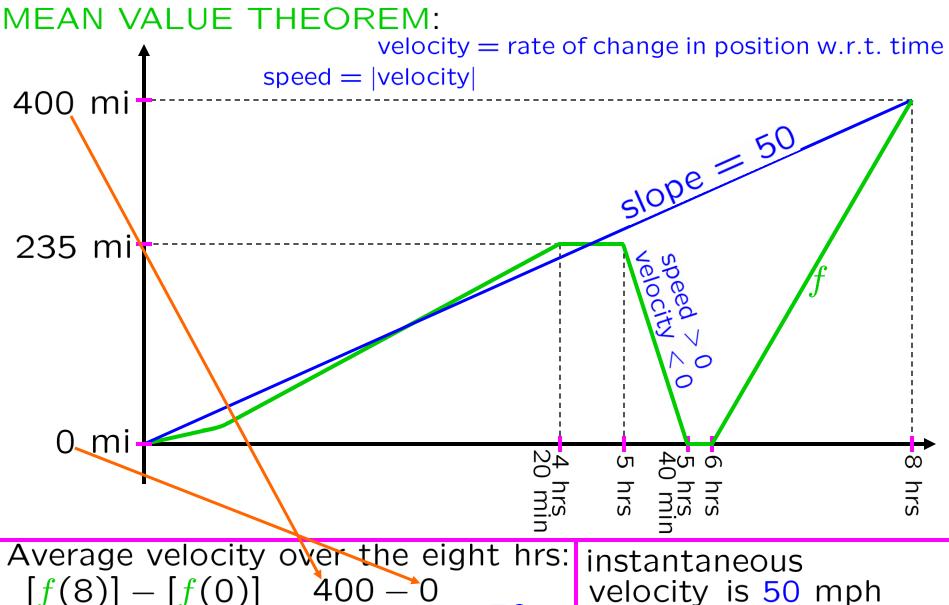
Continuous functions attain intermediate values.

MEAN VALUE THEOREM: Chicago 235 mi Rest stop 400 mi Minneapolis 0 hrs, leave Minneapolis 4 hrs 20 mins, start break

- 6 hrs, leave Minneapolis 8 hrs, arrive Chicago
- 5 hrs, notice problem,
 head back
 5 hrs 40 mins, arrive Minneapolis

(

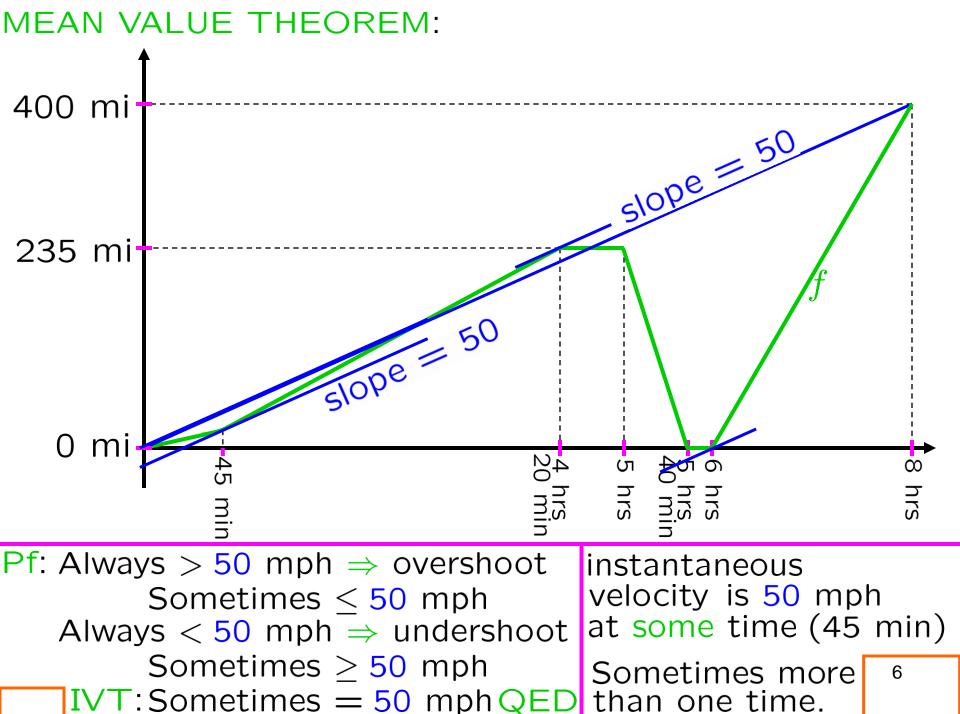


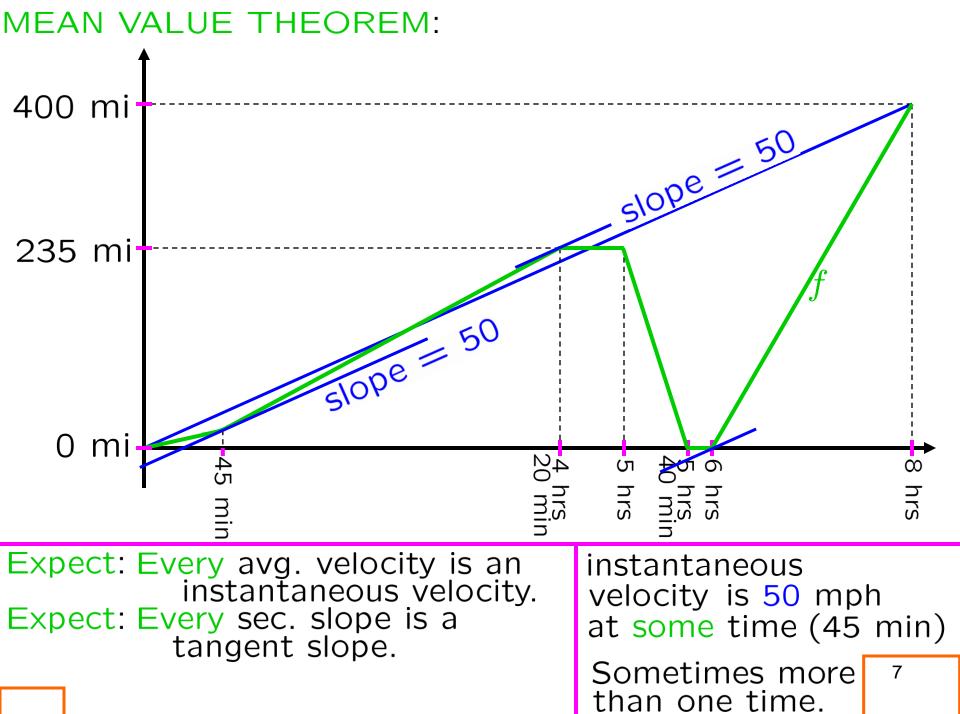


 $\frac{[f(8)] - [f(0)]}{8 - 0} = \frac{400 - 0}{8} = 50$ velocity is 50 mpl at some time

Average velocity is 50 mph from 0 hrs to 8 hrs.

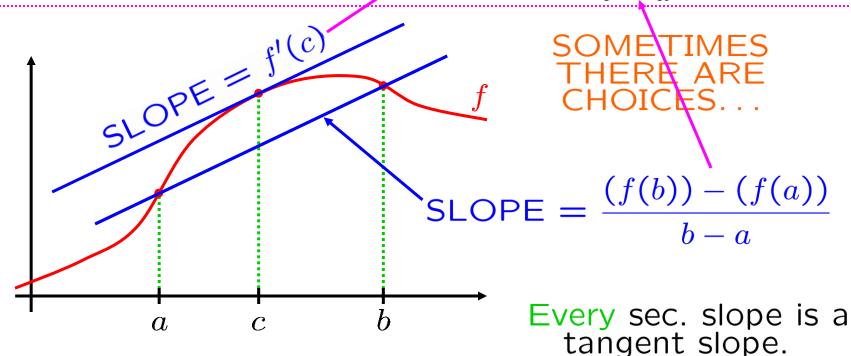
5





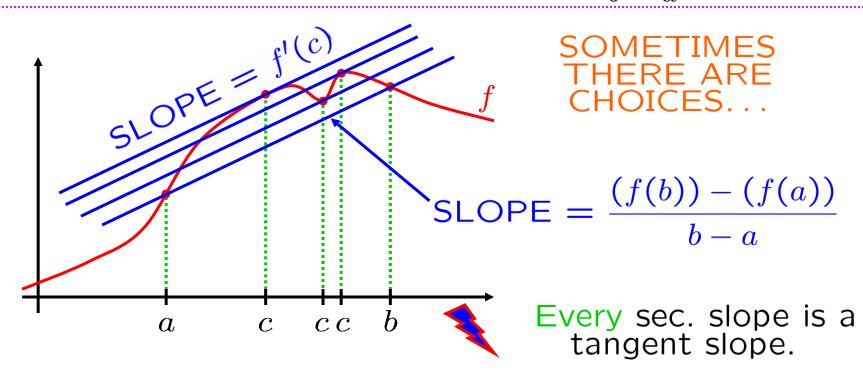
Let $a, b \in \mathbb{R}$ and assume that a < b. Assume that f is continuous on [a, b], and that f is differentiable on (a, b).

Then
$$\exists c \in (a,b)$$
 such that $f'(c) = \frac{(f(b)) - (f(a))}{b-a}$



Let $a, b \in \mathbb{R}$ and assume that a < b. Assume that f is continuous on [a, b], and that f is differentiable on (a, b).

Then
$$\exists c \in (a,b)$$
 such that $f'(c) = \frac{(f(b)) - (f(a))}{b-a}$.



Let $a, b \in \mathbb{R}$ and assume that a < b.

Assume that f is continuous on [a,b],

and that f is differentiable on (a,b).

Then $\exists c \in (a,b)$ such that f'(c) =

INCREASING TEST:

If f'(x) > 0, for all x in an interval I, then f is increasing on I.

ROLLE'S THEOREM:

Assume that f is continuous on [a,b], that f is differentiable on (a,b)and that f(a) = f(b).

Then $\exists c \in (a,b)$ such that $f'(c) \stackrel{\bullet}{=} 0$. Every sec. slope is a tangent slope.

Idea: If some secant line is horizontal, then some tangent line is horizontal. 10

Let $a, b \in \mathbb{R}$ and assume that a < b.

Assume that f is continuous on [a,b], and that f is differentiable on (a,b).

Then $\exists c \in (a,b)$ such that f'(c) =

INCREASING TEST:

If $f'(x) \ge 0$, for all x in an interval I, then f is increasing on I.

Proof: Let $a, b \in I$. Want: f(a) < f(b).

Assume a < b. Choose $c \in (a, b)$ such that f'(c)

Every sec. slope is a tangent slope.

Idea: If every tangent line runs uphill,

then every secant line runs uphill.

Contradiction.

Assume $f(a) \ge f(b)$. Want: Contradiction.

works for any

(open, closed,

(bdd, unbdd)

kind of interval

half-open)

11

Let $a, b \in \mathbb{R}$ and assume that a < b.

Assume that f is continuous on [a,b],

and that f is differentiable on (a,b).

Then
$$\exists c \in (a,b)$$
 such that $f'(c) = \frac{(f(b)) - (f(a))}{b-a}$.

DECREASING TEST:

If f'(x) < 0, for all x in an interval I, then f is decreasing on I. Proof: Let $a, b \in I$.

Assume a < b.

Choose $c \in (a, b)$ such that $f'(c) = \frac{(f(b)) - (f(a))}{b - a}$.

Every sec. slope is a tangent slope. Idea: If every tangent line runs downhill,

(open, closed, (bdd, unbdd) Want: f(a) > f(b).

Assume f(a) < f(b). Want: Contradiction.

Contradiction.

kind of interval

half-open)

12 then every secant line runs downhill.

Let $a, b \in \mathbb{R}$ and assume that a < b.

Every sec. slope is a

Assume that f is continuous on [a,b], and that f is differentiable on (a,b).

Then $\exists c \in (a,b)$ such that $f'(c) = \frac{(f(b)) - (f(a))}{c}$

THEOREM (ONE-TO-ONE TEST): works for any kind of interval

If $f'(x) \neq 0$, for all x in an interval I, then f is one-to-one on I.

Want: $f(a) \neq f(b)$. Proof: Let $a, b \in I$. Assume $a \neq b$ Assume f(a) = f(b).

Want: Contradiction.

Choose $c \in (a, b)$ such that f'(c)

Contradiction. tangent slope. Idea: If every tangent line is not horizontal, then every secant line is not horizontal.

(open, closed,

(bdd, unbdd)

half-open)

Let $a, b \in \mathbb{R}$ and assume that a < b.

Assume that f is continuous on [a,b], and that f is differentiable on (a,b).

Then $\exists c \in (a,b)$ such that f'(c) =

Then
$$\exists c \in (a,b)$$
 such that $f'(c) = \frac{\langle f(c) \rangle - \langle f(c) \rangle}{b-a}$.

THEOREM (CONSTANT TEST):

If f'(x) = 0, for all x in an interval I, then f is constant on I.

Proof: Let $a, b \in I$.

Choose $c \in (a,b)$ such that $f'(c) = \frac{(f(b)) - (f(a))}{b}$ Every sec. slope is a tangent slope.

Want: f(a) = f(b). Assume $f(a) \neq f(b)$.

Want: Contradiction.

Contradiction.

kind of interval

half-open)

 $a \neq b$

(open, closed,

(bdd, unbdd)

14

Idea: If every tangent line is horizontal, then every secant line is horizontal.

MEAN VALUE THEOREM: Let $a, b \in \mathbb{R}$ and assume that a < b. Assume that f is continuous on [a,b], and that f is differentiable on (a,b). Then $\exists c \in (a,b)$ such that $f'(c) = \frac{(f(b)) - (f(a))}{c}$ THEOREM (CONSTANT TEST): If f'(x) = 0 for all x in an interval I, then f is constant on I.

EQUALITY OF DERIVATIVES:

If g'(x) = h'(x), for all x in an interval I, then g - h is constant on I; that is, $\exists c \in \mathbb{R}$ s.t., $\forall x \in I$

That is, $\forall x \in I$,

Proof: Let $f: \neq g - h$.

Then $\forall x \in I$, f'(x) = (g'(x)) - (h'(x)) = 0. So f is constant on I. Choose $c \in \mathbb{R}$ s.t. f = c on I. That is, $\forall x \in I$, f(x) = c.

works for any kind of interval (open, closed, half-open) (bdd, unbdd)

works for any kind of interval (open, closed, half-open) (bdd, unbdd) g(x) = (h(x)) + c.

15

 $(\dot{q}(x)) \stackrel{!}{-} (\dot{h}(x)) = \dot{c}$. QED

f is decreasing on I if: $\forall u, v \in I$, $u < v \Rightarrow f(v) < f(u)$ works for any DECREASING TEST kind of interval If f'(x) < 0, for all x in an interval I, (open, closed, half-open) then f is decreasing on I. (bdd, unbdd) f is nonincreasing on I if: $\forall u, v \in I$, $u \leq v \Rightarrow f(v) \leq f(u)$ works for any NONINCREASING TEST: kind of interval If $f'(x) \leq 0$, for all x in an interval I, (open, closed, half-open) then f is nonincreasing on I. (bdd, unbdd) f is increasing on I if: $\forall u, v \in I$, $u < v \Rightarrow f(u) < f(v)$ works for any INCREASING TEST: kind of interval If f'(x) > 0, for all x in an interval I, (open, closed, half-open) then f is increasing on I. (bdd, unbdd) f is nondecreasing on I if: $\forall u, v \in I$, $u \leq v \Rightarrow f(u) \leq f(v)$ works for any NONDECREASING TEST: kind of interval If f'(x) > 0, for all x in an interval I, (open, closed, half-open) then f is nondecreasing on I. (bdd, unbdd) 16

f is decreasing on I if: $\forall u, v \in I$, $u < v \Rightarrow f(v) < f(u)$ works for any

DECREASING TEST

If f'(x) < 0, for all x in an interval I, then f is decreasing on I.

half-open) (bdd, unbdd)

kind of interval

(open, closed,

works for any

(open, closed,

(bdd, unbdd)

kind of interval

half-open)

f is nonincreasing on I if: $\forall u, v \in I$, $u \leq v \Rightarrow f(v) \leq f(u)$

NONINCREASING TEST

If f'(x) < 0, for all x in an interval I, then f is nonincreasing on I.

