Financial Mathematics

One variable integral calculus review

Def'n: Let I be an interval.

Let f be a function whose domain contains I. A function F is called an **antiderivative of** f **on** I if, $\forall x \in I$, we have: F'(x) = f(x).

Def'n:Let $f: \mathbb{R} \to \mathbb{R}$ be a function.

A function F is called an **antiderivative of** f if, $\forall x \in \mathbb{R}$, we have: F'(x) = f(x).

e.g.: Find all antiderivatives of $f(x) = x^2$.

Guess:
$$F(x) = \frac{1}{3}x^3$$
 $F'(x) = x^2 = f(x)$

Guess:
$$F(x) = x^3$$

 $F'(x) = 3x^2 \neq f(x)$

Def'n:Let I be an interval.

Let f be a function whose domain contains I.

A function F is called an **antiderivative of** f **on** I expressions... if, $\forall x \in I$, we have: F'(x) = f(x).

Def'n:Let $f: \mathbb{R} \to \mathbb{R}$ be a function.

A function F is called an **antiderivative of** f if, $\forall x \in \mathbb{R}$, we have: F'(x) = f(x).

e.g.: Find all antiderivatives of $f(x) = x^2$.

Guess:
$$F(x) = \frac{1}{3}x^3$$
 $F'(x) = x^2 = f(x)$

Guess:
$$F(x) = \frac{1}{3}x^3 + 6$$
 $F'(x) = x^2 = f(x)$

Other antiderivatives:

$$\frac{1}{3}x^3 + 8$$

 $\frac{1}{3}x^3 + 3$

Def'n: Let I be an interval.

Let f be a function whose domain contains I.

An expression F(x) is called an **antiderivative of** f(x)

w.r.t. x on I if, $\forall x \in I$, we have: F'(x) = f(x).

Def'n:Let $f: \mathbb{R} \to \mathbb{R}$ be a function.

A function F is called an **antiderivative of** f expressions... if, $\forall x \in \mathbb{R}$, we have: F'(x) = f(x).

e.g.: Find all antiderivatives of $f(x) = x^2$.

Guess:
$$F(x) = \frac{1}{3}x^3$$
 $F'(x) = x^2 = f(x)$

Guess:
$$F(x) = \frac{1}{3}x^3 + 6$$
 $F'(x) = x^2 = f(x)$

Other antiderivatives:

$$\frac{1}{3}x^3 + 8$$

 $\frac{1}{3}x^3 + 3$

Def'n: Let I be an interval.

Let f be a function whose domain contains I. An expression F(x) is called an **antiderivative of** f(x)w.r.t. x on I if, $\forall x \in I$, we have: F'(x) = f(x).

Def'n:Let $f: \mathbb{R} \to \mathbb{R}$ be a function.

An expression F(x) is called an **antiderivative of** f(x) w.r.t. x if, $\forall x \in \mathbb{R}$, we have: F'(x) = f(x).

e.g.: Find all antiderivatives of $f(x) = x^2$.

Guess:
$$F(x) = \frac{1}{3}x^3$$
 Guess: $F(x) = \frac{1}{3}x^3 + 6$ F'(x) = $x^2 = f(x)$

Other antiderivatives:
$$\frac{1}{3}x^3 + 8 \xrightarrow{\text{(of } x^2 \text{ w.r.t. } x)} d/dx$$

$$\frac{1}{3}x^3 + 3 \xrightarrow{\text{d}/dx \text{ is not "1-1"}} d/dx \text{ is not invertible.}$$

kind of interval If g'(x) = h'(x), for all x in an interval I, (open, closed, half-open) then g-h is constant on I; (bdd, unbdd) that is, $\exists c \in \mathbb{R} \text{ s.t.}, \ \forall x \in (a,b),$ g(x) = (h(x)) + c.Def'n: Let $f: \mathbb{R} \to \mathbb{R}$ be a function. An expression F(x) is called an **antiderivative of** f(x)w.r.t. x if, $\forall x \in \mathbb{R}$, we have: F'(x) = f(x). e.g.: Find all antiderivatives of $f(x) = x^2$. Guess: $F(x) = \frac{1}{3}x^3 + 6$ Guess: $F(x) = \frac{1}{3}x^{3}$ $F'(x) = x^2 \neq f(x)$ $F'(x) = x^2 = f(x)$ Other antiderivatives: d/dx $\frac{1}{3}x^3 + 8 \frac{(\text{of } x^2 \text{ w.r.t. } x)}{(\text{of } x^2 \text{ w.r.t. } x)}$ d/dx is not "1-1" and so is not invertible. $\{\frac{1}{3}x^3 + C \,|\, C \in \mathbb{R}\}\$ is the set of all antiderivatives of x^2 w.r.t. x.

works for any

ALITY OF DERIVATIVES:

kind of interval If g'(x) = h'(x), for all x in an interval I, (open, closed, then g-h is constant on I; (bdd, unbdd) that is, $\exists c \in \mathbb{R} \text{ s.t., } \forall x \in (a,b)$, g(x) = (h(x)) + c.

Def'n: Let $f: \mathbb{R} \to \mathbb{R}$ be a function.

An expression F(x) is called an **antiderivative of** f(x)

EQUALITY OF DERIVATIVES:

w.r.t.
$$x$$
 if, $\forall x \in \mathbb{R}$, we have: $F'(x) = f(x)$. Notation: The set of all antiderivatives of $f(x)$ w.r.t. x

is denoted
$$\int f(x) \, dx$$
. Tradition $dx = \{\frac{1}{2}x^3 + C \mid C \in \mathbb{R}\}$ drop the

$$|C \in \mathbb{R}\} \begin{tabular}{l} Traditional to \\ drop the set braces \\ and everything after \\ the vertical line (|) \\ \end{tabular}$$

e.g.: $\int x^2 dx = \{\frac{1}{3}x^3 + C \mid C \in \mathbb{R}\}$ drop the set braces

works for any

half-open)

 $\{\frac{1}{3}x^3 + C \mid C \in \mathbb{R}\}$ is

the set of all antiderivatives of x^2 w.r.t. x.

EQUALITY OF DERIVATIVES:

If g'(x) = h'(x), for all x in an interval I, then g-h is constant on I;

that is, $\exists c \in \mathbb{R} \text{ s.t., } \forall x \in (a,b)$,

(open, closed, half-open) (bdd, unbdd) g(x) = (h(x)) + c.

works for any kind of interval

Def'n: Let $f: \mathbb{R} \to \mathbb{R}$ be a function. An expression F(x) is called an **antiderivative of** f(x)

w.r.t. x if, $\forall x \in \mathbb{R}$, we have: F'(x) = f(x). Notation: The set of all antiderivatives of f(x) w.r.t. x

is denoted $\int f(x) dx$.

e.g.:
$$\int x^2 dx = \frac{1}{3}x^3 + C$$
 Traditional to drop the set by and everything the vertical line. Note:
$$\{\frac{1}{3}x^3 + C \mid C \in \mathbb{R}\} = \{\frac{1}{3}x^3 - 6C \mid C \in \mathbb{R}\}$$

drop the set braces and everything after the vertical line (|)

EQUALITY OF DERIVATIVES:

If g'(x) = h'(x), for all x in an interval I, then g-h is constant on I;

that is, $\exists c \in \mathbb{R} \text{ s.t., } \forall x \in (a,b)$,

(open, closed, (bdd, unbdd) g(x) = (h(x)) + c.

works for any kind of interval

half-open)

Def'n: Let $f: \mathbb{R} \to \mathbb{R}$ be a function.

An expression F(x) is called an **antiderivative of** f(x)

ression
$$F(x)$$
 is called an **antiderivative of** x where $x \in \mathbb{R}$, we have: $F'(x) = f(x)$.

Notation: The set of all antiderivatives of
$$f(x)$$
 w.r.t. x is denoted $\int f(x) dx$.

e.g.:
$$\int x^2 dx = \frac{1}{3}x^3 + C$$
Traditional to drop the set braces and everything after the vertical line (1)

the vertical line
$$(|)$$
 $C \in \mathbb{R} \}$

Note: $\{\frac{1}{3}x^3 + C \mid C \in \mathbb{R}\} = \{\frac{1}{3}x^3 - 6C \mid C \in \mathbb{R}\}$ Looks strange, but it's correct, as sets.

If g'(x) = h'(x), for all x in an interval I, then g-h is constant on I;

g(x) = (h(x)) + c.

that is, $\exists c \in \mathbb{R} \text{ s.t., } \forall x \in (a,b)$,

EQUALITY OF DERIVATIVES:

Def'n: Let $f: \mathbb{R} \to \mathbb{R}$ be a function.

An expression F(x) is called an **antiderivative of** f(x)w.r.t. x if, $\forall x \in \mathbb{R}$, we have: F'(x) = f(x).

Notation: The set of all antiderivatives of f(x) w.r.t. x

is denoted $\int f(x) dx$. e.g.: $\int x^2 dx = \frac{1}{3}x^3 + C$

Note: $\frac{1}{3}x^3 + C = \frac{1}{3}x^3 - 6C$

Looks strange, but it's correct, as sets.

10

drop the set braces

the vertical line (|)

and everything after

Traditional to

works for any kind of interval

(open, closed,

(bdd, unbdd)

half-open)

EQUALITY OF DERIVATIVES: If g'(v) = h'(v), for all v in an interval I, then g-h is constant on I;

that is, $\exists c \in \mathbb{R} \text{ s.t., } \forall v \in (a,b)$, g(v) = (h(v)) + c.

Def'n:Let
$$f: \mathbb{R} \to \mathbb{R}$$
 be a function.

An expression F(v) is called an antiderivative of f(v)

w.r.t. v if, $\forall v \in \mathbb{R}$, we have: F'(v) = f(v).

e.g.: $\int v^2 dv = \frac{1}{3}v^3 + C$

Notation: The *set* of *all* antiderivatives of
$$f(v)$$
 w.r.t. v is denoted $\int f(v) dv$.

is denoted $\int f(v) dv$. Traditional to drop the set braces and everything after the vertical line (|)

works for any kind of interval

(open, closed,

(bdd, unbdd)

half-open)

Note: $\frac{1}{3}v^3 + C = \frac{1}{3}v^3 - 6C$

Looks strange, but it's correct, as sets. 11

EQUALITY OF DERIVATIVES: If g'(t) = h'(t), for all t in an interval I,

works for any kind of interval

(open, closed,

(bdd, unbdd)

half-open)

then g-h is constant on I; that is, $\exists c \in \mathbb{R} \text{ s.t., } \forall t \in (a,b)$, g(t) = (h(t)) + c.

Def'n:Let $f: \mathbb{R} \to \mathbb{R}$ be a function.

An expression F(t) is called an **antiderivative of** f(t)w.r.t. t if, $\forall t \in \mathbb{R}$, we have: F'(t) = f(t).

Notation: The set of all antiderivatives of
$$f(t)$$
 w.r.t. t is denoted $\int f(t) dt$.

e.g.: $\int t^2 dt = \frac{1}{3}t^3 + C$

Traditional to drop the set braces and everything after the vertical line (|)

Note: $\frac{1}{3}t^3 + C = \frac{1}{3}t^3 - 6C$ Looks strange, but it's correct, as sets.

$$\stackrel{\cdot}{\longrightarrow} S$$

kind of interval If g'(s) = h'(s), for all s in an interval I, (open, closed, half-open) then g-h is constant on I; (bdd, unbdd) that is, $\exists c \in \mathbb{R} \text{ s.t.}, \ \forall s \in (a,b)$, g(s) = (h(s)) + c.

Def'n:Let $f: \mathbb{R} \to \mathbb{R}$ be a function.

EQUALITY OF DERIVATIVES:

An expression F(s) is called an antiderivative of f(s)

w.r.t. s if, $\forall s \in \mathbb{R}$, we have: F'(s) = f(s). Notation: The set of all antiderivatives of f(s) w.r.t. sis denoted $\int f(s) ds$.

e.g.:
$$\int s^2 ds = \frac{1}{3}s^3 + C$$

Note: $\frac{1}{3}s^3 + C = \frac{1}{3}s^3 - 6C$

Looks strange, but it's correct, as sets.

Traditional to

drop the set braces

the vertical line (|)

and everything after

works for any

If g' = h' on an interval I, then g-h is constant on I; that is, $\exists c \in \mathbb{R} \text{ s.t.}$, on I, g = h + c. Def'n:Let $f: \mathbb{R} \to \mathbb{R}$ be a function. A function F is called an **antiderivative of** fif: F' = f on \mathbb{R} .

Notation: The set of all antiderivatives of f

EQUALITY OF DERIVATIVES:

e.g.:
$$\int (\bullet)^2 = \frac{1}{3}(\bullet)^3 + C$$
 Traditional to drop the set braces and everything after the vertical line (|)

is denoted $\int f$

works for any kind of interval

(open, closed,

(bdd, unbdd)

half-open)

Note: $\frac{1}{3}(\bullet)^3 + C = \frac{1}{3}(\bullet)^3 - 6C$

Looks strange, but it's correct, as sets.

And now, for something completely different...or is it? 14 Next subtopic: Area

Let f be a function. Assume that f is continuous on [a,b]. \forall integers $n \ge 1$, let $h_n := (b-a)/n$,

Let f be a function. Assume that f is continuous on [a,b].

 \forall integers $n \geq 1$, let $h_n := (b-a)/n$,

Let f be a function. Assume that f is continuous on [a,b]. \forall integers n > 1, let $h_n := (b-a)/n$,

partition of [a,b]

left endpoint

into three subintervals all of length h_3 midpoint

right endpoint

Let f be a function. Assume that f is continuous on [a,b].

 \forall integers n > 1, let $h_n := (b-a)/n$,

left endpoints

partition of [a,b]into three subintervals all of length h_3

midpoints

right endpoints

Let f be a function. Assume that f is continuous on [a,b]. \forall integers n > 1, let $h_n := (b-a)/n$,

Next: 10th partition of
$$[a, b]$$
...

3rd partition of $[a, b]$

Let f be a function. Assume that f is continuous on [a,b].

$$\forall$$
integers $n \geq 1$, $\det h_n := (b-a)/n$,

width of the subintervals in the nth partition WARNING: h is for "horizontal", not "height"

Let f be a function. Assume that f is continuous on [a,b]. \forall integers $n \ge 1$, let $h_n := (b-a)/n$,

width of the subintervals in the nth partition

WARNING: h is for "horizontal", not "height"

Those rectangles have width here not height

These rectangles have width h_{10} , not height.

Back to the 3rd partition...

Let f be a function. Assume that f is continuous on [a,b]. \forall integers $n \geq 1$, let $h_n := (b-a)/n$,

3rd partition of
$$[a,b]$$

Let f be a function. Assume that f is continuous on [a,b].

DEFINITION: Let $a, b \in \mathbb{R}$ satisfy a < b.

23

$$\forall \text{integers } n \geq 1, \text{ let } h_n := (b-a)/n,$$

$$\text{let } B_n S^b f := \sum_{i=1}^n \lceil h_n \rceil \lceil f(a+ih_n) \rceil$$

$$\frac{\mathsf{let}\,[R_nS_a^bf]}{[I_n]} := \sum_{j=1}^n \,[h_n][f(a+jh_n)],$$

Let f be a function. Assume that f is continuous on [a,b].

$$\forall \text{integers } n \geq 1, \text{ let } h_n := (b-a)/n,$$

let
$$R_n S_a^b f := \sum_{j=1}^n [h_n][f(a+jh_n)],$$

Let f be a function. Assume that f is continuous on [a,b].

$$\forall$$
integers $n \geq 1$, let $h_n := (b-a)/n$,

$$\forall ext{integers } n \geq 1, \ ext{let } h_n := (b-a)/n,$$

$$ext{let } R_n S_a^b f := \sum_{i=1}^n [h_i][f(a+jh_i)],$$

$$j=1$$
 Let $M_n S_a^b f := \sum_{j=1}^n [h_n][f(a+(j-\frac{1}{2})h_n)]$

Let f be a function. Assume that f is continuous on [a,b]. \forall integers n > 1, let $h_n := (b-a)/n$,

$$\forall \text{integers } n \geq 1, \text{ let } h_n := (b-a)/n,$$

Three pers
$$n \geq 1$$
, let $h_n := (b-a)/n$, let $R_n S_a^b f := \sum_{j=1}^n [h_n][f(a+jh_n)],$

DEFINITION: Let $a, b \in \mathbb{R}$ satisfy a < b. Let f be a function. Assume that f is continuous on [a,b].

 \forall integers $n \geq 1$, let $h_n := (b-a)/n$,

$$\forall \text{integers } n \geq 1, \text{ let } h_n := (b-a)/n,$$

$$\text{let } R_n S_a^b f := \sum_{j=1}^n \left[h_n\right] [f(a+jh_n)],$$

 $f(a + (3-1)h_3)$

 $f(a + (2-1)h_3)$.

 $f(a + (1-1)h_3)$

and let
$$L_n S_a^b f := \sum_{i=1}^n [h_n][f(a+(j-1)h_n)].$$

Next: n = 10...

let
$$M_n S_a^b f := \sum_{i=1}^n [h_n][f(a+(j-\frac{1}{2})h_n)]$$

$$S_a^o f := \sum_{i=1}^n [i]$$

$$f := \sum_{n=1}^{n} [h_n]$$

on. Assume that
$$f$$
 is con

Left 3rd

Riemann Sum

from a to b of f

 $L_3 S_a^b f =$ total shaded

27

Let f be a function. Assume that f is continuous on [a,b]. \forall integers n > 1, let $h_n := (b-a)/n$,

$$\forall ext{integers } n \geq 1, ext{ let } h_n := (b-a)/n,$$

$$ext{let } R_n S_a^b f := \sum_{i=1}^n [h_n][f(a+jh_n)],$$

$$\det M_n S_a^b f := \sum_{j=1}^n \ [h_n][f(a+(j-\frac{1}{2})h_n)]$$
 and let $L_n S_a^b f := \sum_{j=1}^n \ [h_n][f(a+(j-1)h_n)].$ Goal: Find this area. Next: $n=60...$ Left 10th Riemann S um

Let f be a function. Assume that f is continuous on [a,b]. \forall integers n > 1, let $h_n := (b-a)/n$,

$$\forall ext{integers } n \geq 1, ext{ let } h_n := (b-a)/n,$$

$$ext{let } R_n S_a^b f := \sum_{i=1}^n [h_n][f(a+jh_n)],$$

$$\det M_n S_a^b f := \sum_{j=1}^n [h_n][f(a+(j-\frac{1}{2})h_n)]$$
 and let $L_n S_a^b f := \sum_{j=1}^n [h_n][f(a+(j-1)h_n)].$ s area. Left 60th Riemann S um from a to b of

Let f be a function. Assume that f is continuous on [a,b].

 $\forall integers \ n \geq 1, \ \text{let} \ h_n := (b-a)/n,$

let
$$R_n S_a^b f := \sum_{j=1}^n [h_n][f(a+jh_n)],$$

let
$$M_n S_a^b f := \sum_{j=1}^n [h_n][f(a+(j-\frac{1}{2})h_n)]$$

and let
$$L_n S_a^b f$$
 := $\sum_{j=1}^n [h_n][f(a+(j-1)h_n)].$

Theorem:

$$\lim_{n\to\infty} L_n S_a^b f = \lim_{n\to\infty} M_n S_a^b f = \lim_{n\to\infty} R_n S_a^b f$$

Let f be a function. Assume that f is continuous on [a,b].

$$\forall$$
integers $n > 1$, let $h_n := (b-a)/n$,

let
$$R_n S_a^b f := \sum_{j=1}^n [h_n][f(a+jh_n)],$$

let
$$M_n S_a^b f := \sum_{i=1}^n [h_n][f(a+(j-\frac{1}{2})h_n)]$$

and let
$$L_n S_a^b f$$
 := $\sum_{j=1}^n [h_n][f(a+(j-1)h_n)].$

DEFINITION OF A DEFINITE INTEGRAL:

$$\int_a^b f(x) dx := \lim_{n \to \infty} L_n S_a^b f = \lim_{n \to \infty} M_n S_a^b f = \lim_{n \to \infty} R_n S_a^b f$$

$$\int_{a}^{b} f(x) dx = \int_{a}^{b} f(v) dv = \int_{a}^{b} f(t) dt = \int_{a}^{b} f(s) ds = \int_{a}^{b} f(s) ds$$

DEFINITION OF A DEFINITE INTEGRAL:

$$\int_a^b f(x) dx := \lim_{n \to \infty} L_n S_a^b f = \lim_{n \to \infty} M_n S_a^b f = \lim_{n \to \infty} R_n S_a^b f$$

Other limits yield the area...

Let f be a function. Assume that f is continuous on [a,b].

$$\forall$$
integers $n > 1$, let $h_n := (b-a)/n$,

let
$$p_n^{(1)} \in [a, a + h_n], \ p_n^{(2)} \in [a + h_n, a + 2h_n],$$

$$p_n^{(3)} \in [a + 2h_n, a + 3h_n], \dots, \ p_n^{(n)} \in [a + (n - 1)h_n, b]$$
and let $RS_n := \sum_{j=1}^n [h_n][f(p_n^{(j)})]$.

Then
$$\int_a^b f(x) \, dx = \lim_{n \to \infty} \mathsf{RS}_n.$$
 REMARK: This kind of sum is a Riemann sum of f .

DEFINITION OF A DEFINITE INTEGRAL:

$$\int_a^b f(x) dx := \lim_{n \to \infty} L_n S_a^b f = \lim_{n \to \infty} M_n S_a^b f = \lim_{n \to \infty} R_n S_a^b f$$

Subintervals can have varying lengths...

Let f be a function. Assume that f is continuous on [a,b].

 \forall integers n > 1, let $k_n > 1$ be an integer,

let
$$a = x_n^{(0)} < \cdots < x_n^{(k_n)} = b$$
, "points in subintervals in the *n*th partition"

let $p_n^{(1)} \in [x_n^{(0)}, x_n^{(1)}], \ldots, p_n^{(k_n)} \in [x_n^{(k_n-1)}, x_n^{(k_n)}],$

"mesh of the *n*th partition" (1)
$$= \max\{x_n^{(1)} - x_n^{(0)}, \dots, x_n^{(k_n)} - x_n^{(k_n-1)}\}$$

and let
$$RS_n := \sum_{j=1}^{k_n} [x_n^{(j)} - x_n^{(j-1)}][f(p_n^{(j)})]$$

REMARK: This kind of sum is a Riemann sum of f.

Let f be a function. Assume that f is continuous on [a,b].

 \forall integers n > 1, let $k_n > 1$ be an integer,

let
$$a=x_n^{(0)}<\cdots< x_n^{(k_n)}=b$$
, "nth partition" "points in subintervals in the n th partition" let $p_n^{(1)}\in[x_n^{(0)},x_n^{(1)}],\ldots, p_n^{(k_n)}\in[x_n^{(k_n-1)},x_n^{(k_n)}],$

"mesh of the
$$n$$
th partition" $(1)-x_n^{(0)}$, \dots , $x_n^{(k_n)}-x_n^{(k_n-1)}$ } and let $\mathrm{RS}_n:=\sum_{j=1}^{k_n} \, [x_n^{(j)}-x_n^{(j-1)}][f(p_n^{(j)})].$ Assume $\lim_{n\to\infty} \mu_n=0.$

Let f be a function. Assume that f is continuous on [a,b].

 \forall integers $n \geq 1$, let $k_n \geq 1$ be an integer,

let
$$a = x_n^{(0)} < \dots < x_n^{(k_n)} = b$$
,

let
$$p_n^{(1)} \in [x_n^{(0)}, x_n^{(1)}], \ldots, p_n^{(k_n)} \in [x_n^{(k_n-1)}, x_n^{(k_n)}],$$

$$\mathbf{let} \ \mu_n := \max \{ \ x_n^{(1)} - x_n^{(0)} \ , \ \dots, \ x_n^{(k_n)} - x_n^{(k_n-1)} \ \}$$

and let
$$RS_n := \sum_{j=1}^{k_n} [x_n^{(j)} - x_n^{(j-1)}][f(p_n^{(j)})].$$

Assume
$$\lim_{n\to\infty} \mu_n = 0$$
. Then $\int_a^b f(x) dx = \lim_{n\to\infty} RS_n$.

