Financial Mathematics

Conditional probability, independence and the Central Limit Theorem

Tyche tells us $X(\omega)$, then $Y(\omega)$. In between?

Definition: The conditional probability of P given Q is

Is P likely or unlikely? Given that you're told Q happened, is P likely or unlikely?

Definition: The conditional probability of P given Q is

$$Pr[(C_2 = 1) | (C_1 = 1)] = \frac{0.25}{0.5} = 0.5$$

 $C_2 = 1$.

Definition: The conditional probability of P given Q is

[0, 1] Warning: [0, 1] Only defined when $Pr[Q] \neq 0$. Key point:

Definition: Assume $Pr[Q] \neq 0$. P & Q are independent (events) if Pr[P|Q] = Pr[P],

i.e.: if $\frac{\Pr[P \& Q]}{\Pr[Q]} = \Pr[P],$

i.e.: if Pr[P & Q] = (Pr[P])(Pr[Q]).

 $\Pr[(\underline{C_2} = 1) | (\underline{C_1} = 1)] =$ these are independent

Finding out $C_1 = 1$ has no influence on

the prob. that $C_2 = 1$.

 $= Pr[C_2 = 1]$

Definition: The conditional probability of P given Q is

Warning: $C[Q] \neq 0$.

Definition: Assume $Pr[Q] \neq 0$. Key point: P & Q are independent (events) Finding out if Pr[P & Q] = (Pr[P])(Pr[Q]). $C_1 = 1$ has no influence on the prob. that if Pr[P & Q] = (Pr[P])(Pr[Q]). $C_2 = 1$.

 $\Pr[(C_2 = 1) | (C_1 = 1)]$ 10 these are independent

Definition: The conditional probability of P given Q is

 $\frac{\Pr[P \mid Q]}{\Pr[Q]} = \frac{\Pr[P \& Q]}{\Pr[Q]}$ Warning: $\text{Only defined when } \Pr[Q] \neq 0.$

Definition: P & Q are independent (events)

if $\Pr[P \& Q] = (\Pr[P])(\Pr[Q])$.

"The probability of both is the product of the probabilities"

Key point: Finding out

 $C_1 = 1$ has no
influence on
the prob.
that $C_2 = 1$.

 $= \Pr[C_2 = 1]$

$$\Pr[(C_2 = 1) | (C_1 = 1)]$$

these are independent

11

Definition: The conditional probability of P given Q is

Definition:

P & Q are independent (events) if Pr[P & Q] = (Pr[P])(Pr[Q]).

Definition:

S & T are independent (PCRVs) if, $\forall A, B \subseteq \mathbb{R}$, $S \in A$ is independent of $T \in B$.

Key point: Finding out

 $C_1 = 1$ has no influence on the prob. that $C_2 = 1$.

$$Pr[(C_2 = 1) | (C_1 = 1)] = \frac{0.25}{0.5} = 0.5$$

these are independent

Definition: The conditional probability of P given Q is

of
$$P$$
 given Q is
$$\Pr[P \mid Q] = \frac{\Pr[P \ \& \ Q]}{\Pr[Q]}$$
 Warning:
$$\Pr[Q] \neq 0.$$

Definition:

P & Q are independent (events) if Pr[P & Q] = (Pr[P])(Pr[Q]).

Definition:

$$A,B\subseteq\mathbb{R}$$

if, $\forall A, B \subseteq \mathbb{R}$, $S \in A$ is independent of $T \in B$.

$$\Pr[(\underline{C_2} = 1) | (\underline{C_1} = 1)]$$

these are independent

S &
$$T$$
 are independent (PCRVs) if $\forall A, B \subset \mathbb{R}$.

 C_1 and C_2 independent

indepèndént of
$$C_2 \in \{1\}$$
. C_1 and C_2

 $C_1 \in \{1\}$ is

indepèndent

of $C_2 \in \{1\}$.

 $C_1 \in \{-1\}$ is

Defins: P, Q, R are independent (events) if P, Q, R are pairwise-independent and Pr[P & Q & R] = (Pr[P])(Pr[Q])(Pr[R]). S, T, U are independent (PCRVs) if, $\forall A, B, C \subseteq \mathbb{R}$, $S \in A$, $T \in B$ and $U \in C$ are indep. etc., etc., etc Definition: $C_1 \in \{1\}$ is indepèndent P & Q are independent (events) of $C_2 \in \{1\}$. if Pr[P & Q] = (Pr[P])(Pr[Q]). $C_1 \in \{-1\}$ is Definition: independent S & T are independent (PCRVs) of $C_2 \in \{1\}$. if, $\forall A, B \subseteq \mathbb{R}$, C_1 and C_2 $S \in A$ is independent of $T \in B$. independent

 $\Pr[(\underline{C_2} = 1) | (\underline{C_1} = 1)] = \frac{0.23}{0.5}$

these are independent

Stronger: Any finite set of C_1, C_2, \ldots is an independent set.

15

Defin: Let S and T be PCRVs. Let $F := \{(a, b) \in \mathbb{R}^2 \mid \Pr[(S = a) \& (T = b)] > 0\}.$ The joint distribution of (S,T)associates, to each element $(a,b) \in F$, the value Pr[(S = a) & (T = b)].Remark: To compute the distribution of S + T, you need to know the JOINT distr. of (S,T). Knowing both the distribution of Sand the distribution of Tis insufficient. Same for ST. However, if S and T are independent, then their joint distribution is determined by their individual distributions, because All this Pr[(S=a)&(T=b)] =

to ≥ 2 PCRVs. (Pr[S=a])(Pr[T=b]). 16

Fact: independent \Rightarrow uncorrelated

Pf: Let S, T be independent PCRVs.

Want:
$$\mathsf{E}[ST] = (\mathsf{E}[S])(\mathsf{E}[T])$$

$$A := \{a \in \mathbb{R} \mid \mathsf{Pr}[S=a] > 0\}$$

$$B := \{b \in \mathbb{R} \mid \mathsf{Pr}[T=b] > 0\}$$

$$\mathsf{E}[ST] = \sum_{a \in A} \sum_{b \in B} (\mathsf{Pr}[(S=a)\&(T=b)])ab$$

$$= \sum_{a \in A} \sum_{b \in B} (\mathsf{Pr}[S=a])(\mathsf{Pr}[(T=b)])ab$$

$$= \sum_{a \in A} (\mathsf{Pr}[S=a])a \sum_{b \in B} (\mathsf{Pr}[(T=b)])b$$

 $= (E[S])(E[T]) \bigcirc$

Fact:

Let X and Y be independent PCRVs. Then, for any functions $f,g:\mathbb{R}\to\mathbb{R}$, f(X) and g(Y) are independent.

The idea:

coin has +1 and -1 instead of H and T.

Flip a ± 1 fair coin twice.

If I tell you the first flip, you get no useful info about the second.

If I tell you $3 \times$ (the first flip) + 7, you get no useful info about $5 \times$ (the second flip) - 1.

Fact:

Let X and Y be independent PCRVs. Then, for any functions $f,g:\mathbb{R}\to\mathbb{R}$, f(X) and g(Y) are independent.

Proof: Given $S, T \subseteq \mathbb{R}$. Want: $\Pr[(f(X) \in S) \& (g(Y) \in T)]$ $\stackrel{\bot}{=} (\Pr[f(X) \in S])(\Pr[q(Y) \in T])$ $\Pr[(f(X) \in S) \& (g(Y) \in T)]$ $= \Pr[(X \in f^{-1}(S)) \& (Y \in g^{-1}(T))]$ = $(\Pr[X \in f^{-1}(S)])(\Pr[Y \in g^{-1}(T)])$ $= (\Pr[f(X) \in S])(\Pr[q(Y) \in T])$

Fact:

Let X and Y be independent PCRVs.

Then, for any functions $f, g : \mathbb{R} \to \mathbb{R}$, f(X) and g(Y) are independent.

Fact: independent \neq uncorrelated

Restatement:

Let \vec{A} and \vec{B} be independent PCRVs.

Then E[AB] = (E[A])(E[B]).

Corollary:

Let X and Y be independent PCRVs.

Then, for any functions $f, g : \mathbb{R} \to \mathbb{R}$, $\mathsf{E}[(f(X))(g(Y))] = (\mathsf{E}[f(X)])(\mathsf{E}[g(Y)])$.

Rmk: Converse is true, too. pf omitted

Definition: $\forall integers \ n > 0$, $\underset{\sim}{\text{models (\#heads)}} - (\#tails)$ $D_n := C_1 + \cdots + C_n$ 50% 50% 50% 50% 25% 50%

21

25%

Definition: $\forall \text{integers } n > 0, \text{ after } n \text{ flips of a fair coin} \\ D_n := C_1 + \dots + C_n$

Fact: independent \Rightarrow uncorrelated, i.e., S, T independent \Rightarrow

$$E[D_n] = (E[C_1]) + \dots + (E[C_n])$$

$$= 0 + \dots + 0 = 0$$

$$Var[D_n] = (Var[C_1]) + \dots + (Var[C_n])$$

Definition:
$$\forall \text{integers } n > 0, \ \underset{\text{after } n \text{ flips of a fair coin}}{\operatorname{models}} (\# \text{heads}) - (\# \text{tails})$$

$$D_n := C_1 + \dots + C_n$$

Preview of the Central Limit Theorem:

$$\frac{D_n}{\sqrt{n}} \to \mathbf{Z}$$
 in distribution, as $n \to \infty$. Standard normal random variable

$$\mathsf{E}\left[\frac{D_n}{\sqrt{n}}\right] = 0 \quad \text{and} \quad \mathsf{Var}\left[\frac{D_n}{\sqrt{n}}\right] = 1,$$
 i.e., $\frac{D_n}{\sqrt{n}}$ is standard.

Definition: $\forall integers \ n > 0$, $\underset{\sim}{\text{models (\#heads)}} - (\#tails)$ $D_n := C_1 + \cdots + C_n$

Preview of the Central Limit Theorem:

$$\frac{D_n}{\sqrt{n}} \to \mathbf{Z}$$
 in distribution, as $n \to \infty$. Standard normal random variable

 \forall test functions ψ ,

$$\mathsf{E}\left[\psi\left(\frac{D_{n}}{\sqrt{n}}\right)\right] \to \mathsf{E}[\psi(Z)]$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [\psi(x)][e^{-x^{2}/2}] \, dx$$

Definition: $\forall integers \ n > 0$, $\underset{after \ n \ flips \ of \ a \ fair \ coin}{models}$ $D_n := C_1 + \cdots + C_n$

Preview of the Central Limit Theorem:

$$\forall \text{test functions } \psi$$
,

$$\mathsf{E}\left[\psi\left(\frac{D_n}{\sqrt{n}}\right)\right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\psi(x)\right] \left[e^{-x^2/2}\right] dx$$

Relatively easy: "test function" = "continuous, compactly supported function" \forall test runctions ψ ,

E
$$\left[\psi\left(\frac{D_n}{\sqrt{n}}\right)\right] \rightarrow$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [\psi(x)] [e^{-x^2/2}] dx$$

Definition: $\forall \text{integers } n > 0$, $\underset{\text{after } n}{\text{models (\#heads)}} - (\#tails)$ $D_n := C_1 + \cdots + C_n$

Preview of the Central Limit Theorem:

 $\forall \mathsf{test} \; \mathsf{functions} \; \psi$,

$$\mathsf{E}\left[\psi\left(\frac{D_n}{\sqrt{n}}\right)\right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\psi(x)\right] \left[e^{-x^2/2}\right] dx$$

Relatively easy: "test function" =

"continuous, compactly supported function"

Harder to prove: "test function" = "continuous, exponentially-bounded function"

 $\exists A, B > 0 \text{ s.t. } \forall x \in \mathbb{R}, |f(x)| \leq Ae^{B|x|}$

$$f$$
 exponentially bounded means:

Definition: $\forall integers \ n > 0$, models (#heads) - (#tails) after n flips of a fair coin $D_n := C_1 + \cdots + C_n$

Preview of the Central Limit Theorem:

 \forall continuous, ex ψ , nentially-bounded ψ ,

$$\mathsf{E}\left[\psi\left(\frac{D_n}{\sqrt{n}}\right)\right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\psi(x)\right] \left[e^{-x^2/2}\right] dx$$

Éxercise? UCompute
$$\lim_{n\to\infty} \mathbb{E}\left[\left(e^{D_n/\sqrt{n}}-7\right)_+\right]$$
.

f exponentially bounded means:

$$\exists A,B > exttt{0} exttt{ s.t. } \forall x \in \mathbb{R}, \ |f(x)| \leq Ae^{B|x|}$$

Definition: $\forall integers \ n > 0$, $\underset{after \ n \ flips \ of \ a \ fair \ coin}{models (\#heads) - (\#tails)}$ $D_n := C_1 + \cdots + C_n$

Preview of the Central Limit Theorem:

$$\forall$$
continuous, exponentially-bounded ψ ,

$$\mathsf{E}\left[\psi\left(\frac{D_n}{\sqrt{n}}\right)\right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [\psi(x)][e^{-x^2/2}] \, dx$$

Solution:
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [(e^x - 7)_+] [e^{-x^2/2}] dx = \cdots$$
exp-bdd $\psi(x) = (e^x - 7)_+$

Exercise: Compute
$$\lim_{n\to\infty} \mathbb{E}\left[\left(e^{D_n/\sqrt{n}}-7\right)_+\right]$$
.

f exponentially bounded means:

$$_{2}B|x|$$

Definition: $\forall integers \ n > 0$, $\underset{after \ n_flips \ of \ a \ fair \ coin}{models}$ $D_n := C_1 + \cdots + C_n$

Preview of the Central Limit Theorem:

Preview of the Central Limit Theorem:
$$\forall$$
continuous, exponentially-bounded ψ ,

 $\left[\psi\left(\frac{D_n}{\sqrt{n}}\right) \right] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\psi(x) \right] \left[e^{-x^2/2} \right] dx$ Hint: $\psi(x) := e^{ax+b}$

Def'n:
$$\forall X$$
, the augmented expectation of X is defined by $AE[X] := (E[X]) + \frac{1}{2}(Var[X])$.

"asymptotically normal". Fact: Fix
$$a, b \in \mathbb{R}$$
. Let $R_n := a\left(\frac{D_n}{\sqrt{n}}\right) + b$. "E almost asymptotically commutes with e^{\bullet} " $\left(\frac{D_n}{\sqrt{n}}\right) + b$. Then $\lim_{n \to \infty} \mathsf{E}[e^{R_n}] = \lim_{n \to \infty} e^{\mathsf{A}\mathsf{E}[R_n]}$.

Then
$$\lim_{n\to\infty} \mathsf{E}[e^{R_n}] = \lim_{n\to\infty} e^{\mathsf{A}\mathsf{E}[R_n]}$$
.

Pf: $\lim_{n\to\infty} \mathsf{E}[e^{R_n}] \stackrel{\mathsf{CLT}}{=} e^b e^{a^2/2} \stackrel{\mathsf{CLT}}{=} \lim_{n\to\infty} e^{\mathsf{A}\mathsf{E}[R_n]}$.

Pf: $\lim_{n\to\infty} \mathsf{E}[e^{R_n}] \stackrel{\mathsf{CLT}}{=} e^b e^{a^2/2} \stackrel{\mathsf{CLT}}{=} \lim_{n\to\infty} e^{\mathsf{A}\mathsf{E}[R_n]}$.

Definition: $\forall integers \ n > 0$, $\underset{after \ n \ flips \ of \ a \ fair \ coin}{models}$ $D_n := C_1 + \cdots + C_n$

Preview of the Central Limit Theorem:

 \forall continuous, exponentially-bounded ψ ,

 $\left[\psi\left(\frac{D_n}{\sqrt{n}}\right) \right] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\psi(x) \right] \left[e^{-x^2/2} \right] dx \\
\text{Hint: } \psi(x) := (ax+b)^{2}$ Def'n: $\forall X$, the augmented expectation of X

is defined by $AE[X] := (E[X]) + \frac{1}{2}(Var[X])$.

"asymptotically normal" Fact: Fix
$$a,b\in\mathbb{R}$$
. Let $R_n:=a\left(\frac{D_n}{\sqrt{n}}\right)+b$. E almost asymptotically commutes with e^{\bullet} " $\left(\frac{D_n}{\sqrt{n}}\right)+b$. Then $\lim_{n\to\infty} \mathsf{E}[e^{R_n}] = \lim_{n\to\infty} e^{\mathsf{AE}[R_n]}$.

Fact: Fix $a,b \in \mathbb{R}$. Let $R_n := a\left(\frac{D_n}{\sqrt{n}}\right) + b$. "E almost asymptotically commutes with e^{\bullet} " $\left(\frac{D_n}{\sqrt{n}}\right)$

"normal" "standard normal"

Fact: Fix $a, b \in \mathbb{R}$. Let R := aZ + b.

"E almost commutes with
$$e$$
...

Then $\mathsf{E}[e^R] = e^{\mathsf{A}\mathsf{E}[R]}$. Next subtopic: mean/var of summand from the expectation to the augmented expectation" of iid sum

Def'n:
$$\forall X$$
, the augmented expectation of X is defined by $AE[X] := (E[X]) + \frac{1}{2}(Var[X])$.

"asymptotically normal" Fact: Fix
$$a,b\in\mathbb{R}$$
. Let $R_n:=a\left(\frac{D_n}{\sqrt{n}}\right)+b$. "E almost asymptotically commutes with e^{\bullet} " $\left(\frac{D_n}{\sqrt{n}}\right)+b$. Then $\lim_{n\to\infty} \mathsf{E}[e^{R_n}] = \lim_{n\to\infty} e^{\mathsf{A}\mathsf{E}[R_n]}$.

 $\lim_{n \to \infty} \mathsf{E}[e^{R_n}] \stackrel{\mathsf{CLT}}{=} e^b e^{a^2/2} \stackrel{\mathsf{CLT}}{=} \lim_{n \to \infty} e^{\mathsf{AE}[R_n]} . \bigcirc$

independent, identically distributed Exercise: Let n := 12. Assume X_1, \ldots, X_n iid.

$$\mu := \mathsf{E}[X_1] = \cdots = \mathsf{E}[X_n]$$

$$\sigma := \mathsf{SD}[X_1] = \cdots = \mathsf{SD}[X_n]$$

Let $S := X_1 + \cdots + X_n$. Assume E[S] = 0.225181512, SD[S] = 0.158877565. Find μ and σ .

Def'n: $\forall X$, the augmented expectation of X is defined by $AE[X] := (E[X]) + \frac{1}{2}(Var[X])$.

"asymptotically normal". Fact: Fix
$$a,b\in\mathbb{R}$$
. Let $R_n:=a\left(\frac{D_n}{\sqrt{n}}\right)+b$. "E almost asymptotically commutes with e^{\bullet} " $\left(\frac{D_n}{\sqrt{n}}\right)+b$. Then $\lim_{n\to\infty} \mathsf{E}[e^{R_n}] = \lim_{n\to\infty} e^{\mathsf{AE}[R_n]}$.

```
independent, identically distributed
```

Exercise: Let n := 12. Assume X_1, \ldots, X_n iid.

$$\mu := E[X_1] = \cdots = E[X_n]$$
 $\sigma := SD[X_1] = \cdots = SD[X_n]$

Let $S := X_1 + \cdots + X_n$.

Assume E[S] = 0.225181512, SD[S] = 0.158877565. Find μ and σ .

Solution:

$$\mathsf{E}[S] = \mathsf{E}[X_1] + \dots + \mathsf{E}[X_n]$$

= $n\mu = (12)\mu$,

so
$$\mu = 0.225181512/12$$

independent, identically distributed

Exercise: Let n := 12. Assume X_1, \ldots, X_n iid.

$$\mu := \mathsf{E}[X_1] = \cdots = \mathsf{E}[X_n]$$

 $\sigma := SD[X_1] = \cdots = SD[X_n]$

Let $S := X_1 + \cdots + X_n$.

Assume $E[S] \Rightarrow 0.225181512$, SD[S] = 0.158877565. Find μ and σ .

Solution: $\mu = 0.225181512/12$

$$Var[S] = Var[X_1] + \cdots + Var[X_n]$$

$$\mu = 0.225181512/12$$

independent, identically distributed Exercise: Let n := 12. Assume X_1, \ldots, X_n [iid]. $\mu := \mathsf{E}[X_1] = \cdots = \mathsf{E}[X_n]$ $\sigma := SD[X_1] = \cdots = SD[X_n]$ Let $S := X_1 + \cdots + X_n$. Assume E[S] = 0.225181512,

Solution:
$$\mu = 0.225181512$$
, $\mu = 0.225181512/12$

Solution.
$$\mu = \emptyset.225181512/12$$
 $(0.158877565)^2$

$$\forall \text{Var}[S] = \text{Var}[X_1] + \cdots + \text{Var}[X_n]$$

 $= n\sigma^2 = (12)\sigma^2$ so $\sigma^2 = (0.158877565)^2/12$ so $\sigma = 0.158877565/\sqrt{12}$

35

independent, identically distributed

Exercise: Let n := 12. Assume X_1, \ldots, X_n iid.

$$\mu := E[X_1] = \cdots = E[X_n]$$

$$\sigma := SD[X_1] = \cdots = SD[X_n]$$

Let $S := X_1 + \cdots + X_n$.

 $\sigma = 0.158877565/\sqrt{2}$

Assume E[S] = 0.225181512,

SD[S] = 0.158877565. Find μ and σ .

Solution:
$$\mu = 0.225181512/12$$

 $\sigma = 0.158877565/\sqrt{12}$

independent, identically distributed

Exercise: Let n := 12. Assume X_1, \ldots, X_n iid.

$$\mu := \mathsf{E}[X_1] = \dots = \mathsf{E}[X_n]$$

$$\sigma := SD[X_1] = \cdots = SD[X_n]$$

Let $S := X_1 + \cdots + X_n$.

Assume E[S] = 0.225181512, SD[S] = 0.158877565. Find μ and σ .

Solution:
$$\mu = 0.225181512/12$$

 $\sigma = 0.158877565/\sqrt{12}$

Mean and variance are cut by a factor of 12. Standard deviation is cut by a factor of $\sqrt{12}$.

Conversely, on adding n uncorrelated PCRVs, SD increases by a factor of \sqrt{n} , NOT n.

A portfolio of *uncorrelated* assets is better...

Let's explore this...

$$Var[A + B] = (Var[A]) + (Var[B]) + 2(Cov[A, B])$$

$$\mathsf{E}[A+B] = (\mathsf{E}[A]) + (\mathsf{E}[B])$$

Say A and B are prices, one month from now, of two financial assets.

If E[A] is large, then A becomes attractive. If E[B] is large, then B becomes attractive.

If Var[A] is small, then A becomes attractive. If Var[B] is small, then B becomes attractive.

If Cov[A,B] is small or, even better, negative, then the portfolio of A and B becomes attractive. ³⁸

Cauchy-Schwarz:

$$-\sqrt{\operatorname{Var}[A]}\sqrt{\operatorname{Var}[B]} \le \operatorname{Cov}[A,B] \le \sqrt{\operatorname{Var}[A]}\sqrt{\operatorname{Var}[B]}$$

Definition:

A and B are perfectly correlated if

$$Cov[A, B] = \sqrt{Var[A]} \sqrt{Var[B]}$$

Definition:

A and B are perfectly anti-correlated if

$$-\sqrt{\operatorname{Var}[A]}\sqrt{\operatorname{Var}[B]} = \operatorname{Cov}[A, B]$$

Cauchy-Schwarz:

the correlation

$$-\sqrt{\mathsf{Var}[A]}\sqrt{\mathsf{Var}[B]} \le \mathsf{Cov}[A,B] \le \sqrt{\mathsf{Var}[A]}\sqrt{\mathsf{Var}[B]}$$

 \forall non-deterministic PCRVs A, B,

$$\operatorname{Corr}[A,B] := \frac{\operatorname{Cov}[A,B]}{\sqrt{\operatorname{Var}[A]}\sqrt{\operatorname{Var}[B]}}$$

of A and BSuppose A and B are non-determinstic PCRVs.

-1 < Corr[A, B] < 1

Corr[A, B] = 1 if and only if A and B are perfectly correlated.

Corr[A, B] = 0 if and only if A and B are uncorrelated.

Corr[A, B] = -1 if and only if A and B are perfectly anti-correlated.

40

Definition: A and B are positively correlated if Cov[A, B] > 0(equiv., for non-det. A and B: Corr[A, B] > 0). Definition: A and B are negatively correlated if Cov[A, B] < 0(equiv., for non-det. A and B: Corr[A, B] < 0). Definition: A and B are uncorrelated if Cov[A, B] = 0(equiv., for non-det. A and B: Corr[A, B] = 0). If A and B are uncorrelated, or, even better, negatively correlated

then the portfolio of A and B becomes attractive.

Definition: **Standard deviation** := $\sqrt{\text{Variance}}$

$$\forall \mathsf{PCRVs}\ X,\ \mathsf{SD}[X] := \sqrt{\mathsf{Var}[X]}$$

$$Var[2X] = 4(Var[X])$$

$$SD[2X] = 2(SD[X])$$

$$Var[cX] = c^{2}(Var[X])$$

$$SD[cX] = |c|(SD[X])$$

Intuition: Variance measures risk, but standard deviation measures risk better, because doubling the position really ought only to double the risk.

Definition: Standard deviation := $\sqrt{\text{Variance}}$

$$\forall \mathsf{PCRVs}\ X$$
, $\mathsf{SD}[X] := \sqrt{\mathsf{Var}[X]}$

$$Var[A + B] = (Var[A]) + (Var[B]) + 2(Cov[A, B])$$

$$SD[A + B] = \sqrt{\frac{(SD[A])^2 + (SD[B])^2 + (Cov[A, B])}{2(Cov[A, B])}}$$

$$Corr[A, B] := \frac{Cov[A, B]}{\sqrt{Var[A]}\sqrt{Var[B]}}$$

$$SD[A + B] = \sqrt{\frac{(SD[A])^2 + (SD[B])^2 + (Cov[A, B])}{2(Cov[A, B])}}$$

$$SD[A + B] = \sqrt{\frac{(SD[A])^2 + (SD[B])^2 + (Cov[A, B])}{2(Cov[A, B])}}$$

$$\operatorname{Corr}[A,B] := \frac{\operatorname{Cov}[A,B]}{\sqrt{\operatorname{Var}[A]}\sqrt{\operatorname{Var}[B]}}$$

$$SD[A + B] = \sqrt{\frac{(SD[A])^2 + (SD[B])^2 + (Cov[A, B])}{2(Cov[A, B])}}$$

Assume
$$Corr[A, B] = 1$$
. MULTIPLY BY $\sqrt{Var[A]}\sqrt{Var[B]}$
Then $Cov[A, B] = 1\sqrt{Var[A]}\sqrt{Var[B]}$
 $= (SD[A])(SD[B]).$

Then
$$SD[A + B] = \sqrt{[(SD[A]) + (SD[B])]^2}$$

= $(SD[A]) + (SD[B]).$

For perfectly correlated PCRVs,
standard deviations add.

$$\operatorname{Corr}[A,B] := \frac{\operatorname{Cov}[A,B]}{\sqrt{\operatorname{Var}[A]}\sqrt{\operatorname{Var}[B]}}$$

$$Var[A + B] = (Var[A]) + (Var[B]) + 2(Cov[A, B])$$

Assume Corr[A, B] = 0.

Then $Cov[A, B] = 0 \cdot \sqrt{Var[A]} \sqrt{Var[B]} = 0.$

Then Var[A + B] = (Var[A]) + (Var[B])

For uncorrelated PCRVs, variances add.

For perfectly correlated PCRVs, standard deviations add.