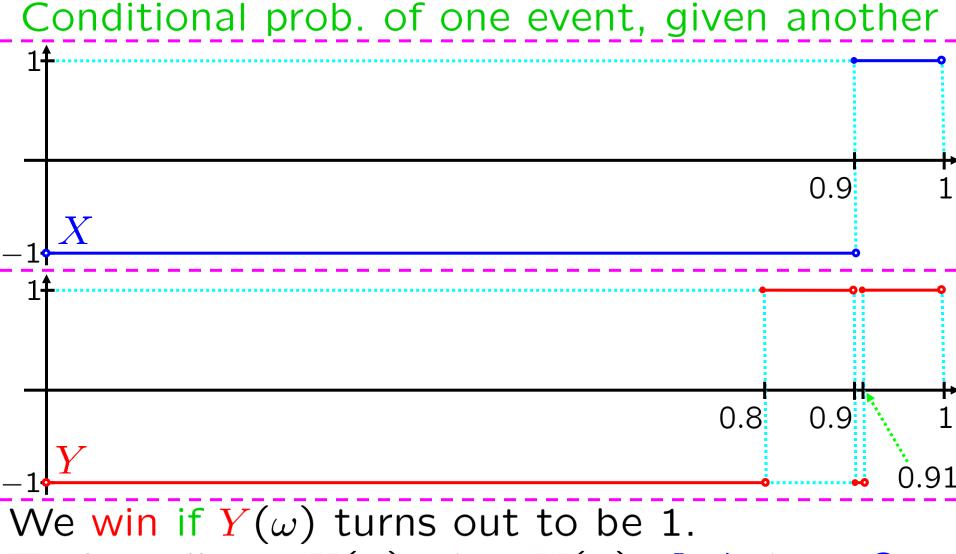
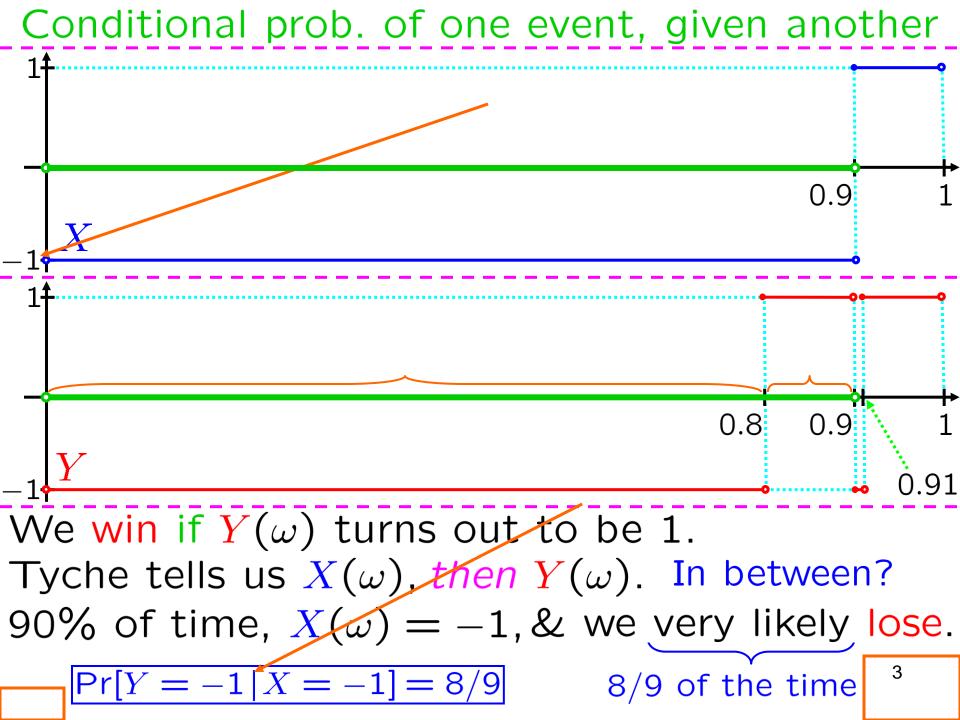
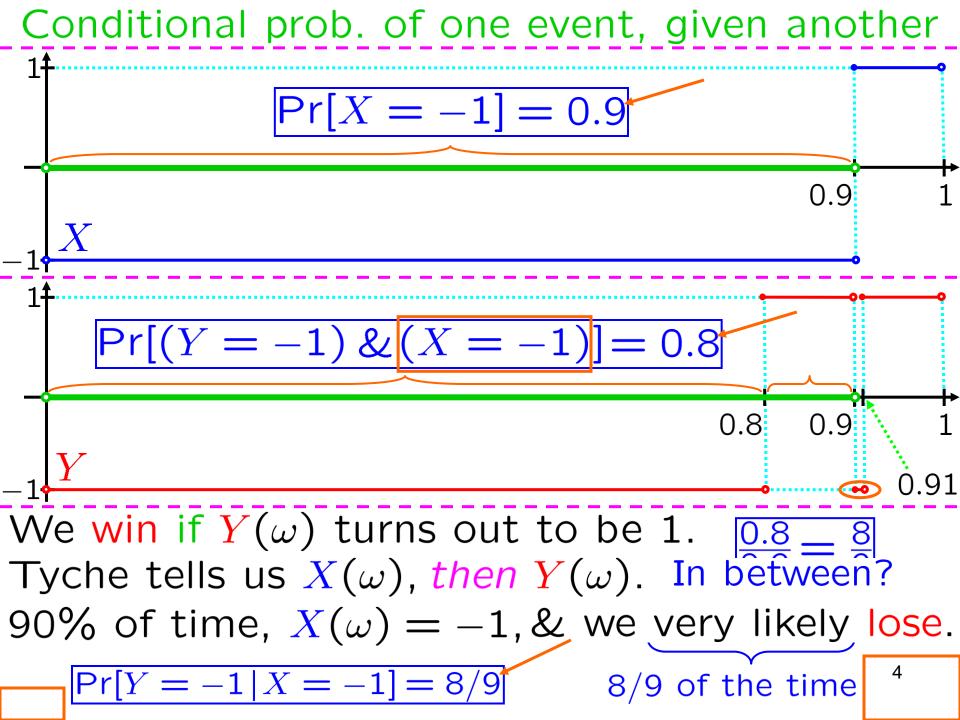
### **Financial Mathematics**

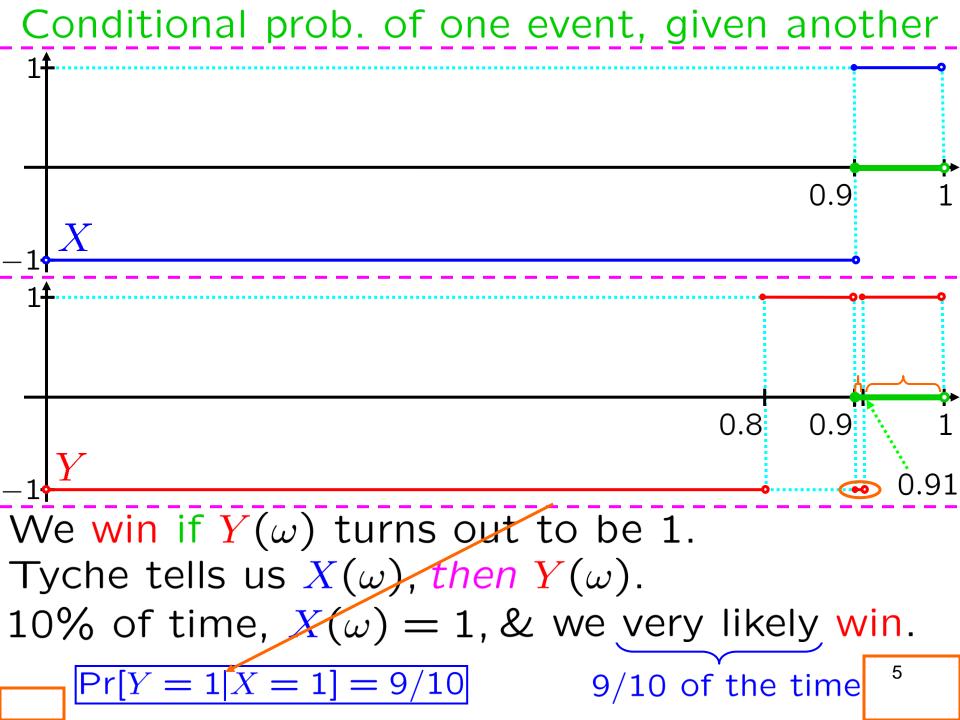
Conditional probability, independence and the Central Limit Theorem

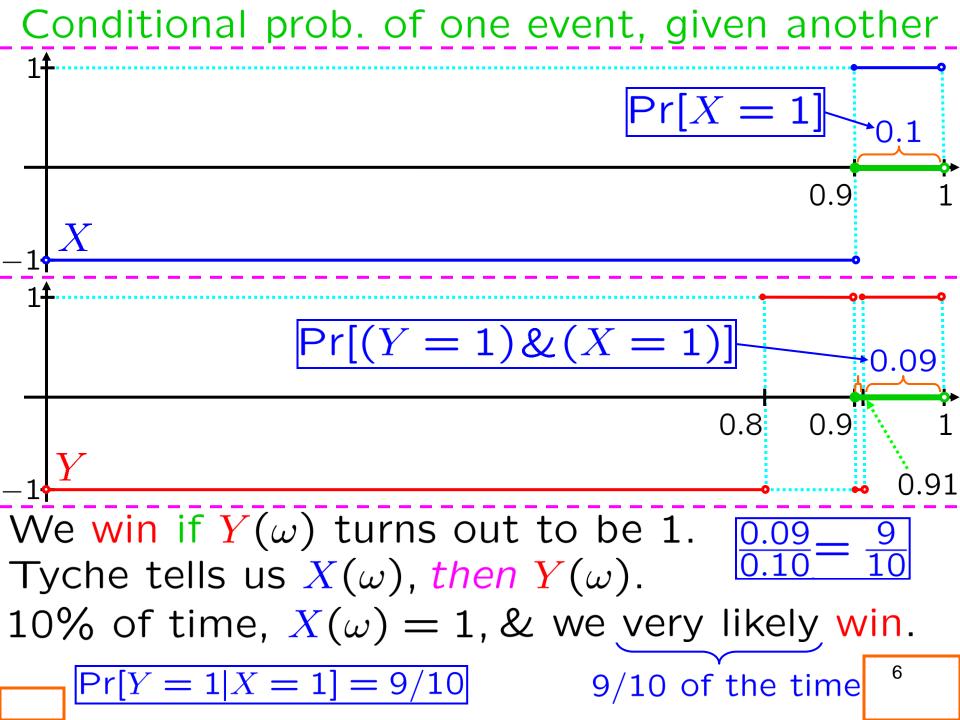


Tyche tells us  $X(\omega)$ , then  $Y(\omega)$ . In between?

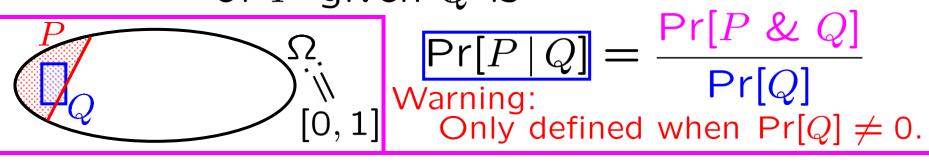






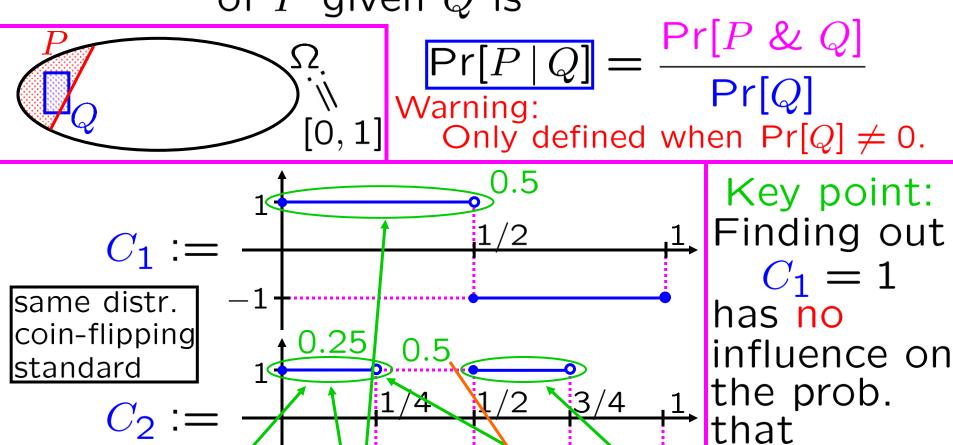


# Definition: The conditional probability of P given Q is



Is P likely or unlikely? Given that you're told Q happened, is P likely or unlikely?

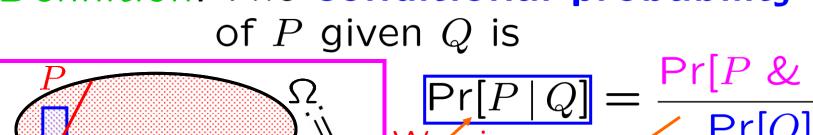
# Definition: The conditional probability of P given Q is



$$Pr[(C_2 = 1) | (C_1 = 1)] = \frac{0.25}{0.5} = 0.5$$

 $C_2 = 1$ .

# Definition: The conditional probability of P given Q is



[0, 1] Warning: [0, 1] Only defined when  $Pr[Q] \neq 0$ . Key point:

Definition: Assume  $Pr[Q] \neq 0$ . P & Q are independent (events) if Pr[P|Q] = Pr[P],

i.e.: if  $\frac{\Pr[P \& Q]}{\Pr[Q]} = \Pr[P],$ 

*i.e.*: if Pr[P & Q] = (Pr[P])(Pr[Q]).

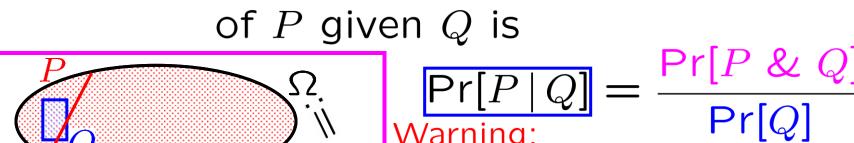
 $\Pr[(\underline{C_2} = 1) | (\underline{C_1} = 1)] =$ these are independent

Finding out  $C_1 = 1$ has no influence on

the prob. that  $C_2 = 1$ .

 $= Pr[C_2 = 1]$ 

# Definition: The conditional probability of P given Q is

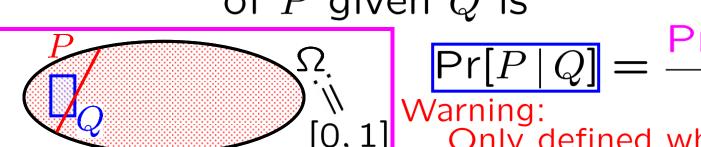


Warning:  $C[Q] \neq 0$ .

Definition: Assume  $Pr[Q] \neq 0$ . Key point: P & Q are independent (events) Finding out if Pr[P & Q] = (Pr[P])(Pr[Q]).  $C_1 = 1$ has no influence on the prob. that if Pr[P & Q] = (Pr[P])(Pr[Q]).  $C_2 = 1$ .

 $\Pr[(C_2 = 1) | (C_1 = 1)]$ 10 these are independent

# Definition: The conditional probability of P given Q is



 $\frac{\Pr[P \mid Q]}{\Pr[Q]} = \frac{\Pr[P \& Q]}{\Pr[Q]}$  Warning:  $\text{Only defined when } \Pr[Q] \neq 0.$ 

# Definition: P & Q are independent (events)

if  $\Pr[P \& Q] = (\Pr[P])(\Pr[Q])$ .

"The probability of both is the product of the probabilities"

Key point: Finding out

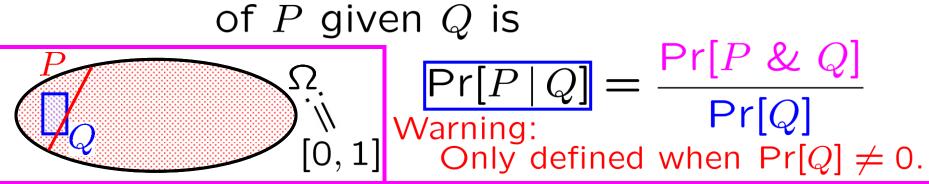
 $C_1 = 1$ has no
influence on
the prob.
that  $C_2 = 1$ .

 $= \Pr[C_2 = 1]$ 

$$\Pr[(C_2 = 1) | (C_1 = 1)]$$
  
these are independent

11

## Definition: The conditional probability of P given Q is



### Definition:

P & Q are independent (events) if Pr[P & Q] = (Pr[P])(Pr[Q]).

### Definition:

S & T are independent (PCRVs) if,  $\forall A, B \subseteq \mathbb{R}$ ,  $S \in A$  is independent of  $T \in B$ .

### Key point: Finding out

 $C_1 = 1$ has no influence on the prob. that  $C_2 = 1$ .

$$Pr[(C_2 = 1) | (C_1 = 1)] = \frac{0.25}{0.5} = 0.5$$

these are independent

## Definition: The conditional probability of P given Q is

of 
$$P$$
 given  $Q$  is 
$$\Pr[P \mid Q] = \frac{\Pr[P \ \& \ Q]}{\Pr[Q]}$$
 Warning: 
$$\Pr[Q] \neq 0.$$

### Definition:

P & Q are independent (events) if Pr[P & Q] = (Pr[P])(Pr[Q]).

Definition:

$$A,B\subseteq\mathbb{R}$$

if,  $\forall A, B \subseteq \mathbb{R}$ ,  $S \in A$  is independent of  $T \in B$ .

$$\Pr[(\underline{C_2} = 1) | (\underline{C_1} = 1)]$$
  
these are independent

S & 
$$T$$
 are independent (PCRVs) if  $\forall A, B \subset \mathbb{R}$ .

 $C_1$  and  $C_2$ independent

indepèndént of 
$$C_2 \in \{1\}$$
.  $C_1$  and  $C_2$ 

 $C_1 \in \{1\}$  is

indepèndent

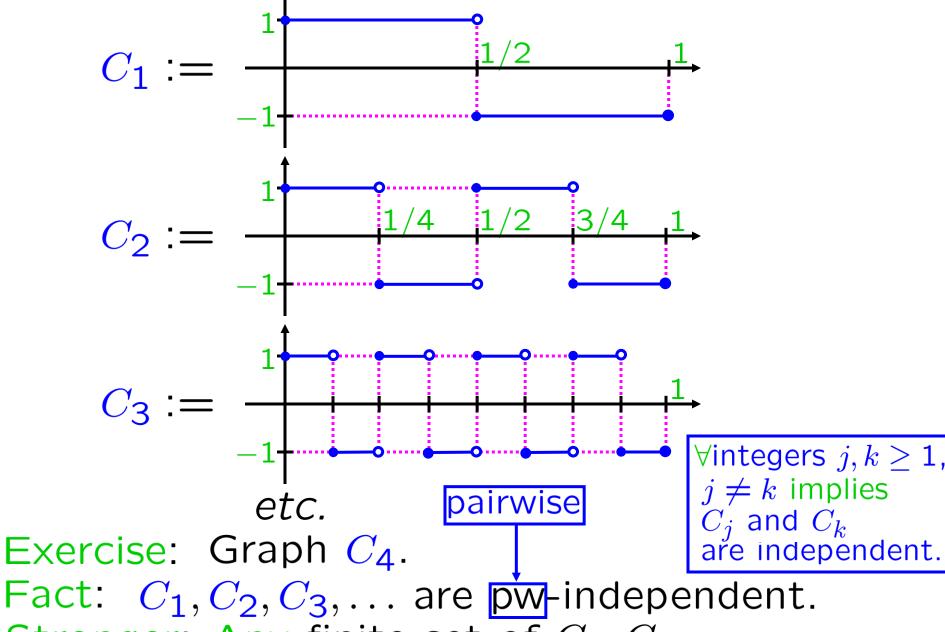
of  $C_2 \in \{1\}$ .

 $C_1 \in \{-1\}$  is

#### Defins: P, Q, R are independent (events) if P, Q, R are pairwise-independent and Pr[P & Q & R] = (Pr[P])(Pr[Q])(Pr[R]). S, T, U are independent (PCRVs) if, $\forall A, B, C \subseteq \mathbb{R}$ , $S \in A$ , $T \in B$ and $U \in C$ are indep. etc., etc., etc Definition: $C_1 \in \{1\}$ is indepèndent P & Q are independent (events) of $C_2 \in \{1\}$ . if Pr[P & Q] = (Pr[P])(Pr[Q]). $C_1 \in \{-1\}$ is Definition: independent S & T are independent (PCRVs) of $C_2 \in \{1\}$ . if, $\forall A, B \subseteq \mathbb{R}$ , $C_1$ and $C_2$ $S \in A$ is independent of $T \in B$ . independent

 $\Pr[(\underline{C_2} = 1) | (\underline{C_1} = 1)] = \frac{0.23}{0.5}$ 

these are independent



Stronger: Any finite set of  $C_1, C_2, \ldots$  is an independent set.

15

Defin: Let S and T be PCRVs. Let  $F := \{(a, b) \in \mathbb{R}^2 \mid \Pr[(S = a) \& (T = b)] > 0\}.$ The joint distribution of (S,T)associates, to each element  $(a,b) \in F$ , the value Pr[(S = a) & (T = b)].Remark: To compute the distribution of S + T, you need to know the JOINT distr. of (S,T). Knowing both the distribution of Sand the distribution of Tis insufficient. Same for ST. However, if S and T are independent, then their joint distribution is determined by their individual distributions, because All this Pr[(S=a)&(T=b)] =

to  $\geq 2$  PCRVs. (Pr[S=a])(Pr[T=b]). 16

### Fact: independent $\Rightarrow$ uncorrelated

Pf: Let S, T be independent PCRVs.

Want: 
$$\mathsf{E}[ST] = (\mathsf{E}[S])(\mathsf{E}[T])$$

$$A := \{a \in \mathbb{R} \mid \mathsf{Pr}[S=a] > 0\}$$

$$B := \{b \in \mathbb{R} \mid \mathsf{Pr}[T=b] > 0\}$$

$$\mathsf{E}[ST] = \sum_{a \in A} \sum_{b \in B} (\mathsf{Pr}[(S=a)\&(T=b)])ab$$

$$= \sum_{a \in A} \sum_{b \in B} (\mathsf{Pr}[S=a])(\mathsf{Pr}[(T=b)])ab$$

$$= \sum_{a \in A} (\mathsf{Pr}[S=a])a \sum_{b \in B} (\mathsf{Pr}[(T=b)])b$$

 $= (E[S])(E[T]) \bigcirc$ 

### Fact:

Let X and Y be independent PCRVs. Then, for any functions  $f,g:\mathbb{R}\to\mathbb{R}$ , f(X) and g(Y) are independent.

### The idea:

coin has +1 and -1 instead of H and T.

Flip a  $\pm 1$  fair coin twice.

If I tell you the first flip, you get no useful info about the second.

If I tell you  $3 \times$  (the first flip) + 7, you get no useful info about  $5 \times$  (the second flip) - 1.

### Fact:

Let X and Y be independent PCRVs. Then, for any functions  $f,g:\mathbb{R}\to\mathbb{R}$ , f(X) and g(Y) are independent.

Proof: Given  $S, T \subseteq \mathbb{R}$ . Want:  $\Pr[(f(X) \in S) \& (g(Y) \in T)]$  $\stackrel{\bot}{=} (\Pr[f(X) \in S])(\Pr[q(Y) \in T])$  $\Pr[(f(X) \in S) \& (g(Y) \in T)]$  $= \Pr[(X \in f^{-1}(S)) \& (Y \in g^{-1}(T))]$ =  $(\Pr[X \in f^{-1}(S)])(\Pr[Y \in g^{-1}(T)])$  $= (\Pr[f(X) \in S])(\Pr[q(Y) \in T])$ 

### Fact:

Let X and Y be independent PCRVs.

Then, for any functions  $f, g : \mathbb{R} \to \mathbb{R}$ , f(X) and g(Y) are independent.

Fact: independent  $\neq$  uncorrelated

### Restatement:

Let  $\vec{A}$  and  $\vec{B}$  be independent PCRVs.

Then E[AB] = (E[A])(E[B]).

### Corollary:

Let X and Y be independent PCRVs.

Then, for any functions  $f, g : \mathbb{R} \to \mathbb{R}$ ,  $\mathsf{E}[(f(X))(g(Y))] = (\mathsf{E}[f(X)])(\mathsf{E}[g(Y)])$ .

Rmk: Converse is true, too. pf omitted

# Definition: $\forall integers \ n > 0$ , $\underset{\sim}{\text{models (\#heads)}} - (\#tails)$ $D_n := C_1 + \cdots + C_n$ 50% 50% 50% 50% 25% 50%

21

25%

# Definition: $\forall \text{integers } n > 0, \text{ after } n \text{ flips of a fair coin} \\ D_n := C_1 + \dots + C_n$

Fact: independent  $\Rightarrow$  uncorrelated, i.e., S, T independent  $\Rightarrow$ 

$$E[D_n] = (E[C_1]) + \dots + (E[C_n])$$

$$= 0 + \dots + 0 = 0$$

$$Var[D_n] = (Var[C_1]) + \dots + (Var[C_n])$$

Definition: 
$$\forall \text{integers } n > 0, \ \underset{\text{after } n \text{ flips of a fair coin}}{\operatorname{models}} (\# \text{heads}) - (\# \text{tails})$$
  
$$D_n := C_1 + \dots + C_n$$

Preview of the Central Limit Theorem:

$$\frac{D_n}{\sqrt{n}} \to \mathbf{Z}$$
 in distribution, as  $n \to \infty$ . Standard normal random variable

$$\mathsf{E}\left[\frac{D_n}{\sqrt{n}}\right] = 0 \quad \text{and} \quad \mathsf{Var}\left[\frac{D_n}{\sqrt{n}}\right] = 1,$$
 i.e.,  $\frac{D_n}{\sqrt{n}}$  is standard.

# Definition: $\forall integers \ n > 0$ , $\underset{\sim}{\text{models (\#heads)}} - (\#tails)$ $D_n := C_1 + \cdots + C_n$

Preview of the Central Limit Theorem:

$$\frac{D_n}{\sqrt{n}} \to \mathbf{Z}$$
 in distribution, as  $n \to \infty$ . Standard normal random variable

 $\forall$ test functions  $\psi$ ,

$$\mathsf{E}\left[\psi\left(\frac{D_{n}}{\sqrt{n}}\right)\right] \to \mathsf{E}[\psi(Z)]$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [\psi(x)][e^{-x^{2}/2}] \, dx$$

# Definition: $\forall integers \ n > 0$ , $\underset{after \ n \ flips \ of \ a \ fair \ coin}{models}$ $D_n := C_1 + \cdots + C_n$

Preview of the Central Limit Theorem:

$$\forall \text{test functions } \psi$$
,

$$\mathsf{E}\left[\psi\left(\frac{D_n}{\sqrt{n}}\right)\right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\psi(x)\right] \left[e^{-x^2/2}\right] dx$$

Relatively easy: "test function" = "continuous, compactly supported function"  $\forall$  test runctions  $\psi$ ,

E 
$$\left[\psi\left(\frac{D_n}{\sqrt{n}}\right)\right] \rightarrow$$

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [\psi(x)] [e^{-x^2/2}] dx$$

# Definition: $\forall \text{integers } n > 0$ , $\underset{\text{after } n}{\text{models (\#heads)}} - (\#tails)$ $D_n := C_1 + \cdots + C_n$

Preview of the Central Limit Theorem:

 $\forall \mathsf{test} \; \mathsf{functions} \; \psi$ ,

$$\mathsf{E}\left[\psi\left(\frac{D_n}{\sqrt{n}}\right)\right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\psi(x)\right] \left[e^{-x^2/2}\right] dx$$

Relatively easy: "test function" =

"continuous, compactly supported function"

Harder to prove: "test function" = "continuous, exponentially-bounded function"

 $\exists A, B > 0 \text{ s.t. } \forall x \in \mathbb{R}, |f(x)| \leq Ae^{B|x|}$ 

$$f$$
 exponentially bounded means:

# Definition: $\forall integers \ n > 0$ , models (#heads) - (#tails) after n flips of a fair coin $D_n := C_1 + \cdots + C_n$

Preview of the Central Limit Theorem:

 $\forall$ continuous, ex $\psi$ , nentially-bounded  $\psi$ ,

$$\mathsf{E}\left[\psi\left(\frac{D_n}{\sqrt{n}}\right)\right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[\psi(x)\right] \left[e^{-x^2/2}\right] dx$$

Éxercise? UCompute 
$$\lim_{n\to\infty} \mathbb{E}\left[\left(e^{D_n/\sqrt{n}}-7\right)_+\right]$$
.

f exponentially bounded means:

$$\exists A,B > exttt{0} exttt{ s.t. } \forall x \in \mathbb{R}, \ |f(x)| \leq Ae^{B|x|}$$

# Definition: $\forall integers \ n > 0$ , $\underset{after \ n \ flips \ of \ a \ fair \ coin}{models (\#heads) - (\#tails)}$ $D_n := C_1 + \cdots + C_n$

Preview of the Central Limit Theorem:

$$\forall$$
continuous, exponentially-bounded  $\psi$ ,

$$\mathsf{E}\left[\psi\left(\frac{D_n}{\sqrt{n}}\right)\right] \to \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [\psi(x)][e^{-x^2/2}] \, dx$$

Solution: 
$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} [(e^x - 7)_+] [e^{-x^2/2}] dx = \cdots$$
exp-bdd  $\psi(x) = (e^x - 7)_+$ 

Exercise: Compute 
$$\lim_{n\to\infty} \mathbb{E}\left[\left(e^{D_n/\sqrt{n}}-7\right)_+\right]$$
.

f exponentially bounded means:

$$_{2}B|x|$$

# Definition: $\forall integers \ n > 0$ , $\underset{after \ n\_flips \ of \ a \ fair \ coin}{models}$ $D_n := C_1 + \cdots + C_n$

Preview of the Central Limit Theorem:

Preview of the Central Limit Theorem: 
$$\forall$$
continuous, exponentially-bounded  $\psi$ ,

 $\left[ \psi\left(\frac{D_n}{\sqrt{n}}\right) \right] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[ \psi(x) \right] \left[ e^{-x^2/2} \right] dx$ Hint:  $\psi(x) := e^{ax+b}$ 

Def'n: 
$$\forall X$$
, the augmented expectation of  $X$  is defined by  $AE[X] := (E[X]) + \frac{1}{2}(Var[X])$ .

"asymptotically normal". Fact: Fix 
$$a, b \in \mathbb{R}$$
. Let  $R_n := a\left(\frac{D_n}{\sqrt{n}}\right) + b$ . "E almost asymptotically commutes with  $e^{\bullet}$ "  $\left(\frac{D_n}{\sqrt{n}}\right) + b$ . Then  $\lim_{n \to \infty} \mathsf{E}[e^{R_n}] = \lim_{n \to \infty} e^{\mathsf{A}\mathsf{E}[R_n]}$ .

Then 
$$\lim_{n\to\infty} \mathsf{E}[e^{R_n}] = \lim_{n\to\infty} e^{\mathsf{A}\mathsf{E}[R_n]}$$
.

Pf:  $\lim_{n\to\infty} \mathsf{E}[e^{R_n}] \stackrel{\mathsf{CLT}}{=} e^b e^{a^2/2} \stackrel{\mathsf{CLT}}{=} \lim_{n\to\infty} e^{\mathsf{A}\mathsf{E}[R_n]}$ .

Pf:  $\lim_{n\to\infty} \mathsf{E}[e^{R_n}] \stackrel{\mathsf{CLT}}{=} e^b e^{a^2/2} \stackrel{\mathsf{CLT}}{=} \lim_{n\to\infty} e^{\mathsf{A}\mathsf{E}[R_n]}$ .

# Definition: $\forall integers \ n > 0$ , $\underset{after \ n \ flips \ of \ a \ fair \ coin}{models}$ $D_n := C_1 + \cdots + C_n$

Preview of the Central Limit Theorem:

 $\forall$ continuous, exponentially-bounded  $\psi$ ,

 $\left[ \psi\left(\frac{D_n}{\sqrt{n}}\right) \right] \rightarrow \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left[ \psi(x) \right] \left[ e^{-x^2/2} \right] dx \\
\text{Hint: } \psi(x) := (ax+b)^{2}$ Def'n:  $\forall X$ , the augmented expectation of X

is defined by  $AE[X] := (E[X]) + \frac{1}{2}(Var[X])$ .

"asymptotically normal" Fact: Fix 
$$a,b\in\mathbb{R}$$
. Let  $R_n:=a\left(\frac{D_n}{\sqrt{n}}\right)+b$ . E almost asymptotically commutes with  $e^{\bullet}$ "  $\left(\frac{D_n}{\sqrt{n}}\right)+b$ . Then  $\lim_{n\to\infty} \mathsf{E}[e^{R_n}] = \lim_{n\to\infty} e^{\mathsf{AE}[R_n]}$ .

Fact: Fix  $a,b \in \mathbb{R}$ . Let  $R_n := a\left(\frac{D_n}{\sqrt{n}}\right) + b$ . "E almost asymptotically commutes with  $e^{\bullet}$ "  $\left(\frac{D_n}{\sqrt{n}}\right)$ 

"normal" "standard normal"

Fact: Fix  $a, b \in \mathbb{R}$ . Let R := aZ + b.

"E almost commutes with 
$$e$$
...

Then  $\mathsf{E}[e^R] = e^{\mathsf{A}\mathsf{E}[R]}$ . Next subtopic: mean/var of summand from the expectation to the augmented expectation" of iid sum

Def'n: 
$$\forall X$$
, the augmented expectation of  $X$  is defined by  $AE[X] := (E[X]) + \frac{1}{2}(Var[X])$ .

"asymptotically normal" Fact: Fix 
$$a,b\in\mathbb{R}$$
. Let  $R_n:=a\left(\frac{D_n}{\sqrt{n}}\right)+b$ . "E almost asymptotically commutes with  $e^{\bullet}$ "  $\left(\frac{D_n}{\sqrt{n}}\right)+b$ . Then  $\lim_{n\to\infty} \mathsf{E}[e^{R_n}] = \lim_{n\to\infty} e^{\mathsf{A}\mathsf{E}[R_n]}$ .

 $\lim_{n \to \infty} \mathsf{E}[e^{R_n}] \stackrel{\mathsf{CLT}}{=} e^b e^{a^2/2} \stackrel{\mathsf{CLT}}{=} \lim_{n \to \infty} e^{\mathsf{AE}[R_n]} . \bigcirc$ 

independent, identically distributed Exercise: Let n := 12. Assume  $X_1, \ldots, X_n$  iid.

$$\mu := \mathsf{E}[X_1] = \cdots = \mathsf{E}[X_n]$$

$$\sigma := \mathsf{SD}[X_1] = \cdots = \mathsf{SD}[X_n]$$

Let  $S := X_1 + \cdots + X_n$ . Assume E[S] = 0.225181512, SD[S] = 0.158877565. Find  $\mu$  and  $\sigma$ .

Def'n:  $\forall X$ , the augmented expectation of X is defined by  $AE[X] := (E[X]) + \frac{1}{2}(Var[X])$ .

"asymptotically normal". Fact: Fix 
$$a,b\in\mathbb{R}$$
. Let  $R_n:=a\left(\frac{D_n}{\sqrt{n}}\right)+b$ . "E almost asymptotically commutes with  $e^{\bullet}$ "  $\left(\frac{D_n}{\sqrt{n}}\right)+b$ . Then  $\lim_{n\to\infty} \mathsf{E}[e^{R_n}] = \lim_{n\to\infty} e^{\mathsf{AE}[R_n]}$ .

```
independent, identically distributed
```

Exercise: Let n := 12. Assume  $X_1, \ldots, X_n$  iid.

$$\mu := E[X_1] = \cdots = E[X_n]$$
 $\sigma := SD[X_1] = \cdots = SD[X_n]$ 

Let  $S := X_1 + \cdots + X_n$ .

Assume E[S] = 0.225181512, SD[S] = 0.158877565. Find  $\mu$  and  $\sigma$ .

### Solution:

$$\mathsf{E}[S] = \mathsf{E}[X_1] + \dots + \mathsf{E}[X_n]$$
  
=  $n\mu = (12)\mu$ ,

so 
$$\mu = 0.225181512/12$$

independent, identically distributed

Exercise: Let n := 12. Assume  $X_1, \ldots, X_n$  iid.

$$\mu := \mathsf{E}[X_1] = \cdots = \mathsf{E}[X_n]$$

 $\sigma := SD[X_1] = \cdots = SD[X_n]$ 

Let  $S := X_1 + \cdots + X_n$ .

Assume  $E[S] \Rightarrow 0.225181512$ , SD[S] = 0.158877565. Find  $\mu$  and  $\sigma$ .

Solution:  $\mu = 0.225181512/12$ 

$$Var[S] = Var[X_1] + \cdots + Var[X_n]$$

$$\mu = 0.225181512/12$$

independent, identically distributed Exercise: Let n := 12. Assume  $X_1, \ldots, X_n$  [iid].  $\mu := \mathsf{E}[X_1] = \cdots = \mathsf{E}[X_n]$  $\sigma := SD[X_1] = \cdots = SD[X_n]$ Let  $S := X_1 + \cdots + X_n$ . Assume E[S] = 0.225181512,

Solution: 
$$\mu = 0.225181512$$
,  $\mu = 0.225181512/12$ 

Solution. 
$$\mu = \emptyset.225181512/12$$
 $(0.158877565)^2$ 

$$\forall \text{Var}[S] = \text{Var}[X_1] + \cdots + \text{Var}[X_n]$$

 $= n\sigma^2 = (12)\sigma^2$ so  $\sigma^2 = (0.158877565)^2/12$ so  $\sigma = 0.158877565/\sqrt{12}$ 

35

### independent, identically distributed

Exercise: Let n := 12. Assume  $X_1, \ldots, X_n$  iid.

$$\mu := E[X_1] = \cdots = E[X_n]$$

$$\sigma := SD[X_1] = \cdots = SD[X_n]$$
  
Let  $S := X_1 + \cdots + X_n$ .

 $\sigma = 0.158877565/\sqrt{2}$ 

Assume E[S] = 0.225181512,

SD[S] = 0.158877565. Find  $\mu$  and  $\sigma$ .

Solution: 
$$\mu = 0.225181512/12$$
  
 $\sigma = 0.158877565/\sqrt{12}$ 



### independent, identically distributed

Exercise: Let n := 12. Assume  $X_1, \ldots, X_n$  iid.

$$\mu := \mathsf{E}[X_1] = \dots = \mathsf{E}[X_n]$$

$$\sigma := SD[X_1] = \cdots = SD[X_n]$$

Let  $S := X_1 + \cdots + X_n$ .

Assume E[S] = 0.225181512, SD[S] = 0.158877565. Find  $\mu$  and  $\sigma$ .

Solution: 
$$\mu = 0.225181512/12$$
  
 $\sigma = 0.158877565/\sqrt{12}$ 

Mean and variance are cut by a factor of 12. Standard deviation is cut by a factor of  $\sqrt{12}$ .

Conversely, on adding n uncorrelated PCRVs, SD increases by a factor of  $\sqrt{n}$ , NOT n.

A portfolio of *uncorrelated* assets is better...

Let's explore this...

$$Var[A + B] = (Var[A]) + (Var[B]) + 2(Cov[A, B])$$

$$\mathsf{E}[A+B] = (\mathsf{E}[A]) + (\mathsf{E}[B])$$

Say A and B are prices, one month from now, of two financial assets.

If E[A] is large, then A becomes attractive. If E[B] is large, then B becomes attractive.

If Var[A] is small, then A becomes attractive. If Var[B] is small, then B becomes attractive.

If Cov[A,B] is small or, even better, negative, then the portfolio of A and B becomes attractive. <sup>38</sup>

### Cauchy-Schwarz:

$$-\sqrt{\operatorname{Var}[A]}\sqrt{\operatorname{Var}[B]} \le \operatorname{Cov}[A,B] \le \sqrt{\operatorname{Var}[A]}\sqrt{\operatorname{Var}[B]}$$

### Definition:

A and B are perfectly correlated if

$$Cov[A, B] = \sqrt{Var[A]} \sqrt{Var[B]}$$

### Definition:

A and B are perfectly anti-correlated if

$$-\sqrt{\operatorname{Var}[A]}\sqrt{\operatorname{Var}[B]} = \operatorname{Cov}[A, B]$$

### Cauchy-Schwarz:

the correlation

$$-\sqrt{\mathsf{Var}[A]}\sqrt{\mathsf{Var}[B]} \le \mathsf{Cov}[A,B] \le \sqrt{\mathsf{Var}[A]}\sqrt{\mathsf{Var}[B]}$$

 $\forall$ non-deterministic PCRVs A, B,

$$\operatorname{Corr}[A,B] := \frac{\operatorname{Cov}[A,B]}{\sqrt{\operatorname{Var}[A]}\sqrt{\operatorname{Var}[B]}}$$

of A and BSuppose A and B are non-determinstic PCRVs.

-1 < Corr[A, B] < 1

Corr[A, B] = 1 if and only if A and B are perfectly correlated.

Corr[A, B] = 0 if and only if A and B are uncorrelated.

Corr[A, B] = -1 if and only if A and B are perfectly anti-correlated.

40

## Definition: A and B are positively correlated if Cov[A, B] > 0(equiv., for non-det. A and B: Corr[A, B] > 0). Definition: A and B are negatively correlated if Cov[A, B] < 0(equiv., for non-det. A and B: Corr[A, B] < 0). Definition: A and B are uncorrelated if Cov[A, B] = 0(equiv., for non-det. A and B: Corr[A, B] = 0). If A and B are uncorrelated, or, even better, negatively correlated

then the portfolio of A and B becomes attractive.

### Definition: **Standard deviation** := $\sqrt{\text{Variance}}$

$$\forall \mathsf{PCRVs}\ X,\ \mathsf{SD}[X] := \sqrt{\mathsf{Var}[X]}$$

$$Var[2X] = 4(Var[X])$$
  
$$SD[2X] = 2(SD[X])$$

$$Var[cX] = c^{2}(Var[X])$$
  

$$SD[cX] = |c|(SD[X])$$

Intuition: Variance measures risk, but standard deviation measures risk better, because doubling the position really ought only to double the risk.

### Definition: Standard deviation := $\sqrt{\text{Variance}}$

$$\forall \mathsf{PCRVs}\ X$$
,  $\mathsf{SD}[X] := \sqrt{\mathsf{Var}[X]}$ 

$$Var[A + B] = (Var[A]) + (Var[B]) + 2(Cov[A, B])$$

$$SD[A + B] = \sqrt{\frac{(SD[A])^2 + (SD[B])^2 + (Cov[A, B])}{2(Cov[A, B])}}$$

$$Corr[A, B] := \frac{Cov[A, B]}{\sqrt{Var[A]}\sqrt{Var[B]}}$$

$$SD[A + B] = \sqrt{\frac{(SD[A])^2 + (SD[B])^2 + (Cov[A, B])}{2(Cov[A, B])}}$$

$$SD[A + B] = \sqrt{\frac{(SD[A])^2 + (SD[B])^2 + (Cov[A, B])}{2(Cov[A, B])}}$$

$$\operatorname{Corr}[A,B] := \frac{\operatorname{Cov}[A,B]}{\sqrt{\operatorname{Var}[A]}\sqrt{\operatorname{Var}[B]}}$$

$$SD[A + B] = \sqrt{\frac{(SD[A])^2 + (SD[B])^2 + (Cov[A, B])}{2(Cov[A, B])}}$$

Assume 
$$Corr[A, B] = 1$$
. MULTIPLY BY  $\sqrt{Var[A]}\sqrt{Var[B]}$   
Then  $Cov[A, B] = 1\sqrt{Var[A]}\sqrt{Var[B]}$   
 $= (SD[A])(SD[B]).$ 

Then 
$$SD[A + B] = \sqrt{[(SD[A]) + (SD[B])]^2}$$
  
=  $(SD[A]) + (SD[B]).$ 

For perfectly correlated PCRVs,
standard deviations add.

$$\operatorname{Corr}[A,B] := \frac{\operatorname{Cov}[A,B]}{\sqrt{\operatorname{Var}[A]}\sqrt{\operatorname{Var}[B]}}$$

$$Var[A + B] = (Var[A]) + (Var[B]) + 2(Cov[A, B])$$

Assume Corr[A, B] = 0.

Then  $Cov[A, B] = 0 \cdot \sqrt{Var[A]} \sqrt{Var[B]} = 0.$ 

Then Var[A + B] = (Var[A]) + (Var[B])

For uncorrelated PCRVs, variances add.

For perfectly correlated PCRVs, standard deviations add.