VERSION B

MATH 1271 Fall 2011, Midterm \#2
Handout date: Thursday 10 November 2011

PRINT YOUR TA'S NAME:

WHAT SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:
I. Multiple choice
A. (5 pts) (no partial credit) Find the slope of the tangent line to $y=\left(x^{3}+4\right) e^{2 x}$ at the point $(0,4)$.
(a) 0
(b) 4
(c) 8
(d) 12

$$
\left[3 x^{2} \cdot e^{2 x}+\left(x^{3}+4\right) \cdot e^{2 x} \cdot 2\right]_{x \rightarrow 0}
$$

(e) NONE OF THE ABOVE

$$
=0+4 \cdot e^{0} \cdot 2
$$

$$
=8
$$

(b) $1 / 4$
(c) 2

$$
\frac{x^{2}}{2 x^{2}}=\frac{1}{2} \longrightarrow \frac{1}{2}
$$

(d) 1
(e) NONE OF THE ABOVE
C. (5 pts) (no partial credit) Suppose $f^{\prime}(x)=-x^{2}+3 x-2$. At most one of the following statements is true. If one is, circle it. Otherwise, circle "NONE OF THE ABOVE".
(a) f is increasing on $(-\infty,-2]$, decreasing on $[-2,-1]$ and increasing on $[-1, \infty)$.
(b) f is decreasing on $(-\infty,-2]$, increasing on $[-2,-1]$ and decreasing on $[-1, \infty)$.
(c) f is increasing on $(-\infty, 1]$, decreasing on $[1,2]$ and increasing on $[2, \infty)$.
(d) f is decreasing on $(-\infty, 1]$, increasing on $[1,2]$ and decreasing on $[2, \infty)$.
(e) NONE OF THE ABOVE

$$
f^{\prime} \begin{array}{llll}
0 & p o s & 0 & \text { neg } \\
\hline 1 & & 1 &
\end{array}
$$

$$
\begin{aligned}
f^{\prime}(x) & =-\left(x^{2}-3 x+2\right) \\
& =-(x-1)(x-2)
\end{aligned}
$$

D. (5 pts) (no partial credit) Find the logarithmic derivative of $x^{2}+3 x-8$ w.r.t. x.
(a) $\frac{x^{2}+3 x-8}{2 x+3}$
((b) $\frac{2 x+3}{x^{2}+3 x-8}$
(c) $\left(\ln \left(x^{2}\right)\right)+3(\ln x)-(\ln 8)$
(d) $\ln (2 x+3)$
(e) NONE OF THE ABOVE
E. (5 pts) (no partial credit) Find the logarithmic derivative of $(2+\sin x)^{x}$ w.r.t. x.
(a) $\left[(2+\sin x)^{x}\right]\left[(\ln (2+\sin x))+\left(\frac{x \cos x}{2+\sin x}\right)\right]$
(b) $(\ln (2+\sin x))+\left(\frac{x \cos x}{2+\sin x}\right)$
(c) $\ln (\cos x)$
(d) $\cos x$

(e) NONE OF THE ABOVE
F. (5 pts) (no partial credit) Find the derivative of $(2+\sin x)^{x}$ w.r.t. x.
(a) $\left[(2+\sin x)^{x}\right]\left[(\ln (2+\sin x))+\left(\frac{x \cos x}{2+\sin x}\right)\right]$
(b) $(\ln (2+\sin x))+\left(\frac{x \cos x}{2+\sin x}\right)$
(c) $\ln (\cos x)$
(d) $\cos x$
(e) NONE OF THE ABOVE
II. True or false (no partial credit):
a. (5 pts) If f and g are differentiable, then $\frac{d}{d x}[(f(x))(g(x))]=\left[f^{\prime}(x)\right]\left[g^{\prime}(x)\right]$.

b. (5 pts) If $f^{\prime}>0$ on an interval I, then f is increasing on I.

c. (5 pts) If $f^{\prime}(3)=0$ and $f^{\prime \prime}(3)>0$, then f has a local maximum at 3 .

d. (5 pts) Every local extremum occurs at a critical number.

e. (5 pts) Every global extremum occurs at a critical number.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

VERSION B

I. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
I. D,E,F
II. a,b,c,d,e
III. 1.
III. 2.
III. 3,4.
III. 5.
III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (10 pts) Compute $\frac{d}{d x}\left[\frac{2 x^{3}-8}{\arctan x}+x e^{\sin x}\right]$

2. (10 pts) Using implicit differentiation (and logarithmic differentiation), find $y^{\prime}=d y / d x$, assuming that $\left(2+y^{2}\right)^{x y}=9$.

$$
\begin{aligned}
& {\left[\left(2+y^{2}\right)^{x y}\right]\left[\frac{d}{d x}\left[x y\left(\ln \left(2+y^{2}\right)\right)\right]\right]=0} \\
& y\left(\ln \left(2+y^{2}\right)\right)+x y^{\prime}\left(\ln \left(2+y^{2}\right)\right)+x y\left(\frac{2 y y^{\prime}}{2+y^{2}}\right)=0
\end{aligned}
$$

$$
y^{\prime}=\frac{-y\left(\ln \left(2+y^{2}\right)\right)}{x\left(\ln \left(2+y^{2}\right)\right)+\frac{2 x y^{2}}{2+y^{2}}}
$$

3. (5 pts) Suppose f is $1-1$ and $g=f^{-1}$ is the inverse of f. Suppose $f(3)=4$ and $f^{\prime}(3)=64$. Compute $g(4)$ and $g^{\prime}(4)$.

$$
\begin{aligned}
& g(4)=3 \\
& g^{\prime}(4)=\frac{1}{64}
\end{aligned}
$$

4. (10 pts) Find the maximal intervals of increase and decrease for $f(x)=x^{3}-6 x^{2}+5$.

$$
\begin{aligned}
f^{\prime}(x) & =3 x^{2}-12 x \\
& =3 x(x-4)
\end{aligned}
$$

5. (10 pts) Among all pairs of positive numbers x and y such that $x y=100$, find the global maximum value of $x+4 y$, provided it exists. Then find the global minimum value, provided it exists. (NOTE: If the global maximum value does not exist, you need to state that clearly to receive full credit. If it does exist, for full credit, you'll need to compute $x+4 y$; computing x and/or y alone is insufficient. These same comments apply to the global minimum value.)

$$
y=\frac{100}{x}
$$

Let $f(x)=x+4 y=x+\frac{400}{x}=x+400 x^{-1}$

$$
f^{\prime}(x)=1-400 x^{-2}=1-\frac{400}{x^{2}}
$$

On $x>0$,
$f(x)$ has no global maximum
and has on gloat minimum

$$
\text { at } x=2, y=\frac{100}{20}=5
$$

with global minimum value

$$
20+4 \cdot 5=40
$$

