PRINT YOUR TA'S NAME:

WHAT SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:
I. Multiple choice
A. (5 pts) (no partial credit) Assume that $\lim _{x \rightarrow 100}(f(x))=4$ and $\lim _{x \rightarrow 200}(g(x))=5$. At most one of the following statements must follow. If one does, circle it. Otherwise, circle Answer e.
(a) $\lim _{x \rightarrow 300}[(f(x))+(g(x))]=9$
(b) $\lim _{x \rightarrow 4}(f(x))=100$
(c) $\lim _{x \rightarrow 2} \frac{f(x)}{g(x)}=4 / 5$
(d) $\lim _{x \rightarrow 300}[(f(x))+(g(x))]$ does not exist
(e) NONE OF THE ABOVE
B. (5 pts) (no partial credit) Compute $\lim _{x \rightarrow-\infty}\left[\frac{2 x^{2}-x}{4 x^{2}+x}\right]$. Circle one of the following answers:
(a) ∞
(b) $-\infty$
(c) $1 / 2$
(d) $-1 / 2$
(e) NONE OF THE ABOVE
C. (5 pts) (no partial credit) Compute $\lim _{x \rightarrow-\infty}\left[\frac{\sqrt{4 x^{4}-x}}{8 x^{2}+x}\right]$. Circle one of the following answers:
(a) $1 / 4$
(b) $-1 / 4$
(c) $1 / 2$
(d) $-1 / 2$
(e) NONE OF THE ABOVE
D. (5 pts) (no partial credit) Compute $\ln \left(e^{-\left(5^{2}\right)}\right)$. Circle one of the following answers:
(a) 25
(b) -10
(c) -25
(d) DOES NOT EXIST
(e) NONE OF THE ABOVE
E. (5 pts) (no partial credit) Compute $\lim _{x \rightarrow 0} \frac{2 x^{3}+5 x^{2}}{7 x(\sin x)}$. Circle one of the following answers:
(a) $2 / 7$
(b) $5 / 7$
(c) ∞
(d) 0
(e) NONE OF THE ABOVE
F. (5 pts) (no partial credit) Compute the largest $\delta>0$ such that: $0<|x-1|<\delta$ implies $|(2 x+4)-6|<0.1$. Circle one of the following answers:
(a) 0.2
(b) 0.1
(c) 0.025
(d) 0.01
(e) NONE OF THE ABOVE
II. True or false (no partial credit):
a. (5 pts) If $\lim _{x \rightarrow a} f(x)=\infty$, then $\lim _{x \rightarrow a^{-}} f(x)=\infty$.
b. (5 pts) There is a function with three horizontal asymptotes.
c. (5 pts) If f and g are continuous at 3 , then $f+g$ MUST be continuous at 3 as well.
d. (5 pts) Every polynomial is continuous.
e. (5 pts) The function $f(x)=|x|$ is differentiable at 0 .

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

VERSION A

I. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
I. D,E,F
II. a,b,c,d,e
III. 1
III. 2a,b
III. 3
III. 4a,b
III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (10 pts) Draw a single graph showing a function $f:[3,5] \rightarrow \mathbb{R}$ with all of the following properties:
(•) Its domain is the interval [3,5].
(•) It is continuous on $[3,5]$.
(-) It is differentiable on $(3,4)$ and on $(4,5)$.
(-) It is not differentiable at 4 .
2. a. $(10 \mathrm{pts})$ Compute $\lim _{h \rightarrow 0} \frac{\sqrt{7+h}-\sqrt{7-h}}{h}$.
b. (5 pts) Compute $\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x-h}}{h}$.
3. $(10 \mathrm{pts})$ Compute $\lim _{x \rightarrow-\infty}\left(\sqrt{x^{2}+4 x}-\sqrt{x^{2}-5 x}\right)$.
4. On the planet of Gallifrey, in an alternate universe, a dropped object travels t^{3} feet during its first t seconds of free fall.
a. (5 pts) For $h \neq 0$, the average velocity between time $t=2$ seconds and time $t=2+h$ seconds is given by a quadratic polynomial in h of the form $a h^{2}+b h+c$. Find the coefficients a, b and c.
b. (5 pts) Find the instantaneous velocity at time $t=2$ seconds.
