MATH 1271 Fall 2011, Midterm#1 Handout date: Thursday 6 October 2011

PRINT YOUR NAME:

PRINT YOUR TA'S NAME:

WHAT SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:

I. Multiple choice

A. (5 pts) (no partial credit) Assume that $\lim_{x \to 100} (f(x)) = 4$ and $\lim_{x \to 200} (g(x)) = 5$. At most one of the following statements must follow. If one does, circle it. Otherwise, circle Answer e.

- (a) $\lim_{x \to 300} [(f(x)) + (g(x))] = 9$
- (b) $\lim_{x \to 4} (f(x)) = 100$
- (c) $\lim_{x \to 2} \frac{f(x)}{g(x)} = 4/5$ (d) $\lim_{x \to 300} [(f(x)) + (g(x))] \text{ does not exist}$
- (e) NONE OF THE ABOVE

B. (5 pts) (no partial credit) Compute $\lim_{x \to -\infty} \left[\frac{2x^2 - x}{4x^2 + x} \right]$. Circle one of the following answers:

- (a) ∞
- (b) $-\infty$
- (c) 1/2
- (d) -1/2
- (e) NONE OF THE ABOVE

C. (5 pts) (no partial credit) Compute $\lim_{x \to -\infty} \left[\frac{\sqrt{4x^4 - x}}{8x^2 + x} \right]$. Circle one of the following answers:

- (a) 1/4
- (b) -1/4
- (c) 1/2
- (d) -1/2
- (e) NONE OF THE ABOVE

D. (5 pts) (no partial credit) Compute $\ln(e^{-(5^2)})$. Circle one of the following answers:

- (a) 25
- (b) -10
- (c) -25
- (d) DOES NOT EXIST
- (e) NONE OF THE ABOVE

E. (5 pts) (no partial credit) Compute $\lim_{x\to 0} \frac{2x^3 + 5x^2}{7x(\sin x)}$. Circle one of the following answers:

- (a) 2/7
- (b) 5/7
- (c) ∞
- (d) 0
- (e) NONE OF THE ABOVE

F. (5 pts) (no partial credit) Compute the largest $\delta > 0$ such that: $0 < |x - 1| < \delta$ implies |(2x + 4) - 6| < 0.1. Circle one of the following answers:

- (a) 0.2
- (b) 0.1
- (c) 0.025
- (d) 0.01
- (e) NONE OF THE ABOVE

II. True or false (no partial credit):

a. (5 pts) If $\lim_{x \to a} f(x) = \infty$, then $\lim_{x \to a^{-}} f(x) = \infty$.

b. (5 pts) There is a function with three horizontal asymptotes.

c. (5 pts) If f and g are continuous at 3, then f + g MUST be continuous at 3 as well.

d. (5 pts) Every polynomial is continuous.

e. (5 pts) The function f(x) = |x| is differentiable at 0.

	THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE
VERSION	A
I. A,B,C	
I. D,E,F	
II. a,b,c,d,e	e

III. 1

III. 2a,b

III. 3

III. 4a,b

III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (10 pts) Draw a single graph showing a function $f : [3, 5] \to \mathbb{R}$ with all of the following properties:

- (•) Its domain is the interval [3, 5].
- (•) It is continuous on [3, 5].
- (•) It is differentiable on (3, 4) and on (4, 5).
- (•) It is not differentiable at 4.

2. a. (10 pts) Compute
$$\lim_{h \to 0} \frac{\sqrt{7+h} - \sqrt{7-h}}{h}$$
.

b. (5 pts) Compute
$$\lim_{h \to 0} \frac{\sqrt{x+h} - \sqrt{x-h}}{h}$$
.

3. (10 pts) Compute $\lim_{x \to -\infty} \left(\sqrt{x^2 + 4x} - \sqrt{x^2 - 5x}\right)$.

4. On the planet of Gallifrey, in an alternate universe, a dropped object travels t^3 feet during its first t seconds of free fall.

a. (5 pts) For $h \neq 0$, the average velocity between time t = 2 seconds and time t = 2 + h seconds is given by a quadratic polynomial in h of the form ah^2+bh+c . Find the coefficients a, b and c.

b. (5 pts) Find the instantaneous velocity at time t = 2 seconds.