MATH 1271 Fall 2012, Midterm \#1
Handout date: Thursday 4 October 2012

PRINT YOUR NAME:

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:
I. Multiple choice
A. (5 pts) (no partial credit) Compute $\lim _{x \rightarrow 0}\left[\frac{3 x^{4}+2 x^{3}}{7 x\left(\sin ^{2} x\right)}\right]$. Circle one of the following answers:
(a) 0
(b) ∞
(c) $5 / 7$
(d) $2 / 7$
(e) NONE OF THE ABOVE
B. (5 pts) (no partial credit) Compute $\lim _{x \rightarrow-\infty}\left[\frac{\sqrt{16 x^{6}-x}}{16 x^{3}+x}\right]$. Circle one of the following answers:
(a) $1 / 4$
(b) $-1 / 4$
(c) $1 / 2$
(d) $-1 / 2$
(e) NONE OF THE ABOVE
C. (5 pts) (no partial credit) Which is the intuitive definition of $\lim _{x \rightarrow 3}(g(x))=8$? Circle one of the following answers:
(a) If $g(x)$ is close to 3 , then x is close to 8 .
(b) If x is close to 3 , but not equal to 3 , then $g(x)$ is close to 8 , but not equal to 8 .
(c) If $g(x)$ is close to 8 , but not equal to 8 , then x is close to 3 .
(d) If x is close to 3 , but not equal to 3 , then $g(x)$ is close to 8 .
(e) NONE OF THE ABOVE
D. (5 pts) (no partial credit) Compute $\lim _{t \rightarrow 3}\left[\frac{t^{2}+t-12}{t-3}\right]$. Circle one of the following answers:
(a) 3
(b) 4
(c) 5
(d) 6
(e) NONE OF THE ABOVE
E. (5 pts) (no partial credit) Compute $\lim _{x \rightarrow 0}\left[\frac{x^{3}+2 x^{2}-4 x}{\sin (8 x)}\right]$ Circle one of the following answers:
(a) $2 / 3$
(b) $-1 / 2$
(c) $1 / 2$
(d) $-2 / 3$
(e) NONE OF THE ABOVE
F. (5 pts) (no partial credit) Compute $\lim _{h \rightarrow 0}\left[\frac{\sqrt{9+h}-\sqrt{9+4 h}}{3 h}\right]$. Circle one of the following answers:
(a) $1 / 6$
(b) $-1 / 6$
(c) $1 / 9$
(d) This limit does not exist.
(e) NONE OF THE ABOVE
II. True or false (no partial credit):
a. (5 pts) For every $x<0, \sqrt{x^{4}}=-x^{2}$.
b. (5 pts) Let $f(x)=x^{3}$. Then f is a one-to-one function.
c. (5 pts) Let $f(x)=|x|$. Then f is continuous at every real number.
d. (5 pts) If a function f is continuous at a number a, then f is differentiable at a.
e. (5 pts) Let $f(x)=|x|$. Then the domains of f and of f^{\prime} are equal.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

VERSION A

I. A, B, C
I. D,E,F
II. a,b,c,d,e
III. 1
III. 2
III. 3
III. 4
III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (10 pts) Find all horizontal asymptotes to

$$
y=\frac{\sqrt{9 x^{4}+2 x+5}}{2 x^{2}-3} .
$$

(NOTE: A horizontal asymptote is a line; your answers should be equations of lines, NOT numbers.)
2. (15 pts) Draw a single graph showing a function $f:[3,5] \rightarrow \mathbb{R}$ with all of the following properties:
(-) Its domain is the interval $[3,5]$.
(-) It is continuous on [3,5].
(•) It is differentiable on $(3,4)$ and on $(4,5)$.
(-) For all $x \in(3,4)$, we have: $f^{\prime}(x)=-1$.
(•) For all $x \in(4,5)$, we have: $f^{\prime}(x)=1$.
(-) It is not differentiable at 4 .
(-) $f(4)=0$.
3. (10 pts) Compute $\lim _{x \rightarrow \infty}\left[\frac{x^{2}+\sin ^{2} x}{2 x^{2}+1}\right]$.
4. (10 pts) Let $f(x)=(x+1)^{3}(x-2)^{4}(x-5)$. Find all of the maximum intervals of positivity and negativity for f.

