MATH 1271 Fall 2012, Midterm #2 Handout date: Thursday 8 November 2012

PRINT YOUR NAME:

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:

I. Multiple choice

A. (5 pts) (no partial credit) Find the logarithmic derivative of $(2 + \sin(2x))^{\cos x}$ w.r.t. x. Circle one of the following answers:

(a)
$$(-\sin x) \left(\frac{2\cos(2x)}{2+\sin(2x)}\right)$$

(b) $(\cos x)(\ln(2+\sin(2x))) + (-\sin x) \left(\frac{2\cos(2x)}{2+\sin(2x)}\right)$
(c) $(\cos x)(\ln(2+\sin(2x)))$
(d) $(-\sin x)(\ln(2+\sin(2x))) + (\cos x) \left(\frac{2\cos(2x)}{2+\sin(2x)}\right)$
(e) NONE OF THE ABOVE

B. (5 pts) (no partial credit) Find the derivative of $(2 + \sin(2x))^{\cos x}$ w.r.t. x. Circle one of the following answers:

(a)
$$[(2 + \sin(2x))^{\cos x}] \left[(-\sin x) \left(\frac{2\cos(2x)}{2 + \sin(2x)} \right) \right]$$

(b) $[(2 + \sin(2x))^{\cos x}] \left[(\cos x)(\ln(2 + \sin(2x))) + (-\sin x) \left(\frac{2\cos(2x)}{2 + \sin(2x)} \right) \right]$
(c) $[(2 + \sin(2x))^{\cos x}][(\cos x)(\ln(2 + \sin(2x)))]$
(d) $[(2 + \sin(2x))^{\cos x}] \left[(-\sin x)(\ln(2 + \sin(2x))) + (\cos x) \left(\frac{2\cos(2x)}{2 + \sin(2x)} \right) \right]$
(e) NONE OF THE ABOVE

C. (5 pts) (no partial credit) Suppose $f''(x) = -x^2 + 4x - 3$. At most one of the following statements is true. If one is, circle it. Otherwise, circle "NONE OF THE ABOVE".

- (a) f is concave down on $(-\infty, 1]$, up on [1, 3] and down on $[3, \infty)$.
- (b) f is concave up on $(-\infty, 1]$, down on [1, 3] and up on $[3, \infty)$.
- (c) f is concave down on $(-\infty, -3]$, up on [-3, -1] and down on $[-1, \infty)$.
- (d) f is concave up on $(-\infty, -3]$, down on [-3, -1] and up on $[-1, \infty)$.
- (e) NONE OF THE ABOVE

D. (5 pts) (no partial credit) Suppose $f'(x) = (x-1)^2(x-2)(x-3)^2$. Which of the following is a maximal interval of increase for f? Circle one of the following answers:

- (a) $(-\infty, 1]$
- (b) $[1, \infty)$
- (c) $(2,\infty)$
- (d) $[2,\infty)$
- (e) NONE OF THE ABOVE

E. (5 pts) (no partial credit) Compute $[d/dx][\sin^2(xy)]$. Circle one of the following answers:

- (a) $2[\sin(xy)][\cos(xy)]$
- (b) $[\cos^2(xy)][y + xy']$
- (c) $2[\sin(xy)][y+xy']$
- (d) $2[\sin(xy)][\cos(y+xy')]$
- (e) NONE OF THE ABOVE

F. (5 pts) (no partial credit) Compute the derivative of $\ln(x^{\arctan x})$, with respect to x, on the interval x > 0. Circle one of the following answers:

(a)
$$\frac{1}{x^{\arctan x}}$$

(b)
$$\frac{\ln x}{1+x^2} + \frac{\arctan x}{x}$$

(c)
$$\frac{1}{x^{\sec^2 x}}$$

(d)
$$x^{\sec^2 x}$$

(e) NONE OF THE ABOVE

II. True or false (no partial credit):

a. (5 pts) If f and g are differentiable at a number a, then fg + f + g is differentiable at a.

b. (5 pts) If f is increasing on an interval I, then f' > 0 on I.

c. (5 pts) If f' > 0 on an interval I, then f is increasing on I.

d. (5 pts) Assume that $\lim_{x \to 3} [f(x)] = 0 = \lim_{x \to 3} [g(x)]$. Assume also that $\lim_{x \to 3} \frac{f'(x)}{g'(x)} = 7$. Then $\lim_{x \to 3} \frac{f(x)}{g(x)} = 7$.

e. (5 pts) Assume that $\lim_{x \to 0} [f(x)] = 0 = \lim_{x \to 0} [g(x)]$. Assume also that $\lim_{x \to 0} \left[\frac{f'(x)}{g'(x)} \right]$ does not exist. Then $\lim_{x \to 0} \left[\frac{f(x)}{g(x)} \right]$ does not exist.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

VERSION A

I. A,B,C

I. D,E,F

II. a,b,c,d,e

- III. 1,2.
- III. 3.
- III. 4.
- III. 5.

III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. (5 pts) Compute
$$\frac{d}{dx} \left[\frac{e^{x^4} - 8}{5 + \sec(x^2)} \right]$$
. (Here e^{x^4} means $e^{(x^4)}$.)

2. (5 pts) Compute
$$\frac{d}{dx} \left[(5 - \sin x)^{7 \arctan x} \right]$$
.

3. (10 pts) Find an equation for the tangent line to $x^3 + xy + y^3 = 11$ at (2, 1).

4. (15 pts) Compute $\lim_{x\to 0} ((\cos x) + (\sin x))^{5/x}$.

5. (10 pts) Find the global maximum and minimum value of $f(x) = x^3 - 3x^2 + 3x + 4$ on the interval $0 \le x \le 2$.