MATH 1271 Spring 2012, Midterm #2 Handout date: Thursday 29 March 2012

PRINT YOUR NAME:

Solutions Version D

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

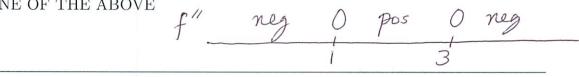
SIGN YOUR NAME:

I. Multiple choice

$$-(x^{2}-4x+3)=-(x-1)(x-3)$$

A. (5 pts) (no partial credit) Suppose $f''(x) = -x^2 + 4x - 3$. At most one of the following statements is true. If one is, circle it. Otherwise, circle "NONE OF THE ABOVE".

- (a) f is concave up on $(-\infty, -3]$, down on [-3, -1] and up on $[-1, \infty)$.
- (b) f is concave up on $(-\infty, 1]$, down on [1, 3] and up on $[3, \infty)$.
- (c)) f is concave down on $(-\infty, 1]$, up on [1, 3] and down on $[3, \infty)$.
- (d) f is concave down on $(-\infty, -3]$, up on [-3, -1] and down on $[-1, \infty)$.
- (e) NONE OF THE ABOVE



B. (5 pts) (no partial credit) Find the logarithmic derivative of $(2 + x^4)^{\cos x}$ w.r.t. x. (a)) $(-\sin x)(\ln(2+x^4)) + (\cos x)(4x^3/(2+x^4))$ (b) $(\cos x)(\ln(2+x^4))$ $\frac{d}{dx}\left(\cos x\right)\left(\ln\left(2+\chi^{2}\right)\right)$ (c) $(-\sin x)(4x^3/(2+x^4))$ (d) $(\cos x)(\ln(2+x^4)) + (-\sin x)(4x^3/(2+x^4))$ (e) NONE OF THE ABOVE

C. (5 pts) (no partial credit) Find the derivative of $(2 + x^4)^{\cos x}$ w.r.t. x.

$$(a)[(2+x^4)^{\cos x}][(-\sin x)(\ln(2+x^4)) + (\cos x)(4x^3/(2+x^4))]$$

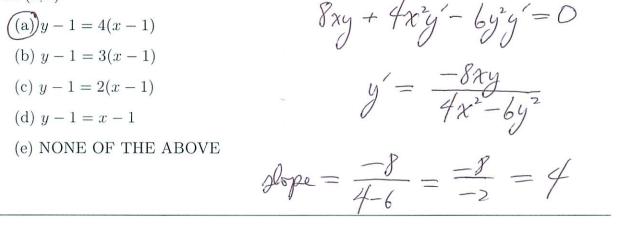
- (b) $[(2+x^4)^{\cos x}][(\cos x)(\ln(2+x^4))]$
- (c) $[(2+x^4)^{\cos x}][(-\sin x)(4x^3/(2+x^4))]$
- (d) $[(2+x^4)^{\cos x}][(\cos x)(\ln(2+x^4)) + (-\sin x)(4x^3/(2+x^4))]$
- (e) NONE OF THE ABOVE

D. (5 pts) (no partial credit) Find the logarithmic derivative of $x^2 + 7x - 8$ w.r.t. x.

(a)
$$\frac{x^2 + 7x - 8}{2x + 7}$$

(b) $\frac{2x + 7}{x^2 + 7x - 8}$
(c) $\ln(2x + 7)$
(d) $(\ln(x^2)) + 7(\ln x) - (\ln 8)$
(e) NONE OF THE ABOVE

E. (5 pts) (no partial credit) Find an equation of the tangent line to $4x^2y - 2y^3 = 2$ at the point (1, 1).



F. (5 pts) (no partial credit) Compute $[d/dx][\sin(\cos(e^x + 3))]$.

- (a) $\cos(\cos(e^x + 3))$ (b) 0 $\left[\cos\left(\cos\left(e^x + 3\right)\right)\right] \left[-\sin\left(e^x + 3\right)\right] \left[e^x\right]$
- (c) $[\cos(\cos(e^x + 3))][\cos(e^x + 3)][e^x + 3]$
- (d) $[\cos(\cos(e^x + 3))][-\sin(e^x + 3)][e^x + 3]$
- (e) NONE OF THE ABOVE

II. True or false (no partial credit):

a. (5 pts) If f is increasing on an interval I, then f' > 0 on I.

b. (5 pts) Assume that $\lim_{x \to a} [f(x)] = 0 = \lim_{x \to a} [g(x)]$. Assume also that $\lim_{x \to a} \frac{f'(x)}{g'(x)} = -\infty$. Then $\lim_{x \to a} \frac{f(x)}{g(x)} = -\infty$.

F

c. (5 pts) Every global minimum of a function $f : \mathbb{R} \to \mathbb{R}$ occurs at a critical number for f.

d. (5 pts) If f'(7) = 0 and f''(7) > 0, then f has a local maximum at 7.

e. (5 pts) If two functions have the same derivative, then they are equal.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

VERSION D

I. A, B, C

I. D, E, F

II. a,b,c,d,e

III. 1ab.

III. 2.

III. 3,4.

III. 5.

III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. a. (5 pts) Compute
$$\frac{d}{dx} \left[\frac{2x^3 - 8}{7 + (\arctan(2x))} \right].$$

$$(1)$$

$$\left[7 + (\arctan(2x)) \right] \left[6x^2 \right] - \left[2x^3 - 8 \right] \left[\frac{1}{1 + (2x)^2} \right] \left[2 \right]$$

$$\left[7 + (\arctan(2x)) \right]^2$$

b. (5 pts) Compute
$$\frac{d}{dx} [(4 - \sin x)^x]$$
.

$$\frac{d}{dx} \left[\frac{d}{dx} \left[\chi \left(\ln \left(4 - \sin x \right) \right) \right] \right]$$

 $\left[\frac{4-\sin x}{4-\sin x}\right]\left(\ln \left(4-\sin x\right)+x\left(\frac{-\cos x}{4-\sin x}\right)\right]$

2. (10 pts) Using implicit differentiation, find y' = dy/dx, assuming that $(x - y^2)^5 = x$.

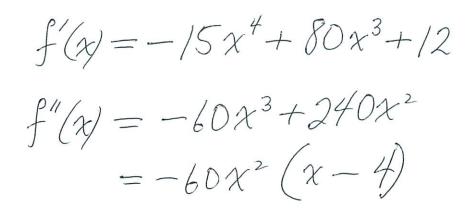
 $\left[5(x-y^{2})^{4}\right]\left[1-2yy^{2}\right] = 1$ $\int 5(x-y^2)^{47} - \int 10y(x-y^2)^{47}y' = 1$

 $y' = \frac{1 - 5(x - y^2)^4}{-10y(x - y^2)^4}$

3. (5 pts) Let $f(x) = 7x + x^5$. Then f is a one-to-one function. Let $g := f^{-1}$. Then f(1) = 8, so g(8) = 1. Compute g'(8).

$$g'(8) = \frac{1}{f'(1)} = \frac{1}{[7+5x^4]_{\chi;\to 1}} = \frac{1}{12}$$

4. (10 pts) Find the maximal intervals of concavity for $f(x) = -3x^5 + 20x^4 + 12x - 7$. For each interval, state clearly whether f is concave up or concave down on that interval.



f is concave up on (-a, 4] f is concave down on [4, a)

5. (10 pts) Compute $\lim_{x \to 1} \left[\frac{\ln x}{\cos(\pi x/2)} \right]$. 0 1/ 2'H $\lim_{\chi \to 1} \frac{1/\chi}{\left[-\sin\left(\frac{\pi \chi/2}{2}\right)\right] \left[\frac{\pi}{2}\right]}$ |1 1/1 $\left[-\sin\left(\frac{\pi}{2}\right)\right]\left[\frac{\pi}{2}\right]$ 11 $\begin{bmatrix} -1 \end{bmatrix} \begin{bmatrix} \pi/2 \end{bmatrix}$ 11 $-\frac{2}{\pi}$