MATH 1271 Spring 2012, Midterm \#1
Handout date: Thursday 16 February 2012

PRINT YOUR NAME:

PRINT YOUR TA'S NAME:

WHAT SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:
I. Multiple choice
A. (5 pts) (no partial credit) Compute the largest $\delta>0$ such that: $0<|x-1|<\delta$ implies $|(2 x+7)-9|<0.05$. Circle one of the following answers:
(a) 0.01
(b) 0.025
(c) 0.1
(d) 0.2
(e) NONE OF THE ABOVE
B. (5 pts) (no partial credit) Compute $\lim _{x \rightarrow 0} \frac{2 x^{3}-5 x^{2}}{7 x(\sin x)}$. Circle one of the following answers:
(a) 0
(b) ∞
(c) $2 / 7$
(d) $-5 / 7$
(e) NONE OF THE ABOVE
C. (5 pts) (no partial credit) Let $y=x^{2}-x$. Find $\triangle y$. Circle one of the following answers:
(a) $\left[(x+\triangle x)^{2}-(x+\triangle x)\right]-\left[x^{2}-x\right]$
(b) $\left[x^{2}-x\right]-\left[(x+\triangle x)^{2}-(x+\triangle x)\right]$
(c) $\left[(x+\triangle x)^{2}-(x+\triangle x)\right]+\left[x^{2}-x\right]$
(d) $(x+\triangle x)^{2}-(x+\triangle x)$
(e) NONE OF THE ABOVE
D. (5 pts) (no partial credit) A particle travels along a number line. Its position at time 1 is 40 and its position at time 5 is 80 . Find its average velocity between time 1 and time 5 . Circle one of the following answers:
(a) 20
(b) 30
(c) 40
(d) 50
(e) NONE OF THE ABOVE
E. (5 pts) (no partial credit) A line passes through $(1,40)$ and $(5,80)$. Find its slope. Circle one of the following answers:
(a) 20
(b) 30
(c) 40
(d) 50
(e) NONE OF THE ABOVE
F. (5 pts) (no partial credit) Assume that $\lim _{x \rightarrow 200}(f(x))=4$ and $\lim _{x \rightarrow 200}(g(x))=5$. At most one of the following statements must follow. If one does, circle it. Otherwise, circle Answer e.
(a) $\lim _{x \rightarrow 1}\left[\frac{f(x)}{g(x)}\right]=\frac{4}{5}$
(b) $\lim _{x \rightarrow 300}[(f(x))+(g(x))]$ does not exist
(c) $\lim _{x \rightarrow 400}[(f(x))+(g(x))]=9$
(d) $\lim _{x \rightarrow 200}[(f(x))+(g(x))]=9$
(e) NONE OF THE ABOVE
II. True or false (no partial credit):
a. (5 pts) A tangent line to the graph of a function cannot intersect the graph of the function more than once.
b. (5 pts) The function $f(x)=|x|$ is differentiable at every real number.
c. (5 pts) For every real number $x, \ln \left(e^{x}\right)=1+x$.
d. (5 pts) If a function is differentiable at 2 , then it is continuous at 2 .
e. (5 pts) There is a function with three horizontal asymptotes.

VERSION C

I. A, B, C
I. D,E,F
II. a,b,c,d,e
III. 1a,b
III. 2
III. 3
III. 4a,b
III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. a. (5 pts) Compute $\lim _{h \rightarrow 0} \frac{\sqrt{5+2 h}-\sqrt{5-h}}{h}$.
b. (5 pts) Compute $\lim _{h \rightarrow 0} \frac{\frac{1}{5+2 h}-\frac{1}{5-h}}{h}$.
2. (10 pts) Find all the horizontal asymptotes to $y=\frac{\sqrt{9 x^{2}+5}}{x+1}$.
3. (10 pts) Compute $\lim _{x \rightarrow 0}\left(\frac{7 x^{3}+4 x^{2}}{8 x \sin x}\right)$.
4. On the planet of Gallifrey, in an alternate universe, a dropped object travels $t^{3}+t^{2}$ feet during its first t seconds of free fall.
a. (10 pts) For $h \neq 0$, the average velocity between time $t=2$ seconds and time $t=2+h$ seconds is given by a quadratic polynomial in h of the form $a h^{2}+b h+c$. Find the coefficients a, b and c.
b. (5 pts) Find the instantaneous velocity at time $t=2$ seconds.
