MATH 1271 Spring 2012, Midterm \#2
Handout date: Thursday 29 March 2012

PRINT YOUR NAME:

PRINT YOUR TA'S NAME:

WHAT RECITATION SECTION ARE YOU IN?

Closed book, closed notes, no calculators/PDAs; no reference materials of any kind. Turn off all handheld devices, including cell phones.

Show work; a correct answer, by itself, may be insufficient for credit. Arithmetic need not be simplified, unless the problem requests it.

I understand the above, and I understand that cheating has severe consequences, from a failing grade to expulsion.

SIGN YOUR NAME:
I. Multiple choice
A. (5 pts) (no partial credit) Find the logarithmic derivative of $\left(2+x^{4}\right)^{\cos x}$ w.r.t. x.
(a) $(-\sin x)\left(4 x^{3} /\left(2+x^{4}\right)\right)$
(b) $(\cos x)\left(\ln \left(2+x^{4}\right)\right)+(-\sin x)\left(4 x^{3} /\left(2+x^{4}\right)\right)$
(c) $(\cos x)\left(\ln \left(2+x^{4}\right)\right)$
(d) $(-\sin x)\left(\ln \left(2+x^{4}\right)\right)+(\cos x)\left(4 x^{3} /\left(2+x^{4}\right)\right)$
(e) NONE OF THE ABOVE
B. (5 pts) (no partial credit) Find the derivative of $\left(2+x^{4}\right)^{\cos x}$ w.r.t. x.
(a) $\left[\left(2+x^{4}\right)^{\cos x}\right]\left[(-\sin x)\left(4 x^{3} /\left(2+x^{4}\right)\right)\right]$
(b) $\left[\left(2+x^{4}\right)^{\cos x}\right]\left[(\cos x)\left(\ln \left(2+x^{4}\right)\right)+(-\sin x)\left(4 x^{3} /\left(2+x^{4}\right)\right)\right]$
(c) $\left[\left(2+x^{4}\right)^{\cos x}\right]\left[(\cos x)\left(\ln \left(2+x^{4}\right)\right)\right]$
(d) $\left[\left(2+x^{4}\right)^{\cos x}\right]\left[(-\sin x)\left(\ln \left(2+x^{4}\right)\right)+(\cos x)\left(4 x^{3} /\left(2+x^{4}\right)\right)\right]$
(e) NONE OF THE ABOVE
C. (5 pts) (no partial credit) Suppose $f^{\prime \prime}(x)=-x^{2}+4 x-3$. At most one of the following statements is true. If one is, circle it. Otherwise, circle "NONE OF THE ABOVE".
(a) f is concave down on $(-\infty, 1]$, up on $[1,3]$ and down on $[3, \infty)$.
(b) f is concave up on $(-\infty, 1]$, down on $[1,3]$ and up on $[3, \infty)$.
(c) f is concave down on $(-\infty,-3]$, up on $[-3,-1]$ and down on $[-1, \infty)$.
(d) f is concave up on $(-\infty,-3]$, down on $[-3,-1]$ and up on $[-1, \infty)$.
(e) NONE OF THE ABOVE
D. (5 pts) (no partial credit) Find an equation of the tangent line to $4 x^{2} y-2 y^{3}=2$ at the point $(1,1)$.
(a) $y-1=4(x-1)$
(b) $y-1=3(x-1)$
(c) $y-1=2(x-1)$
(d) $y-1=x-1$
(e) NONE OF THE ABOVE
E. (5 pts) (no partial credit) Compute $[d / d x]\left[\sin \left(\cos \left(e^{x}+3\right)\right)\right]$.
(a) $\cos \left(\cos \left(e^{x}+3\right)\right)$
(b) $\left[\cos \left(\cos \left(e^{x}+3\right)\right)\right]\left[-\sin \left(e^{x}+3\right)\right]\left[e^{x}+3\right]$
(c) $\left[\cos \left(\cos \left(e^{x}+3\right)\right)\right]\left[\cos \left(e^{x}+3\right)\right]\left[e^{x}+3\right]$
(d) 0
(e) NONE OF THE ABOVE
F. (5 pts) (no partial credit) Find the logarithmic derivative of $x^{2}+7 x-8$ w.r.t. x.
(a) $\frac{x^{2}+7 x-8}{2 x+7}$
(b) $\ln (2 x+7)$
(c) $\frac{2 x+7}{x^{2}+7 x-8}$
(d) $\left(\ln \left(x^{2}\right)\right)+7(\ln x)-(\ln 8)$
(e) NONE OF THE ABOVE
II. True or false (no partial credit):
a. (5 pts) If $f^{\prime}=g^{\prime}$ on an interval I, then $f-g$ is constant on I.
b. (5 pts) Every critical number occurs at local extremum.
c. (5 pts) If $f^{\prime}(7)=0$ and $f^{\prime \prime}(7)<0$, then f has a local maximum at 7 .
d. (5 pts) If $f^{\prime \prime}>0$ on an interval I, then f is concave up on I.
e. (5 pts) Assume that $\lim _{x \rightarrow a}[f(x)]=0=\lim _{x \rightarrow a}[g(x)]$. Assume also that $\lim _{x \rightarrow a} \frac{f^{\prime}(x)}{g^{\prime}(x)}=7$. Then $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=7$.

THE BOTTOM OF THIS PAGE IS FOR TOTALING SCORES PLEASE DO NOT WRITE BELOW THE LINE

VERSION A

I. $\mathrm{A}, \mathrm{B}, \mathrm{C}$
I. D,E,F
II. a,b,c,d,e
III. 1ab.
III. 2.
III. 3,4.
III. 5.
III. Computations. Show work. Unless otherwise specified, answers must be exactly correct, but can be left in any form easily calculated on a standard calculator.

1. a. $(5 \mathrm{pts})$ Compute $\frac{d}{d x}\left[\frac{2 x^{3}-8}{3+(\arctan (2 x))}\right]$.
b. (5 pts) Compute $\frac{d}{d x}\left[(4-\sin x)^{x}\right]$.
2. (10 pts) Using implicit differentiation, find $y^{\prime}=d y / d x$, assuming that $\left(x-y^{2}\right)^{5}=x$.
3. (5 pts) Let $f(x)=2 x+6 x^{5}$. Then f is a one-to-one function. Let $g:=f^{-1}$. Then $f(1)=8$, so $g(8)=1$. Compute $g^{\prime}(8)$.
4. (10 pts) Find the maximal intervals of concavity for $f(x)=-3 x^{5}+20 x^{4}+7 x+3$. For each interval, state clearly whether f is concave up or concave down on that interval.
5. (10 pts) Compute $\lim _{x \rightarrow 1}\left[\frac{\ln x}{\cos (\pi x / 2)}\right]$.
