CALCULUS Chain Rule problems OLD2

O380-1. Write $\tan(x^3)$ as a composite f(g(x)). State explicitly what the function f is, and what the expression g(x) is.

0380-2. Compute
$$\frac{d}{dx}$$
 [tan (x^3)].

O380-3. Write $\tan^3 x$ as a composite f(g(x)). State explicitly what the function f is, and what the expression g(x) is.

0380-4. Compute
$$\frac{d}{dx} \left[\tan^3 x \right]$$
.

0380-5. Compute
$$\frac{d}{dx} \left[\left(x^4 - 7x^2 + 5 \right)^{250} \right]$$
.

0380-6. Compute
$$\frac{d}{dx} \left[\sqrt[3]{x^5 - 4x^2 + 5} \right]$$
.

0380-7. Compute
$$\frac{d}{dx} \left[(3x-2)^{510} (-3x+4)^{50} \right]$$
.

0380-8. Compute
$$\frac{d}{dx} \left[\sin \left(4x^{25} - 2x^{12} + 8 \right) \right]$$
.

OSSO-9. Compute
$$\frac{d}{dx}\left[\left(e^{2x-5}\right)\left(\sec x\right)\right]$$
.

0380-10. Compute
$$\frac{d}{dx} \left[e^{\csc(\pi x)} \right]$$
.

0380-11. Compute
$$\frac{d}{dx}\left[\sin\left(\sec^2\left(x^6\right)\right)\right]$$
.

Compute
$$\frac{d}{dx} \left[\cot \left(\sqrt[5]{\sin \left(\cos \left(x^3 + 1 \right) \right)} \right) \right]$$

O380-13. Suppose
$$f(1) = 3$$
, $f'(1) = 4$, $g(3) = 5$ and $g'(3) = 6$.

Let
$$h(x) = g(f(x))$$
.

a. Compute h(1). b. Compute h'(1).

0380-14. Let
$$f: \mathbb{R} o \mathbb{R}$$
 be a differentiable

function. a. Compute $\frac{d}{dx}$ [tan (f(x))].

b. Compute
$$\frac{dx}{dx}[f(\tan x)]$$
.

b. Compute
$$\frac{d}{dx}[f(\tan x)].$$
c. Compute $\frac{d}{dx}[f(e^{2x})].$

d. Compute
$$\frac{d}{dx}\left[e^{2[f(x)]}\right]$$
.