
Professors and Grants

1. Introduction

This note is intended as a compliment and complement to

B. Zhang’s very enjoyable “Coconuts and Islanders”,

which motivates the Boltzmann distribution in the case where

every nonnegative integer is a possible energy-level.

Here, our initial focus is, instead, on Boltzmann distributions where

0 and 1 and 10 are the only possible energy-levels.

Taking our cue from “Coconuts and Islanders”, we motivate by story.

Let N be a large positive integer. We analyze three systems for

dispensing grant money to N professors.

Congress allocates N dollars to award to the N professors.

The grant rules stipulate: each professor receives $0 or $1 or $10.

Each professor is identified by a number, from 1 to N .

By a dispensation, we mean a full complement of awards,

with a specific amount ($0 or $1 or $10) to Professor#1,

a specific amount ($0 or $1 or $10) to Professor#2,

etc., up to and including Professor#N ,

such that the total of the awards is the $N allocated by Congress.

The first system for awarding grants is very simple:

There are many possible dispensations, and, among all of them,

one is selected randomly,

giving equal probability to each possible dispensation.

The main problem is to figure out:

Using this first system, for a given professor,

what is the probability of being awarded $0? $1? $10?

Later, second and third probabilistic award systems are described,

each of which depends on three parameters p, q, r

satisfying p, q, r ą 0 and p ` q ` r “ 1 “ q ` 10r.

The second system uses

an iid system of random-variables, X1, . . . , XN

such that, @ℓ, PrrXℓ “ 0s “ p,

PrrXℓ “ 1s “ q,

PrrXℓ “ 10s “ r.
1
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For all ℓ, the second system awards Xℓ dollars to Professor#ℓ.

The total dollar payout X1 ` ¨ ¨ ¨ ` XN is then random;

if X1 “ ¨ ¨ ¨ “ XN “ 0, it could be as small as 0 dollars,

and if X1 “ ¨ ¨ ¨ “ XN “ 10, it could be as large as 10N dollars.

The third system

is obtained from the second, by conditioning onX1`¨ ¨ ¨`XN “ N ,

so that the total payout is the $N allocated by Congress.

KEY POINT: With exactly the right choice of p, q, r,

the first and third systems are shown to be equivalent.

In §6 and §7, we show that this parameter choice is Boltzmann,

meaning: pp, q, rq is, for some real number β,

a scalar multiple of p e´0¨β , e´1¨β , e´10¨β q.

That is, Dβ, C P R s.t. pp, q, rq “ p C , Ce´β , Ce´10β q.

The second and third systems are

accessible by basic tools of probability theory,

while our main problem involves the first system.

However, once we know the first and third systems are equivalent,

we can bring these probabilistic tools to bear on the main problem.

Thanks to J. Steif, for pointing out to me that

the Discrete Local Limit Theorem, which is described in §9,

is the right tool for the main problem, which is solved in §12.

Boltzmann distributions are often motivated by entropy, but,

from our perspective,

what’s special about pp, q, rq “ pC,Ce´β, Ce´10βq is:

For any i, j, k ě 0, we have

piqjrk “ Ci`j`k ¨ e´β¨pj`10kq,

so piqjrk depends only on: i ` j ` k and j ` 10k.

In the third system of grant awards,

there exists a normalizing constant S ą 0 s.t.,

for any dispensation in which

i professors receive $ 0,

j professors receive $ 1,

k professors receive $10,

the probability of that dispensation is piqjrk{S,

which is equal to Ci`j`k ¨ e´β¨pj`10kq{S.
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That proabability, then, depends only on

i ` j ` k, which is the number of professors,

and j ` 10k, which is the total dollar payout.

So, since the number of professors is “ N

and the total dollar payout is also “ N ,

we conclude: each award-dispensation has probability CN ¨e´β¨N{S,

so they are all equally likely, which exactly describes the first system.

Therefore, under the Boltzmann assumption,

the first and third systems are equivalent.

In §14, we expose the inequitablity of the first system.

In fact, assuming N is sufficiently large, we show that:

with probability ą 99%, over half of the professors receive $0.

Thanks to V. Reiner for suggesting

applying Chebyshev’s inequality to a sum of indicator variables,

to transition from individual statistics to population statistics.

In §15 and §16 and §17, we extend the theory to handle cases

where the award-sets are finite sets of rational numbers.

In §18, we show that

irrational award amounts can lead to non-Boltzmann statistics.

In §19 and §20 and §21, we extend our earlier results to include

degenerate energy-levels, with a finite set of states.

In §22 through §26, we extend these results further to include

cases that involve a countably infinite set of states.

Thanks to C. Prouty for help with many calculations.

For some of his Python code, see §27.

2. Some notation

A box around an expression indicates that it is global,

meaning that it is fixed to the end of these notes.

Unboxed variables are freed at the end of each section, if not earlier.

Let R˚ :“ t´8u
Ť

R
Ť

t8u, Z˚ :“ t´8u
Ť

Z
Ť

t8u.

For any s, t P R˚, let

ps; tq :“ tx P R˚ | s ă x ă tu, rs; tq :“ tx P R˚ | s ď x ă tu,

ps; ts :“ tx P R˚ | s ă x ď tu, rs; ts :“ tx P R˚ | s ď x ď tu.
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For any s, t P R˚, let ps..tq :“ ps; tq
Ş

Z˚, rs..tq :“ rs; tq
Ş

Z˚,

ps..ts :“ ps; ts
Ş

Z˚, rs..ts :“ rs; ts
Ş

Z˚.

Let N :“ r1..8q be the set of positive integers.

For any finite set F , let #F be the number of elements in F .

For any infinite set F , let #F :“ 8. Then #Z “ 8 “ #R.
For all t P R, let ttu :“ maxtn P N |n ď tu be the floor of t .

For any sets S, T , for any function f : S Ñ T ,

the image of f is: If :“ t fpxq |x P S u Ď T .

For any sets S, T , for any function f : S Ñ T ,

for any set A, we define: f˚A :“ tx P S | fpxq P Au.

By convention, in these notes, we define 00 :“ 1.

By “Cω” we mean: “real-analytic”.

3. First system of grant awards

Let N P N. Think of N as large.

Whenever we need to

formulate and prove precise mathematical statements,

we will “pass to the thermodynamic limit”, which means:

we replace N by a variable n P N, and let n Ñ 8.

((Alternatively, within nonstandard analysis, the variable N

could be taken as an infinite integer,

and the various approximations involving N ,

could be taken as equality-modulo-infinitesimals.))

Suppose there are N professors, numbered 1 to N ,

who apply, once per year, to the GFA (Grant Funding Agency),

seeking funding for the very important work they are doing.

Each year, Congress authorizes $N for the GFA to dispense

to the N professors.

The GFA has the rule: every award is 0 or 1 or 10 dollars.

The set of grant-dispensations is represented by:

Ω :“
!

ω : r1..N s Ñ t0, 1, 10u
ˇ

ˇ

řN
ℓ“1 rωpℓqs “ N

)

.

The GFA has set aside #Ω pieces of paper,

and has written down all possible dispensations,

one on each piece of paper.

So, for example, there is a piece of paper that says:

Professors 1 to N each get $1.
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Another piece of paper says:

Professors 1 to N ´ 10 each get $1 and

Professors N ´ 9 to N ´ 1 each get $0 and

Professor N gets $10.

Since N is large, it follows that #Ω is large, and so

there are many, many, many other pieces of paper.

Each year, a GFA bureaucrat

places all the pieces of paper in a big bin,

then selects one at random and

makes the awards as indicated on that piece of paper.

Under this first system of awarding grants, we have:

@ω P Ω, the probability that

the selected grant-dispensation is ω

is equal to 1 { p#Ωq.

Suppose I am one of the professors. Here is our main problem:

Calculate my probability of getting $0.

Then calculate my probability of getting $1.

Then calculate my probability of getting $10.

Approximate answers are acceptable.

In §5 to §12 of this note,

we reformulate and then solve this problem.

Spoiler: It’s a Boltzmann distribution, approximately.

4. Particles and energy

Recall that N P N. Think of N as large.

Suppose there are N particles, numbered 1 to N ,

each of which has a certain amount of energy.

Suppose the total energy is N , dispensed among the N particles.

Suppose physicists have somehow determined that, for any particle,

its possible energy-levels are: 0 or 1 or 10.

Recall: Ω “

!

ω : r1..N s Ñ t0, 1, 10u
ˇ

ˇ

řN
ℓ“1 rωpℓqs “ N

)

.

Then Ω represents the set of energy-dispensations.

Assume that physicists have somehow determined

that this system of particles has a random energy-dispensation

and that all energy-dispensations in Ω are equally probable.

That is, physicists tell us:
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@ω P Ω, the probability that

the energy-dispensation is ω

is equal to 1 { p#Ωq.

The equal probability of all energy-dispensations

is a recurring theme in microcanonical-ensemble thermodynamics,

and can often be motivated through

rules of random energy transfer between random pairs of particles.

For examples of this, either see §19 below or

search for “Coconuts and Islanders” by B. Zhang,

and, in particular, see the work leading up to

the last paragraph of §3.2 therein.

In §19 below,

instead of particles exchanging energy,

there are professors exchanging dollars,

but the principle is exactly the same.

In Zhang’s exposition,

instead of particles exchanging energy,

there are islanders exchanging coconuts,

but the principle is exactly the same.

Returing to our N particles, pick any one of them.

Problem: Calculate its probability of having energy-level 0.

Then calculate its probability of having energy-level 1.

Then calculate its probability of having energy-level 10.

Approximate answers are acceptable.

Spoiler: It’s a Boltzmann distribution, approximately.

Except for terminology, this problem is the same as

the main problem (end of §3) about professors and grants.

We will go back to professors and grants.

Mathematically it makes no difference, but it’s more fun.

5. Second and third systems of grant awards

In an effort to go paperless, the GFA changes to a new system:

In this second system, instead of all those pieces of paper,

the GFA chooses p, q, r ą 0 s.t. p ` q ` r “ 1,

and then, for each of the N professors,

awards $ 0 with probability p,
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$ 1 with probability q,

$10 with probability r.

No professor’s award depends in any way on any other professor’s;

the awards are independent.

The expected payout, for any professor, is p ¨ 0 ` q ¨ 1 ` r ¨ 10 dollars.

Under this second system,

there is no guarantee that the total payout will be $N ,

which is a difficulty that we will discuss later.

However, recognizing that the average award is intended to be $1,

the GFA chooses the numbers p, q, r subject to the constraint that

p ¨ 0 ` q ¨ 1 ` r ¨ 10 “ 1, i.e., q ` 10r “ 1.

For each function ω : r1..N s Ñ t0, 1, 10u, let

iω :“ #t ℓ P r1..N s | ωpℓq “ 0 u,

jω :“ #t ℓ P r1..N s | ωpℓq “ 1 u,

kω :“ #t ℓ P r1..N s | ωpℓq “ 10 u;

that is, iω is the number of professors awarded $ 0 and

jω is the number of professors awarded $ 1 and

kω is the number of professors awarded $10.

Then, @ω : r1..N s Ñ t0, 1, 10u, we have:

the total number of awards is iω ` jω ` kω
and the total dollar payout is iω ¨ 0 ` jω ¨ 1 ` kω ¨ 10,

i.e., jω ` 10kω.

Then, @ω : r1..N s Ñ t0, 1, 10u, we have:

iω ` jω ` kω “ N and jω ` 10kω “
řN

ℓ“1 rωpℓqs.

Recall: Ω “

!

ω : r1..N s Ñ t0, 1, 10u
ˇ

ˇ

řN
ℓ“1 rωpℓqs “ N

)

.

That is, Ω is the set of all payout functions

ω : r1..N s Ñ t0, 1, 10u

s.t. the total dollar payout is N .

Then: @ω : r1..N s Ñ t0, 1, 10u, we have:

ω P Ω iff jω ` 10kω “ N .

For every i, j, k P r0..N s,

if i ` j ` k “ N and j ` 10k “ N ,

then Dω P Ω s.t. pi, j, kq “ piω, jω, kωq;

indeed, one such ω : r1..N s Ñ t0, 1, 10u is described by:

ω “ 0 on r1..is, ω “ 1 on pi..i ` js, ω “ 10 on pi ` j..N s.

Let A :“ tpiω, jω, kωq |ω P Ωu.

Then A is the set of all pi, j, kq s.t. i, j, k P r0..N s and
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i ` j ` k “ N and j ` 10k “ N .

Under the second system,

each $ 0 award happens with probability p and

each $ 1 award happens with probability q and

each $10 award happens with probability r.

So, @ω : r1..N s Ñ t0, 1, 10u, under the second system,

the probability that the grant-dispensation is equal to ω

is piωqjωrkω .

Let S :“
ř

ωPΩ piωqjωrkω .

Then S is the probability (using the second system) that ω P Ω,

i.e., the probability that the total payout is exactly N dollars.

Assuming N is large, it turns out that S is close to zero.

So, under this second system,

the probability of paying out exactly N dollars

is very small.

Congress only allocates $N per year for the N professors.

So, using this second system, each year,

with probability 1´S « 1, the GFA will run a surplus or a deficit.

On the other hand, since q ` 10r “ 1, we see that,

each year, the expected payout is $1 per professor,

so, each year, the expected total payout is $N .

So these surpluses and deficits should, over time, cancel one another.

Unfortunately, Congress is a paragon of fiscal responsibility, and,

as soon as it finds out about the GFA’s second system,

it insists that the GFA never again underspend or overspend.

So the GFA changes its system one more time, as follows.

Under its third system, each year,

before announcing any of the awards publicly,

the GFA writes out, in an internal memo,

a tentative proposal of awards that,

independently, for each of the N professors,

awards $ 0 with probability p,

$ 1 with probability q,

$10 with probability r.

If the memo’s total award payout is NOT equal to $N ,

the GFA deems the memo as unacceptable,

deletes it, and starts over, making memo after memo,

until an acceptable one (meaning payout exactly $N) appears.
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Each memo has a probability S of being acceptable, so, each year,

the GFA will likely need to repeat the memo process many times

to get to a memo with total payout exactly equal to $N .

However, as soon as that happens,

the GFA uses that first acceptable memo,

and publicizes its dispensation of awards.

Mathematically, we are conditioning on the event ω P Ω.

So, using the third system, the probability that ω R Ω is 0.

Also, for this third system, @ω P Ω, the probability of ω is piωqjωrkω {S.

The sum of these probabilities is 1:
ÿ

ωPΩ

piωqjωrkω

S
“

1

S
¨

ÿ

ωPΩ

piωqjωrkω “
1

S
¨ S “ 1.

This third system is not necessarily equivalent to the first, because

in the first system, all the probabilities were 1 { p#Ωq,

whereas, in the third system, they are piωqjωrkω {S.

So a new question arises:

Is it possible to choose p, q, r ą 0 in such a way that

p ` q ` r “ 1 and q ` 10r “ 1 and

@ω P Ω, piωqjωrkω {S “ 1 { p#Ωq ?

If yes, then, using that pp, q, rq,

the first and third systems are equivalent.

We will see that the answer to this new question, in fact, is yes.

In the next two sections, assuming N ě 10,

we will show how to compute the only pp, q, rq that works.

Spoiler: It’s a Boltzmann distribution, exactly.

6. Computing p, q, r à la Boltzmann

As in the preceding section, let p, q, r ą 0, S :“
ř

ωPΩ piωqjωrkω .

We assume: p ` q ` r “ 1 and q ` 10r “ 1.

We also assume: @ω P Ω, piωqjωrkω {S “ 1 { p#Ωq.

We will prove that, if N ě 10, then

there is at most one pp, q, rq that satisfies these conditions,

specifically, pp, q, rq “
p1, 9´1{10, 9´1q

1 ` 9´1{10 ` 9´1
.

Define the dot product, d, on R3, by:

@x, y, z,X, Y, Z P R, px, y, zq d pX, Y, Zq “ xX ` yY ` zZ.

For all u P R3, let uK :“ t v P R3 | u d v “ 0 u;
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then uK is a vector subspace of R3.

For all U Ď R3, let UK :“ t v P R3 | @u P U, u d v “ 0 u;

then UK is a vector subspace of R3.

For all u, v P R3, let xu, vyspan denote the R-span of tu, vu, i.e.,

let xu, vyspan :“ t su ` tv | s, t P R u;

then xu, vyspan is a vector subspace of R3.

Recall (§3): Ω “

!

ω : r1..N s Ñ t0, 1, 10u
ˇ

ˇ

řN
ℓ“1 rωpℓqs “ N

)

.

Recall (§5): A “ tpiω, jω, kωq |ω P Ωu.

Recall (§5): A is the set of all pi, j, kq s.t. i, j, k P r0..N s and

i ` j ` k “ N and j ` 10k “ N .

Then: A is the set of all pi, j, kq s.t. i, j, k P r0..N s and

p1, 1, 1qdpi, j, kq “ N and p0, 1, 10qdpi, j, kq “ N .

For all a, b P A, we have

p1, 1, 1q d a “ N “ p1, 1, 1q d b and

p0, 1, 10q d a “ N “ p0, 1, 10q d b,

so we get

p1, 1, 1q d pa ´ bq “ 0 and p0, 1, 10q d pa ´ bq “ 0,

so a ´ b P p1, 1, 1qK
Ş

p0, 1, 10qK.

Let V :“ p1, 1, 1qK
Ş

p0, 1, 10qK.

Then: @a, b P A, a ´ b P V .

Let D :“ ta ´ b | a, b P Au. Then D Ď V .

Also, we have: V Ď p1, 1, 1qK and V Ď p0, 1, 10qK.

Then: V K Ě p1, 1, 1qKK and V K Ě p0, 1, 10qKK.

Since p1, 1, 1q P p1, 1, 1qKK Ď V K and p0, 1, 10q P p0, 1, 10qKK Ď V K,

we get: x p1, 1, 1q , p0, 1, 10q yspan Ď V K.

Let W :“ x p1, 1, 1q , p0, 1, 10q yspan. Then: W Ď V K.

Assume N ě 10. Let a1 :“ p0, N, 0q, a2 :“ p9, N ´ 10, 1q.

Then a1, a2 P A. Let d1 :“ a2 ´ a1. Then d1 P D.

Since d1 ‰ p0, 0, 0q, we get: dim dK
1 “ 2.

Since W “ xp1, 1, 1q, p0, 1, 10qyspan, we get: dimW “ 2.

Since d1 P D Ď V and W Ď V K, we get: dK
1 Ě DK Ě V K Ě W .

So, since dim dK
1 “ 2 “ dimW , we get: dK

1 “ DK “ V K “ W .

Then DK “ W . Recall: @ω P Ω, piωqjωrkω{S “ 1{p#Ωq.

So, since A “ tpiω, jω, kωq |ω P Ωu, we get:

@pi, j, kq P A, piqjrk {S “ 1{p#Ωq.

Equivalently, @pi, j, kq P A,

i ¨ pln pq ` j ¨ pln qq ` k ¨ pln rq ´ plnSq “ ´plnp#Ωqq.
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Equivalently, @pi, j, kq P A,

pi, j, kq d p ln p , ln q , ln r q “ plnSq ´ plnp#Ωqq.

Then: @a, b P A,

a d p ln p , ln q , ln r q “ plnSq ´ plnp#Ωqq “ b d p ln p , ln q , ln r q,

so we get: pa ´ bq d p ln p , ln q , ln r q “ 0.

Then: @d P D, d d p ln p , ln q , ln r q “ 0.

Then: p ln p , ln q , ln r q P DK.

Since p ln p , ln q , ln r q P DK “ W “ xp1, 1, 1q, p0, 1, 10qyspan,

choose a real number C ą 0 and β P R s.t.

p ln p , ln q , ln r q “ plnCq ¨ p1, 1, 1q ´ β ¨ p0, 1, 10q.

Then p ln p , ln q , ln r q “ p lnC , plnCq ´ β , plnCq ´ 10β q.

Then pp, q, rq “ pC,Ce´β, Ce´10βq.

Then pp, q, rq “ C ¨ p1, e´β, e´10βq.

So, since p ` q ` r “ 1, we get: C ¨ p1 ` e´β ` e´10βq “ 1.

Then C “
1

1 ` e´β ` e´10β
. Then pp, q, rq “

p1, e´β, e´10βq

1 ` e´β ` e´10β
.

So, since q ` 10r “ 1, we get:
e´β ` 10e´10β

1 ` e´β ` e´10β
“ 1.

Then e´β ` 10e´10β “ 1 ` e´β ` e´10β. Then 9e´10β “ 1.

Then e´10β “ 9´1. Then e´β “ 9´1{10. Then pp, q, rq “
p 1 , 9´1{10 , 9´1q

1 ` 9´1{10 ` 9´1
.

So this is the only pp, q, rq that can possibly work.

In the next section, we show that it does work.

7. Showing the Boltzmann p, q, r work

In this section, we prove

the converse of the result from the preceding section.

That is, we let pp, q, rq :“
p1, 9´1{10, 9´1q

1 ` 9´1{10 ` 9´1
and S :“

ř

ωPΩ piωqjωrkω ,

and we wish to show: p ` q ` r “ 1 and q ` 10r “ 1 and

@ω P Ω, piωqjωrkω {S “ 1 { p#Ωq.

Let β :“ pln 9q{10. Then e´β “ 9´1{10. Then e´10β “ 9´1.

Then pp, q, rq “
p1, e´β, e´10βq

1 ` e´β ` e´10β
. Let C :“

1

1 ` e´β ` e´10β
.

Then pp, q, rq “ C ¨ p1, e´β, e´10β
q. Then pp, q, rq “ pC,Ce´β, Ce´10βq.

Let K :“ CN ¨ e´β¨N .

Recall (§3): Ω “

!

ω : r1..N s Ñ t0, 1, 10u
ˇ

ˇ

řN
ℓ“1 rωpℓqs “ N

)

.
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Claim: @ω P Ω, piωqjωrkω “ K.

Proof of Claim: Given ω P Ω, want: piωqjωrkω “ K.

Recall (§5): iω ` jω ` kω “ N and jω ` 10kω “
řN

ℓ“1 rωpℓqs.

By definition of Ω, since ω P Ω, we get:
řN

ℓ“1 rωpℓqs “ N .

Then: jω`10kω “ N . Recall: pp, q, rq “ pC,Ce´β, Ce´10βq.

Then: piωqjωrkω “ Ciω ¨ pCe´βqjω ¨ pCe´10βqkω

“ Ciω`jω`kω ¨ e´β¨pjω`10kωq “ CN ¨ e´β¨N “ K.

End of proof of Claim.

By definition of S, we have: S “
ř

ωPΩ piωqjωrkω .

So, by the Claim, we get: S “ p#Ωq ¨ K. Then K{S “ 1{p#Ωq.

We have 10{9 “ 1 ` p1{9q. That is, 10 ¨ 9´1 “ 1 ` 9´1.

So, since e´10β “ 9´1, we get: 10e´10β “ 1 ` e´10β.

Then: e´β ` 10e´10β “ 1 ` e´β ` e´10β.

By definition of C, we get: C ¨ p1 ` e´β ` e´10βq “ 1.

Recall: pp, q, rq “ C ¨ p1, e´β, e´10βq.

Since p ` q ` r “ C ¨ p1 ` e´β ` e´10βq “ 1

and since q ` 10r “ C ¨ pe´β ` 10e´10βq “ C ¨ p1 ` e´β ` e´10βq “ 1,

it remains only to show: @ω P Ω, piωqjωrkω {S “ 1 { p#Ωq.

Given ω P Ω, want: piωqjωrkω {S “ 1 { p#Ωq.

By the Claim, we get: piωqjωrkω “ K.

Recall: K{S “ 1{p#Ωq.

Then: piωqjωrkω{S “ K{S “ 1{p#Ωq.

8. Countable measure theory

By convention, in this note,

any countable set is given its discrete Borel structure.

A measure µ on a countable set Θ

is completely determined by

the function t ÞÑ µttu : Θ Ñ r0;8s,

because: @Θ0 Ď Θ, we have µpΘ0q “
ř

tPΘ0
rµttu s.

DEFINITION 8.1. Let Θ be a countable set.

Then MΘ denotes the set of measures on Θ,

and FMΘ :“ tµ P MΘ |µpΘq ă 8u,

and FMˆ
Θ :“ tµ P MΘ | 0 ă µpΘq ă 8u,

and PΘ :“ tµ P MΘ |µpΘq “ 1u.
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Then MΘ is the set of measures on Θ

and FMΘ is the set of finite measures on Θ

and FMˆ
Θ is the set of nonzero finite measures on Θ

and PΘ is the set of probability measures on Θ.

The only measure on H is the zero measure.

Therefore: FMˆ
H “ H “ PH.

DEFINITION 8.2. Let Θ be a countable set, µ P FMΘ.

Let n P N. Then µn
P FMΘn is defined by:

@x P Θn, µntxu “ pµtx1uq ¨ ¨ ¨ pµtxnuq.

The following is a basic fact, whose proof we omit:

Let Θ be a countable set, µ P FMΘ, n P r2..8q.

Let Z Ď Θn, X Ď Θn´1, Y Ď Θ. Assume that:

under the standard bijection Θn ÐÑ Θn´1 ˆ Θ,

we have: Z ÐÑ X ˆ Y .

Then: µnpZq “ pµn´1pXqq ¨ pµpY qq.

It is common to identify Z with X ˆ Y , in which case we have:

µnpX ˆ Y q “ ppµn´1pXqq ¨ pµpY qq.

The countable sets that are of interest in this note

all carry the discrete topology. We therefore define:

DEFINITION 8.3. Let Θ be a countable set, µ P MΘ.

Then the support of µ is: Sµ :“ t t P Θ | µttu ‰ 0 u.

DEFINITION 8.4. Let Θ Ď R be countable, µ P MΘ.

Let ρ ě 1 be real. Then: |µ|ρ :“ p
ř

tPΘ r|t|ρ ¨ pµttuqs q1{ρ.

Note: @countable Θ Ď R, @µ P FMΘ,

if #Sµ ă 8, then: @real ρ ě 1, |µ|ρ ă 8.

DEFINITION 8.5. Let Θ Ď R be countable.

Let µ P PΘ. Assume: |µ|1 ă 8.

Then the mean of µ is: Mµ :“
ř

tPΘ r t ¨ pµttuqs.

Also, the variance of µ is: Vµ :“
ř

tPΘ rpt´Mµq2 ¨ pµttuqs.

Let Θ Ď R be countable, µ P PΘ. Assume: |µ|1 ă 8.

Then, by subadditivity of absolute value, we get |Mµ| ď |µ|1.

Also, by expanding the square in the formula for Vµ,

we get Vµ “ |µ|22 ´ M2
µ; therefore Vµ ď |µ|22.
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Let Θ Ď R be countable and let X be a Θ-valued random-variable.

Let µ denote the distribution on Θ of X,

i.e., define µ P PΘ by: @t P Θ, µttu “ PrrX “ ts.

Then, @real ρ ě 1, we have: |µ|ρ is the Lρ-norm of X.

Then, @real ρ ě 1, we have: |µ|ρ ă 8 iff X is Lρ.

Also, if X is L1, then Mµ “ ErXs and Vµ “ VarrXs.

That is, if X is L1, then

Mµ is the mean (aka expected value, aka average value) of X

and Vµ is the variance of X.

THEOREM 8.6. Let Θ Ď R be countable, µ P PΘ.

Assume: |µ|1 ă 8. Then: p#Sµ ě 2 q ô pVµ ą 0 q.

The preceding result is basic. We omit its proof.

Because @t P Z, |t| ď t2, we conclude:

for any Z-valued random-variable X, Er |X| s ď ErX2 s.

It follows that for any Z-valued L2 random-variable X, we have:

X is L1, and so ErXs is defined and finite.

Because @t P Z, |t| ď t2, we conclude:

@Θ Ď Z, @µ P MΘ, |µ|1 ď |µ|22 ;

it follows that if |µ|2 ă 8, then

|µ|1 ă 8, and so Mµ is defined and finite.

DEFINITION 8.7. Let Θ be a countable set.

Let µ1, µ2, . . . P PΘ and let λ P PΘ.

By µ1, µ2, . . . Ñ λ , we mean: @Θ0 Ď Θ, µ1pΘ0q, µ2pΘ0q, . . . Ñ λpΘ0q.

Recall (§2): @function f , the notation: If .
Recall (§2): @function f , @set A, the notation: f˚A.

For any countable set S, for any set T ,

for any function f : S Ñ T , for any µ P MS,

we define f˚µ P MIf by: @A Ď If , pf˚µqpAq “ µpf˚Aq.

For any nonempty countable set Θ, for any µ P FMˆ
Θ,

let N pµq :“
µ

µpΘq
P PΘ; then @Θ0 Ď Θ, pN pµqqpΘ0q “

µpΘ0q

µpΘq
,
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and N pµq is called the normalization of µ .

Let pΘ be a countable set. Let µ P M
pΘ. Let Θ Ď pΘ.

Then the restriction of µ to Θ , denoted µ|Θ P MΘ,

is defined by: @Θ0 Ď Θ, pµ|ΘqpΘ0q “ µpΘ0q.

NOTE: We have pµ|ΘqpΘq “ µpΘq. So, if 0 ă µpΘq ă 8, then:

µ|Θ P FMˆ
Θ and N pµ|Θq “

µ|Θ

µpΘq

and @Θ0 Ď Θ, pN pµ|ΘqqpΘ0q “
µpΘ0q

µpΘq
.

DEFINITION 8.8. Let F be a nonempty finite set.

Then we define νF P PF by: @f P F , νF tfu “ 1{p#F q.

Also, we define νH : tHu Ñ t´1u by: νHpHq “ ´1.

THEOREM 8.9. Let F be a nonempty finite set. Let θ P PF .

Assume: @f, g P F , θtfu “ θtgu. Then: θ “ νF .

Proof. Since F is nonempty, choose g0 P F . Let b :“ θtg0u.

Then: @f P F , θtfu “ b. Then:
ř

fPF pθtfuq “ p#F q ¨ b.

Since θ P PF , we get: θpF q “ 1.

Since p#F q ¨ b “
ř

fPF pθtfuq “ θpF q “ 1, we get: b “ 1{p#F q.

Since @f P F , θtfu “ b “ 1{p#F q “ νF tfu, we get: θ “ νF . □

9. The Discrete Local Limit Theorem

DEFINITION 9.1. Let E Ď Z.
By E is residue-constrained , we mean:

Dm P r2..8q, Dn P Z s.t. E Ď mZ ` n.

By E is residue-unconstrained , we mean:

E is not residue-constrained.

Since H Ď 2 ¨ Z ` 1, we get: H is residue-constrained.

For all b P Z, since tbu Ď 2 ¨ Z ` b, we get: tbu is residue-constrained.

Then: @residue-unconstrained E Ď Z, #E ě 2.

We have: t0, 2, 10u Ď 2Z ` 0 and t1, 3, 11u Ď 2Z ` 1,

so t0, 2, 10u and t1, 3, 11u are both residue-constrained.

Here is a test for residue-unconstrainedness:

Let E Ď Z. Assume #E ě 2. Let ε0 P E.

Then: p E is residue-unconstrained q iff p gcdpE ´ ε0q “ 1 q.
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By this test, we see that:

t0, 1, 10u and t2, 4, 8, 9u and t3, 9, 13, 18u are all residue-unconstrained.

DEFINITION 9.2. For all α P R, for all real v ą 0,

define Φv
α : R Ñ p0;8q by: @t P R, Φv

αptq “
expp ´pt ´ αq2 { p2vq q

?
2πv

.

Note: Φv
α is a PDF of a normal variable with mean α and variance v.

The next result is a version of the Discrete Local Limit Theorem,

this one is stated in probability-theoretic terms:

THEOREM 9.3. Let E Ď Z be residue-unconstrained.

Let X1, X2, . . . be an iid sequence of Z-valued L2 random-variables.

Assume: @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

Let α P R, v P r0;8s. Assume: @n P N, ErXns “ α and VarrXns “ v.

Then: 0 ă v ă 8, and, @t1, t2, . . . P Z,
as n Ñ 8,

?
n ¨ r pPrrX1 ` ¨ ¨ ¨ ` Xn “ tnsq ´ pΦnv

nαptnqq s Ñ 0.

For a good exposition of this theorem and its proof,

search on “Terence Tao Local Limit Theorem”.

Visit the website, and then expand “read the rest of this entry”,

and then scroll down to “– 2. Local limit theorems –”.

In Theorem 9.3, since E Ď Z, we have, for each n P N,
|Xn| ď X2

n a.s., so Er|Xn|s ď ErX2
ns,

so, since Xn is L2, we get Xn is L1,

and so ErXns and VarrXns are both defined.

Moreover, @n P N,
since ErXns ď Er|Xn|s ď ErX2

ns ă 8, we get: ErXns is finite.

In Theorem 9.3, the proof that v ą 0 is relatively simple:

Since E is residue-unconstrained, we get: #E ě 2.

Then, @n P N, #tt P Z |PrrXn “ ts ą 0u ě 2,

which implies that VarrXns ą 0,

and so v ą 0.

In Theorem 9.3, the proof that v ă 8 is relatively simple:

@n P N, VarrXns “ ErX2
ns ´ pErXnsq2 ď ErX2

ns ă 8,

and so v ă 8.

Next is another version of the Discrete Local Limit Theorem;

this one is stated in measure-theoretic terms:
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THEOREM 9.4. Let E Ď Z be residue-unconstrained.

Let µ P PE. Assume: Sµ “ E. Assume: |µ|2 ă 8.

Let α :“ Mµ, v :“ Vµ. Then: 0 ă v ă 8, and, @t1, t2, . . . P Z,
as n Ñ 8,

?
n ¨ r pµntf P En | f1 `¨ ¨ ¨`fn “ tnuq ´ pΦnv

nαptnqq s Ñ 0.

In Theorem 9.4, since E Ď Z we get: |µ|1 ď |µ|22.

Since |µ|1 ď |µ|22 ă 8, we get: Mµ and Vµ are both defined.

Moreover, since |Mµ| ď |µ|1 ď |µ|22 ă 8, we get: Mµ is finite.

In Theorem 9.4, the proof that v ą 0 is relatively simple:

Since E is residue-unconstrained, we get: #E ě 2.

Since #Sµ “ #E ě 2, by Theorem 8.6, we get: v ą 0.

In Theorem 9.4, the proof that v ă 8 is relatively simple:

v “ Vµ “ |µ|22 ´ M2
µ ď |µ|22 ă 8.

Here is an application of Theorem 9.3:

THEOREM 9.5. Let E Ď Z be residue-unconstrained.

Let X1, X2, . . . be an iid sequence of Z-valued L2 random-variables.

Assume: @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

Let α P R, v P r0;8s. Assume: @n P N, ErXns “ α and VarrXns “ v.

Then: 0 ă v ă 8. Also, @t1, t2, . . . P Z,
if ttn ´ nα |n P Nu is bounded,

then, as n Ñ 8,
?
n ¨ pPrrX1 ` ¨ ¨ ¨ ` Xn “ tns q Ñ 1{

?
2πv.

Proof. By Theorem 9.3, we get 0 ă v ă 8.

Given t1, t2, . . . P Z, assume ttn ´ nα |n P Nu is bounded,

want: as n Ñ 8,
?
n ¨ pPrrX1 ` ¨ ¨ ¨ ` Xn “ tns q Ñ 1{

?
2πv.

By Theorem 9.3, it suffices to show:

as n Ñ 8,
?
n ¨ pΦnv

nαptnq q Ñ 1{
?
2πv.

We have: @n P N,
?
n ¨ pΦnv

nαptnq q “
expp ´ptn ´ nαq2 { p2nvq q

?
2πv

.

Since ttn ´ nα |n P Nu is bounded and since 0 ă v ă 8, we get:

as n Ñ 8, ´ptn ´ nαq2 { p2nvq Ñ 0.

Then: as n Ñ 8, expp ´ptn ´ nαq2 { p2nvq q Ñ 1.

Then: as n Ñ 8,
?
n ¨ pΦnv

nαptnq q Ñ 1{
?
2πv. □

We record a measure-theoretic version of Theorem 9.5:

THEOREM 9.6. Let E Ď Z be residue-unconstrained.

Let µ P PE. Assume: Sµ “ E and |µ|2 ă 8.

Let α :“ Mµ, v :“ Vµ. Then: 0 ă v ă 8.
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Also, @t1, t2, . . . P Z,
if ttn ´ nα |n P Nu is bounded,

then, as n Ñ 8,
?
n¨pµntf P En | f1`¨ ¨ ¨`fn “ tnu q Ñ 1{

?
2πv.

We also record the tn “ t0 ` nα special case of the past two theorems:

THEOREM 9.7. Let E Ď Z be residue-unconstrained.

Let X1, X2, . . . be an iid sequence of Z-valued L2 random-variables.

Assume: @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

Let t0, αPZ, vPr0;8s. Assume: @n P N, ErXns “ α and VarrXns “ v.

Then: 0 ă v ă 8, and,

as n Ñ 8,
?
n ¨ pPrrX1 ` ¨ ¨ ¨ ` Xn “ t0 ` nαs q Ñ 1{

?
2πv.

THEOREM 9.8. Let E Ď Z be residue-unconstrained.

Let µ P PE. Assume: Sµ “ E. Assume: |µ|2 ă 8.

Let α :“ Mµ, v :“ Vµ. Assume: α P Z. Let t0 P Z.
Then: 0 ă v ă 8, and,

as n Ñ 8,
?
n ¨ pµntf P En | f1 ` ¨ ¨ ¨ ` fn “ t0 ` nαu q Ñ 1{

?
2πv.

We also record the t0 “ 0 special case of the past two theorems:

THEOREM 9.9. Let E Ď Z be residue-unconstrained.

Let X1, X2, . . . be an iid sequence of Z-valued L2 random-variables.

Assume: @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

Let α P Z, v P r0;8s. Assume: @n P N, ErXns “ α and VarrXns “ v.

Then: 0 ă v ă 8, and,

as n Ñ 8,
?
n ¨ pPrrX1 ` ¨ ¨ ¨ ` Xn “ nαs q Ñ 1{

?
2πv.

THEOREM 9.10. Let E Ď Z be residue-unconstrained.

Let µ P PE. Assume: Sµ “ E. Assume: |µ|2 ă 8.

Let α :“ Mµ, v :“ Vµ. Assume: α P Z.
Then: 0 ă v ă 8, and,

as n Ñ 8,
?
n ¨ pµntf P En | f1 ` ¨ ¨ ¨ ` fn “ nαu q Ñ 1{

?
2πv.

10. Average events have low information, particular case

Suppose, in secret, I flip a coin 1000 times,

then reveal to you that

the total number of heads was 1000,

and then ask you to guess the last flip.

The answer is that, since all the coin flips were heads,

the last flip must have been a head.
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Similarly, if I had told you that

the total number of heads was 0,

then you would have known that the last flip was a tail.

By contrast, if I had told you that

the total number of heads was 500,

it seems intuitively clear that

you’d have had very little information about the last flip.

We wish to generalize and formalize that intuition,

and then provide rigorous proof of the resulting formal statement.

Our main theorem is Theorem 11.5, in the next section.

In this section, we go carefully through a special case:

Let X1, X2 . . . be Z-valued iid random-variables s.t.,

@n P N, PrrXn “ ´1 s “ 1{2,

PrrXn “ 0 s “ 1{3,

PrrXn “ 3 s “ 1{6.

Then, @n P N, Xn is L1 and Xn is L2.

Also, @n P N, ErXns “ 0 and VarrXns “ 2.

Also, @n P N, ´1 ď Xn ď 3 a.s.

For all n P N, let Tn :“ X1 ` ¨ ¨ ¨ ` Xn.

Then: @n P N, ´n ď Tn ď 3n a.s.

Then: ´1000 ď T1000 ď 3000 a.s.

Also, rT1000 “ ´1000 s ñ rX1 “ ¨ ¨ ¨ “ X1000 “ ´1 s,

and so PrrX1000 “ ´1 |T1000 “ ´1000s “ 1.

Similarly, PrrX1000 “ 3 |T1000 “ 3000s “ 1.

By contrast, the event T1000 “ 0

would seem to give very little information about X1000.

It therefore seems reasonable to expect that

PrrX1000 “ ´1 |T1000 “ 0s « 1{2 and

PrrX1000 “ 0 |T1000 “ 0s « 1{3 and

PrrX1000 “ 3 |T1000 “ 0s « 1{6.

To make this precise, we will work “in the thermodynamic limit”,

which means: we replace 1000 by a variable n P N, and let n Ñ 8.

That is, more precisely, we expect that, as n Ñ 8,

PrrXn “ ´1 |Tn “ 0s Ñ 1{2 and

PrrXn “ 0 |Tn “ 0s Ñ 1{3 and

PrrXn “ 3 |Tn “ 0s Ñ 1{6.

We will focus on proving the third of these limits;
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proofs of the other two are similar.

By definition of conditional probability,

we wish to prove: As n Ñ 8,
PrrpXn “ 3q&pTn “ 0qs

PrrTn “ 0s
Ñ 1{6.

Claim: Let n P r2..8q.

Then: PrrpXn “ 3q&pTn “ 0qs “ p1{6q ¨ pPrrTn´1 “ ´3sq.

Proof of Claim: We have: Tn “ X1 ` ¨ ¨ ¨ ` Xn´1 ` Xn.

Since PrrpXn “ 3q&pTn “ 0qs

“ PrrpXn “ 3q&pX1 ` ¨ ¨ ¨ ` Xn´1 ` Xn “ 0qs

“ PrrpXn “ 3q&pX1 ` ¨ ¨ ¨ ` Xn´1 ` 3 “ 0qs

“ PrrpXn “ 3q&pX1 ` ¨ ¨ ¨ ` Xn´1 “ ´3qs,

it follows, from independence of X1, . . . , Xn, that

PrrpXn “ 3q&pTn “ 0qs

“ p PrrXn “ 3s q ¨ p PrrX1 ` ¨ ¨ ¨ ` Xn´1 “ ´3s q.

So, since PrrXn “ 3s “ 1{6 and X1 ` ¨ ¨ ¨ ` Xn´1 “ Tn´1,

we get: PrrpXn “ 3q&pTn “ 0qs “ p1{6q ¨ pPrrTn´1 “ ´3sq.

End of proof of Claim.

By the claim, we wish to prove:

As n Ñ 8,
p1{6q ¨ pPrrTn´1 “ ´3sq

PrrTn “ 0s
Ñ 1{6.

We wish to prove: As n Ñ 8,
PrrTn´1 “ ´3s

PrrTn “ 0s
Ñ 1.

That is, we wish to prove:

As n Ñ 8, PrrTn´1 “ ´3s is asymptotic to PrrTn “ 0s.

So the question becomes:

How do we get a handle on the asymptotics, as n Ñ 8, of

both PrrTn´1 “ ´3s and PrrTn “ 0s ?

The Discrete Local Limit Theorem turns out to be just what we need.

Recall: @n P N, ErXns “ 0 and Tn “ X1 ` ¨ ¨ ¨ ` Xn.

Let α :“ 0 and v :“ 2. Then: both @n P N, nα “ 0 and 2πv “ 4π.

Also, @n P N, ErXns “ α and VarrXns “ v.

Let E :“ t´1, 0, 3u. Then E is residue-unconstrained.

Also, we have: @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

By Theorem 9.9, as n Ñ 8,
?
n ¨ pPrrX1 ` ¨ ¨ ¨ ` Xn “ nαsq Ñ 1{

?
2πv,

Then: as n Ñ 8,
?
n ¨ pPrrTn “ 0sq Ñ 1{

?
4π,
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so, as n Ñ 8, PrrTn “ 0s is asymptotic to 1{
?
4πn.

Want: as n Ñ 8, PrrTn´1 “ ´3s is asymptotic to 1{
?
4πn.

Let t0 :“ ´3. Then, @n P N, t0 ` nα “ ´3.

By Theorem 9.7, as n Ñ 8,
?
n ¨ pPrrX1 ` ¨ ¨ ¨ ` Xn “ t0 ` nαsq Ñ 1{

?
2πv.

Then: as n Ñ 8,
?
n ¨ pPrrTn “ ´3sq Ñ 1{

?
4π.

Then, as n Ñ 8,
?
n ´ 1 ¨ pPrrTn´1 “ ´3sq Ñ 1{

?
4π.

Then, as n Ñ 8, PrrTn´1 “ ´3s is asymptotic to 1{
a

4πpn ´ 1q,

which is asymptotic to 1{
?
4πn.

11. Average events have low information, general result

We generalize the result of the last section:

THEOREM 11.1. Let E Ď Z be residue-unconstrained.

Let X1, X2, . . . be an iid sequence of Z-valued L2 random-variables.

Assume: @n P N, tt P Z |PrrXn “ ts ą 0u “ E. Let α, P P R.
Assume: @n P N, ErXns “ α and PrrXn “ ε0s “ P . Let ε0 P E.

Let t1, t2, . . . P Z. Assume: ttn ´ nα |n P Nu is bounded.

Then: as n Ñ 8, Pr rXn “ ε0 |X1 ` ¨ ¨ ¨ ` Xn “ tn s Ñ P .

In Theorem 11.1, since ε0 P E, we have: @n P N, PrrXn “ ε0s ą 0.

It follows that P ą 0, so part of the content of Theorem 11.1 is:

@sufficiently large n P N, PrrX1 ` ¨ ¨ ¨ ` Xn “ tn s ą 0.

In Theorem 11.1, I don’t know whether “L2” can be replaced by “L1”.

Proof. Since X1, X2, . . . is identically distributed,

choose v P r0;8s s.t., @n P N, VarrXns “ v.

By Theorem 9.5, we have: 0 ă v ă 8 and

as n Ñ 8,
?
n ¨ pPrrX1 ` ¨ ¨ ¨ ` Xn “ tns q Ñ 1{

?
2πv.

For all n P N, let Tn :“ X1 ` ¨ ¨ ¨ ` Xn.

Then: as n Ñ 8,
?
n ¨ pPrrTn “ tns q Ñ 1{

?
2πv.

Want: as n Ñ 8, Pr rXn “ ε0 |Tn “ tn s Ñ P .

Let D1 :“ ttn ´nα |n P Nu. By hypothesis, D1 is bounded.

Let D2 :“ ttn ´ nα |n P r2..8qu. Then D2 Ď D1.

Let D3 :“ ttn`1 ´ pn ` 1q ¨ α |n P Nu. Then D3 “ D2.

For all n P N, let rtn :“ tn`1 ´ ε0.

Let D4 :“ trtn ´ nα |n P Nu.

Since D4 ´ pα ´ εq “ t rtn ´ nα ´ α ` ε |n P Nu
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“ ttn`1 ´ ε0 ´ pn ` 1q ¨ α ` ε |n P Nu

“ ttn`1 ´ pn ` 1q ¨ α |n P Nu

“ D3 “ D2 Ď D1,

and since D1 is bounded,

we get D4 ´ pα ´ εq is bounded.

Then: D4 ´ pα ´ εq ` pα ´ εq is bounded.

Then: D4 is bounded.

Then, by Theorem 9.5, we have:

as n Ñ 8,
?
n ¨ pPrrTn “ rtn s q Ñ 1{

?
2πv.

Then, as n Ñ 8,
?
n ´ 1 ¨ pPrrTn´1 “ rtn´1 s q Ñ 1{

?
2πv.

We have: @n P r2..8q, rtn´1 “ tn ´ ε0.

So, as n Ñ 8,
?
n ´ 1 ¨ pPrrTn´1 “ tn ´ ε0s q Ñ 1{

?
2πv.

Recall: as n Ñ 8,
?
n ¨ pPrrTn “ tns q Ñ 1{

?
2πv.

Dividing the last two limits, we get:

as n Ñ 8,

?
n ´ 1 ¨ pPrrTn´1 “ tn ´ ε0s q

?
n ¨ pPrrTn “ tns q

Ñ 1.

Also, as n Ñ 8,

?
n

?
n ´ 1

Ñ 1.

Multiplying the last two limits together, we get:

as n Ñ 8,
PrrTn´1 “ tn ´ ε0s

PrrTn “ tns
Ñ 1.

Since, @n P r2..8q,

Pr rXn “ ε0 |Tn “ tn s “
PrrpXn “ ε0q&pTn “ tnqs

PrrTn “ tns

“
PrrpXn “ ε0q&pTn´1 ` Xn “ tnqs

PrrTn “ tns

“
PrrpXn “ ε0q&pTn´1 ` ε0 “ tnqs

PrrTn “ tns

“
PrrpXn “ ε0q&pTn´1 “ tn ´ ε0qs

PrrTn “ tns

“
pPrrXn “ ε0sq ¨ pPrrTn´1 “ tn ´ ε0sq

PrrTn “ tns

“ P ¨
PrrTn´1 “ tn ´ ε0s

PrrTn “ tns
,

and since, as n Ñ 8,
PrrTn´1 “ tn ´ ε0s

PrrTn “ tns
Ñ 1,

we get: as n Ñ 8,

Pr rXn “ ε0 |Tn “ tn s Ñ P . □
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Recall (§8): @countable set Θ,

FMˆ
Θ is the set of nonzero finite measures on Θ

and PΘ is the set of probability measures on Θ.

Recall (§8): @nonempty countable set Θ, @µ P FMˆ
Θ,

N pµq is the normalization of µ.

Here is a measure-theoretic version of the preceding theorem:

THEOREM 11.2. Let E Ď Z be residue-unconstrained.

Let µ P PE. Assume: Sµ “ E. Assume: |µ|2 ă 8.

Let α :“ Mµ. Let ε0 P E, P :“ µtε0u.

Let t1, t2, . . . P Z. Assume: ttn ´ nα |n P Nu is bounded.

For all n P N, let Ωn :“ tf P En | f1 ` ¨ ¨ ¨ ` fn “ tnu.

Then: as n Ñ 8, pN pµn|Ωnqqtf P Ωn | fn “ ε0u Ñ P .

I don’t know whether “|µ|2 ă 8” can be replaced by “|µ|1 ă 8”.

Part of the content of Theorem 11.2 is:

@sufficiently large n P N, µnpΩnq ą 0,

since, otherwise, µn|Ωn would be the zero measure on Ωn,

and so N pµn|Ωnq would not be defined.

We record the tn “ t0 ` nα special case of the past two theorems:

THEOREM 11.3. Let E Ď Z be residue-unconstrained. Let t0 P Z.
Let X1, X2, . . . be an iid sequence of Z-valued L2 random-variables.

Assume: @n P N, tt P Z |PrrXn “ ts ą 0u “ E. Let α P Z, P P R.
Let ε0 P E. Assume: @n P N, ErXns “ α and PrrXn “ ε0s “ P .

Then: as n Ñ 8, Pr rXn “ ε0 |X1 ` ¨ ¨ ¨ ` Xn “ t0 ` nα s Ñ P .

THEOREM 11.4. Let E Ď Z be residue-unconstrained. Let t0 P Z.
Let µ P PE. Assume: Sµ “ E. Assume: |µ|2 ă 8.

Let α :“ Mµ. Assume: α P Z. Let ε0 P E, P :“ µtε0u.

For all n P N, let Ωn :“ tf P En | f1 ` ¨ ¨ ¨ ` fn “ t0 ` nαu.

Then: as n Ñ 8, pN pµn|Ωnqqtf P Ωn | fn “ ε0u Ñ P .

We record the t0 “ 0 special case of the past two theorems:

THEOREM 11.5. Let E Ď Z be residue-unconstrained.

Let X1, X2, . . . be an iid sequence of Z-valued L2 random-variables.

Assume: @n P N, tt P Z |PrrXn “ ts ą 0u “ E. Let α P Z, P P R.
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Let ε0 P E. Assume: @n P N, ErXns “ α and PrrXn “ ε0s “ P .

Then: as n Ñ 8, Pr rXn “ ε0 |X1 ` ¨ ¨ ¨ ` Xn “ nα s Ñ P .

THEOREM 11.6. Let E Ď Z be residue-unconstrained.

Let µ P PE. Assume: Sµ “ E. Assume: |µ|2 ă 8.

Let α :“ Mµ. Assume: α P Z. Let ε0 P E, P :“ µtε0u.

For all n P N, let Ωn :“ tf P En | f1 ` ¨ ¨ ¨ ` fn “ nαu.

Then: as n Ñ 8, pN pµn|Ωnqqtf P Ωn | fn “ ε0u Ñ P .

Example: Let E :“ t´1, 0, 3u.

Then: E Ď Z and E is residue-unconstrained.

Let X1, X2 . . . be Z-valued iid random-variables s.t.,

@n P N, PrrXn “ ´1 s “ 1{2,

PrrXn “ 0 s “ 1{3,

PrrXn “ 3 s “ 1{6.

Then: @n P N, E “ t t P Z | PrrXn “ t s ą 0 u.

Let ε0 “ 3, P :“ 1{6.

Then: @n P N, PrrXn “ ε0s “ P .

We have: @n P N, ErXns “ 0. Let α :“ 0.

Then, @n P N, ErXns “ α.

Then, by Theorem 11.5, we have:

as n Ñ 8, Pr rXn “ ε0 |X1 ` ¨ ¨ ¨ ` Xn “ nα s Ñ P .

Then: as n Ñ 8, Pr rXn “ 3 |X1 ` ¨ ¨ ¨ ` Xn “ 0 s Ñ 1{6.

For all n P N, let Tn :“ X1 ` ¨ ¨ ¨ ` Xn.

Then: as n Ñ 8, Pr rXn “ 3 | Tn “ 0 s Ñ 1{6.

Thus Theorem 11.5 reproduces the result of §10.

12. Solving the main problem

We finally have all we need to solve the main problem (end of §3).

Let pp, q, rq :“
p1, 9´1{10, 9´1q

1 ` 9´1{10 ` 9´1
.

We compute pp, q, rq « p 0.5225 , 0.4194 , 0.0581 q,

all accurate to four decimal places.

Again, let’s say I am one of the professors applying to the GFA.

We will show: Under the GFA’s first system (§3),

my probability of getting $ 0 is p, approximately and

my probability of getting $ 1 is q, approximately and

my probability of getting $10 is r, approximately.
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Recall: Ω “

!

ω : r1..N s Ñ t0, 1, 10u
ˇ

ˇ

řN
ℓ“1 rωpℓqs “ N

)

.

Recall (§5): the notations iω, jω, kω.

Let S :“
ř

ωPΩ piωqjωrkω .

By the work in §7, p ` q ` r “ 1 and q ` 10r “ 1 and

@ω P Ω, piωqjωrkω {S “ 1 { p#Ωq.

Let X1, X2, . . . be Z-valued iid random-variables s.t., @n P N,
PrrXn “ 0 s “ p,

PrrXn “ 1 s “ q,

PrrXn “ 10 s “ r.

Then X1, X2, . . . is a sequence of L2 random-variables.

Also, @n P N, ErXns “ q ` 10r.

So, since q ` 10r “ 1, we get:

@n P N, ErXns “ 1.

We model the GFA’s second system (§5) by: @ℓ P r1..N s,

Professor#ℓ receives Xℓ dollars.

For all n P N, let Tn :“ X1 ` ¨ ¨ ¨ ` Xn.

We model the GFA’s third system (§5) by: @ℓ P r1..N s,

Professor#ℓ receives Xℓ dollars, conditioned on TN “ N .

Since @ω P Ω, piωqjωrkω {S “ 1 { p#Ωq,

it follows that: the third system is equivalent to the first.

For definiteness, let’s assume that I am Professor#N .

Then, assuming N is large, we wish to show:

PrrXN “ 0 |TN “ N s « p and

PrrXN “ 1 |TN “ N s « q and

PrrXN “ 10 |TN “ N s « r.

To be more precise, we wish to show: as n Ñ 8,

PrrXn “ 0 |Tn “ n s Ñ p and

PrrXn “ 1 |Tn “ n s Ñ q and

PrrXn “ 10 |Tn “ n s Ñ r.

Let E :“ t0, 1, 10u. Then: E is residue-unconstrained.

Given ε0 P E, let P :“

$

’

’

&

’

’

%

p, if ε0 “ 0

q, if ε0 “ 1

r, if ε0 “ 10,

want: as n Ñ 8, PrrXn “ ε0|Tn “ ns Ñ P .

By definition of X1, X2, . . ., we get: @n P N, PrrXn “ ε0s “ P .

Let α :“ 1. Then: α P Z and @n P N, ErXns “ α.
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Also, @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

Then, by Theorem 11.5, we have:

as n Ñ 8, PrrXn “ ε0|X1 ` ¨ ¨ ¨ ` Xn “ nαs Ñ P .

Then: as n Ñ 8, PrrXn “ ε0| Tn “ n s Ñ P .

13. Probability of two professors getting zero

Under the GFA’s first system, since N is large, one would expect:

the award amounts of two different professors

are almost independent.

Then, for example, one would expect:

the probability that two professors both receive zero dollars

should be very close to the square of

the probability that one professor receives zero dollars.

We will formalize this statement and prove it, below.

For definiteness, we will assume that

the two professors are Professor #pN ´ 1q and Professor #N .

Let pp, q, rq :“
p1, 9´1{10, 9´1q

1 ` 9´1{10 ` 9´1
. Then (§7): p ` q ` r “ 1.

Let X1, X2, . . . be Z-valued iid random-variables s.t., @n P N,
PrrXn “ 0 s “ p,

PrrXn “ 1 s “ q,

PrrXn “ 10 s “ r.

Then X1, X2, . . . is a sequence of L2 random-variables.

For all n P N, let Tn :“ X1 ` ¨ ¨ ¨ ` Xn.

Assuming N is large, our goal is therefore to prove:

Pr r XN´1 “ 0 “ XN | TN “ N s « p2.

To be more precise, we will prove:

as n Ñ 8, Pr r Xn´1 “ 0 “ Xn | Tn “ n s Ñ p2.

For all n P N, define ψn : Z Ñ R by:

@t P Z, ψnptq “ PrrTn “ ts.

For all n P N, let an :“ ψnpn ` 2q, zn :“ ψnpnq.

Since, @n P N, we have

both zn “ ψnpnq “ PrrTn “ ns

and PrrTn “ ns “ PrrX1 ` ¨ ¨ ¨ ` Xn “ ns

ě PrrX1 “ ¨ ¨ ¨ “ Xn “ 1s “ qn ą 0,

we conclude: @n P N, zn “ PrrTn “ ns ą 0.
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Claim: Let n P r3..8q. Then PrrXn´1 “ 0 “ Xn |Tn “ ns “ p2 ¨
an´2

zn
.

Proof of Claim: We have Tn “ X1 ` ¨ ¨ ¨ ` Xn´2 ` Xn´1 ` Xn.

Since PrrpXn´1 “ 0 “ Xnq&pTn “ nqs

“ PrrpXn´1 “ 0 “ Xnq&pX1 ` ¨ ¨ ¨ ` Xn´2 ` Xn´1 ` Xn “ nqs

“ PrrpXn´1 “ 0 “ Xnq&pX1 ` ¨ ¨ ¨ ` Xn´2 ` 0 ` 0 “ nqs

“ PrrpXn´1 “ 0 “ Xnq&pX1 ` ¨ ¨ ¨ ` Xn´2 “ nqs,

it follows, from independence of X1, . . . , Xn, that

PrrpXn´1 “ 0 “ Xnq&pTn “ nqs

“ pPrrXn´1 “ 0s q ¨ pPrrXn “ 0s q ¨ pPrrX1 ` ¨ ¨ ¨ ` Xn´2 “ ns q.

So, since PrrXn´1 “ 0s “ p “ PrrXn “ 0s

and since X1 ` ¨ ¨ ¨ ` Xn´2 “ Tn´2,

we get: PrrpXn´1 “ 0 “ Xnq&pTn “ nqs “ p2 ¨ pPrrTn´2 “ nsq.

Then PrrXn´1 “ 0 “ Xn |Tn “ ns “
PrrpXn´1 “ 0 “ Xnq&pTn “ nqs

PrrTn “ ns

“
p2 ¨ pPrrTn´2 “ nsq

PrrTn “ ns
“ p2 ¨

ψn´2pnq

ψnpnq
“ p2 ¨

an´2

zn
.

End of proof of Claim.

Because of the Claim, we want to show: as n Ñ 8, p2 ¨
an´2

zn
Ñ p2.

Want: as n Ñ 8,
an´2

zn
Ñ 1.

We compute: @n P N, ErXns “ q ` 10r.

Recall (§7): q ` 10r “ 1. Then: @n P N, ErXns “ 1.

We compute: @n P N, VarrXns “ q` 100r´ 1.

Let v :“ q ` 100r ´ 1. Then: @n P N, VarrXns “ v.

Since v “ pq ` 10r ´ 1q ` 90r “ 0 ` 90r “ 90r, and since 0 ă r ă 8,

we get: 0 ă v ă 8. Let τ :“ 1{
?
2πv. Then: τ ą 0.

Let α :“ 1. Then, α P Z and @n P N, ErXns “ α.

Let E :“ t0, 1, 10u. Then, @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

Also, E is residue-unconstrained.

By Theorem 9.9, as n Ñ 8,
?
n ¨ pPrrTn “ nαsq Ñ 1{

?
2πv.

Then: as n Ñ 8,
?
n ¨ pPrrTn “ n sq Ñ τ .

Then: as n Ñ 8,
?
n ¨ pψnpnqq Ñ τ .

Then: as n Ñ 8,
?
n ¨ zn Ñ τ .

Let t0 :“ 2. Then t0 P Z and @n P N, t0 ` nα “ n ` 2.

By Theorem 9.7, as n Ñ 8,
?
n ¨ pPrrTn “ t0 ` nαsq Ñ 1{

?
2πv.

Then: as n Ñ 8,
?
n ¨ pPrrTn “ n ` 2 sq Ñ τ .
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Then: as n Ñ 8,
?
n ¨ pψnpn ` 2qq Ñ τ .

Then: as n Ñ 8,
?
n ¨ an Ñ τ .

Then: as n Ñ 8,
?
n ´ 2 ¨ an´2 Ñ τ .

Recall: as n Ñ 8,
?
n ¨ zn Ñ τ .

Dividing the last two limits, we get:

as n Ñ 8,

?
n ´ 2 ¨ an´2

?
n ¨ zn

Ñ 1.

Also, as n Ñ 8,

?
n

?
n ´ 2

Ñ 1.

Multiplying these last two limits, we get:

as n Ñ 8,
an´2

zn
Ñ 1.

14. Fraction of professors getting a zero award

Let pp, q, rq :“
p1, 9´1{10, 9´1q

1 ` 9´1{10 ` 9´1
.

We compute pp, q, rq « p 0.5225 , 0.4194 , 0.0581 q,

all accurate to four decimal places.

Let X1, X2, . . . be Z-valued iid random-variables s.t., @n P N,
PrrXn “ 0 s “ p,

PrrXn “ 1 s “ q,

PrrXn “ 10 s “ r.

For all n P N, let Tn :“ X1 ` ¨ ¨ ¨ ` Xn.

For all n P N, let In be the indicator variable of the event: Xn “ 0.

For all n P N, let Jn :“ pI1 ` ¨ ¨ ¨ ` Inq{n.

Using the GFA’s first (or third) awards system, the random-variable

JN conditioned on TN “ N

represents the fraction of professors receiving a $0 award.

In this section, we will prove the following:

Claim: @ε ą 0, as n Ñ 8, Pr r p´ ε ă Jn ă p` ε |Tn “ ns Ñ 1.

Assume, for a moment, that this Claim is true.

Then: as n Ñ 8, Pr r p´0.02 ă Jn ă p`0.02 |Tn “ ns Ñ 1.

From this, it follows that, if N is sufficiently large, then

Pr r p ´ 0.02 ă JN ă p ` 0.02 | TN “ N s ą 0.99,

so Pr r p ´ 0.02 ă JN | TN “ N s ą 0.99,

so Pr r JN ą p ´ 0.02 | TN “ N s ą 0.99.

Since p « 0.5225, accurate to four decimal places, we get
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p ´ 0.02 ą 0.5,

so r JN ą p ´ 0.02 s ñ r Jn ą 0.5 s,

so Pr r JN ą p ´ 0.02 | TN “ N s

ď Pr r JN ą 0.5 | TN “ N s.

Therefore, for N is sufficiently large, since

Pr r JN ą 0.5 | TN “ N s

ě Pr r JN ą p ´ 0.02 | TN “ N s ą 0.99,

we conclude: under the GFA’s first system, with probability ą 99%,

over 50% of the professors receive $0.

Proof of Claim:

Given ε ą 0, want: as n Ñ 8, Pr r p´ ε ă Jn ă p` ε |Tn “ n s Ñ 1.

Let E :“ t0, 1, 10u. Then E is residue-unconstrained.

Also, @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

Let α :“ 1. Then: α P Z and @n P N, ErXns “ α.

For all n P N, let κn :“ E r In | Tn “ n s.

Then: @n P N, κn “ Pr r Xn “ 0 | Tn “ n s.

By Theorem 11.5, we get:

as n Ñ 8, PrrXn “ 0 |X1 ` ¨ ¨ ¨ ` Xn “ nαs Ñ p.

That is, as n Ñ 8, PrrXn “ 0 | Tn “ n s Ñ p.

Then: as n Ñ 8, κn Ñ p.

So, Dn0 P N s.t., @n P rn0..8q,

we have p ´ pε{2q ă κn ă p ` pε{2q,

and so both p ´ ε ă κn ´ pε{2q and κn ` pε{2q ă p ` ε,

and so rκn ´ pε{2q ă Jn ă κn ` pε{2q s ñ r p´ ε ă Jn ă p` ε s,

and so Prrκn ´ pε{2q ă Jn ă κn ` pε{2q |Tn “ n s

ď Prr p ´ ε ă Jn ă p ` ε |Tn “ n s.

It therefore suffices to show:

as n Ñ 8, Pr rκn ´ pε{2q ă Jn ă κn ` pε{2q |Tn “ n s Ñ 1.

We have: @n P N, Tn is invariant under permutation of X1, . . . , Xn,

as is the joint-distribution of X1, . . . , Xn.

Then: @n P N, @i P r1..ns, E r Ii | Tn “ n s “ E r In | Tn “ n s.

Then: @n P N, @i P r1..ns, E r Ii | Tn “ n s “ κn.

Since, @n P N, Jn “ pI1 ` ¨ ¨ ¨ ` Inq{n, we get:

@n P N, E r Jn | Tn “ n s “ p
řn

i“1 E r Ii | Tn “ n s q { n.

Then: @n P N, E r Jn | Tn “ n s “ p
řn

i“1 κn q { n.

Then: @n P N, E r Jn | Tn “ n s “ p nκn q { n.

Then: @n P N, E r Jn | Tn “ n s “ κn.
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For all n P N, let vn :“ Var r Jn |Tn “ n s.

Then, by Chebyshev’s inequality, we have: @n P N,
Pr rκn ´ pε{2q ă Jn ă κn ` pε{2q |Tn “ n s ě 1 ´ pvn{pε{2q2q.

It therefore suffices to show: as n Ñ 8, vn Ñ 0.

For all n P N, let vn :“ Var r Jn |Tn “ n s.

Recall: as n Ñ 8, κn Ñ p.

Since @n P N, vn “ Var r Jn |Tn “ n s

“ pE r J2
n |Tn “ n s q ´ pE r Jn |Tn “ n s q2

“ pE r J2
n |Tn “ n s q ´ κ2n.

and since, as n Ñ 8, κ2n Ñ p2,

we want: as n Ñ 8, E r J2
n |Tn “ n s Ñ p2.

For all n P r2..8q, let λn :“ E r In´1 ¨ In | Tn “ n s.

Then: @n P r2..8q, λn “ Pr r Xn´1 “ 0 “ Xn | Tn “ n s.

So, by the result of §13, we get: as n Ñ 8, λn Ñ p2.

For all n P N, since In is an indicator variable, we get: In P t0, 1u a.s.

Then: @n P N, In “ I2n a.s.

Then: @n P N, E r In | Tn “ n s “ E r I2n | Tn “ n s.

Recall: @n P N, E r In | Tn “ n s “ κn.

Then: @n P N, κn “ E r I2n | Tn “ n s.

For all n P N, for all i, j P r1..ns, let cijn :“ E r Ii ¨ Ij | Tn “ n s.

We have: @n P N, Tn is invariant under permutation of X1, . . . , Xn,

as is the joint-distribution of X1, . . . , Xn.

Then @n P N, @i P r1..ns, E r I2i | Tn “ n s “ E r I2n, | Tn “ n s,

so, @n P N, @i P r1..ns, E r I2i | Tn “ n s “ κn,

so, @n P N, @i P r1..ns, ciin “ κn.

Similarly, @n P r2..8q, @i, j P r1..ns, if i ‰ j, then

E r Ii ¨ Ij | Tn “ n s “ E r In´1 ¨ In | Tn “ n s,

so, @n P r2..8q, @i, j P r1..ns, if i ‰ j, then

E r Ii ¨ Ij | Tn “ n s “ λn.

so, @n P r2..8q, @i, j P r1..ns, if i ‰ j, then

cijn “ λn.

Then: @n P N, @i, j P r1..ns, cijn “

#

κn, if i “ j

λn, if i ‰ j.

Then: @n P N,
řn

i“1

řn
j“1 cijn “ n ¨ κn ` pn2 ´ nq ¨ λn.

Recall: as n Ñ 8, κn Ñ p and λn Ñ p2.

Since @n P N, Jn “ pI1 ` ¨ ¨ ¨ ` Inq{n,

we get: @n P N, J2
n “ p

řn
i“1

řn
j“1 r Ii ¨ Ij s q { n2.
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Then: @n P N, E r J2
n | Tn “ n s “ p

řn
i“1

řn
j“1 cijn q { n2.

Then: @n P N, E r J2
n | Tn “ n s “ p1{nq ¨ κn ` p1´ p1{nqq ¨ λn.

Then: as n Ñ 8, E r J2
n | Tn “ n s Ñ 0 ¨ p ` 1 ¨ p2.

Then: as n Ñ 8, E r J2
n | Tn “ n s Ñ p2.

End of proof of Claim.

15. Boltzmann distributions on nonempty finite sets

Recall (§8): @countable set Θ,

MΘ is the set of measures on Θ

and FMˆ
Θ is the set of nonzero finite measures on Θ

and PΘ is the set of probability measures on Θ.

Recall (§8): @nonempty countable set Θ, @µ P FMˆ
Θ,

N pµq is the normalization of µ.

DEFINITION 15.1. Let E Ď R be nonempty and finite, β P R.
The unnormalized-β-Boltzmann distribution on E is

the measure pBE
β P FMˆ

E defined by:

@ε P E, pBE
β tεu “ e´β¨ε.

Also, the β-Boltzmann distribution on E is

BE
β :“ N p pBE

β q P PE.

Then: @ε P E, we have: BE
β tεu “ p pBE

β tεuq { p pBE
β pEqq.

Example: Let E :“ t0, 1, 10u and let β P R.
Then: pBE

β t0u “ 1, pBE
β t1u “ e´β, pBE

β t10u “ e´10β.

Let C :“ 1{p1 ` e´β ` e´10βq.

Then: BE
β t0u “ C, BE

β t1u “ Ce´β, BE
β t10u “ Ce´10β.

Example: Let E :“ t2, 4, 8, 9u and let β P R.
Then: pBE

β t2u “ e´2β, pBE
β t4u “ e´4β,

pBE
β t8u “ e´8β, pBE

β t9u “ e´9β.

Let C :“ 1{pe´2β ` e´4β ` e´8β ` e´9βq.

Then: BE
β t2u “ Ce´2β, BE

β t4u “ Ce´4β,

BE
β t8u “ Ce´8β, BE

β t9u “ Ce´9β.

Recall (§8): For any countable set Θ, for any µ P MΘ,
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Sµ is the support of µ.

Note: @nonempty finite E Ď R, @β P R, we have: S
pBE
β

“ E “ SBE
β
.

THEOREM 15.2. Let E Ď R be nonempty and finite.

Let ε0 P E, β, ξ P R. Then: BE´ξ
β tε0 ´ ξu “ BE

β tε0u.

Proof. We have: BE´ξ
β tε0 ´ ξu “

e´β¨pε0´ξq

ř

εPE re´β¨pε´ξqs

“
e´β¨ε0 ¨ eβ¨ξ

ř

εPE re´β¨ε ¨ eβ¨ξs

“
eβ¨ξ ¨ e´β¨ε0

eβ¨ξ ¨
ř

εPE re´β¨εs

“
e´β¨ε0

ř

εPE re´β¨εs
“ BE

β tε0u. □

Recall (§8): Let Θ Ď R be countable, µ P PΘ. Assume #Sµ ă 8.

Then |µ|1 ă 8 and Mµ is the mean of µ and Vµ is the variance of µ.

Let E Ď R be nonempty and finite. Let β P R. We define:

ΓE
β :“

ř

εPE rε ¨ eβ¨εs,

∆E
β :“

ř

εPE reβ¨εs,

AE
β :“ ΓE

β {∆E
β .

Then: ΓE
β “

ř

εPE rε ¨ p pBE
β tεuqs.

Also, ∆E
β “

ř

εPE r pBE
β tεus, and so ∆E

β “ pBE
β pEq.

Since
ΓE
β

∆E
β

“

ř

εPE rε ¨ p pBE
β tεuqs

pBE
β pEq

“
ÿ

εPE

rε ¨ pBE
β tεuqs,

we conclude: AE
β “ MBE

β
.

Then: AE
β is the average value of any E-valued random-variable

whose distribution in E is BE
β .

THEOREM 15.3. Let E Ď R be nonempty and finite. Let β, ξ P R.
Then: AE´ξ

β “ AE
β ´ ξ.

Proof. Want: MBE´ξ
β

“ MBE
β

´ ξ.

Let λ :“ BE´ξ
β , µ :“ BE

β . Want: Mλ “ Mµ ´ ξ.

We have: λ P PE´ξ and µ P PE.

By Theorem 15.2, we have: @ε P E, BE´ξ
β tε ´ ξu “ BE

β tεu.

Then: @ε P E, λtε ´ ξu “ µtεu.
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Since µ P PE, we get: µpEq “ 1.

Then: Mλ “
ř

εPE r pε ´ ξq ¨ pλtε ´ ξuq s

“
ř

εPE r pε ´ ξq ¨ pµtεuq s

“
ř

εPE r ε ¨ pµtεuq ´ ξ ¨ pµtεuq s

“ p
ř

εPE r ε ¨ pµtεuq s q ´ p
ř

εPE r ξ ¨ pµtεuq s q

“ p
ř

εPE r ε ¨ pµtεuq s q ´ ξ ¨ p
ř

εPE rµtεu s q

“ Mµ ´ ξ ¨ pµpEqq “ Mµ ´ ξ ¨ 1 “ Mµ ´ ξ. □

THEOREM 15.4. Let E Ď R be nonempty and finite. Then:

as β Ñ 8, AE
β Ñ minE

and as β Ñ ´8, AE
β Ñ maxE.

The proof is a matter of bookkeeping, best explained by example:

Let E :“ t2, 4, 8, 9u. Then minE “ 2 and maxE “ 9.

Since, @β P R, AE
β “

2e´2β ` 4e´4β ` 8e´8β ` 9e´9β

e´2β ` e´4β ` e´8β ` e´9β
,

we get as β Ñ 8, AE
β Ñ 2{1

and as β Ñ ´8, AE
β Ñ 9{1,

and so as β Ñ 8, AE
β Ñ minE

and as β Ñ ´8, AE
β Ñ maxE.

For all nonempty, finite E Ď R, define AE
‚ : R Ñ R by:

@β P R, AE
‚ pβq “ AE

β .

THEOREM 15.5. Let E Ď R. Assume: 2 ď #E ă 8.

Then: AE
‚ is a strictly-decreasing Cω-diffeomorphism

from R onto pminE; maxEq.

Proof. Let κ :“ #E. Choose ε1, . . . , εκ P R s.t. E “ tε1, . . . , εκu.

Then: 2 ď κ ă 8 and ε1, . . . , εκ are distinct.

Then: @β P R, AE
‚ pβq “

řκ
i“1 rεi ¨ e´β¨εis
řκ

j“1 re´β¨εj s
. Then AE

‚ : R Ñ R is Cω.

So, by Theorem 15.4 and the Cω-Inverse Function Theorem and

the Mean Value Theorem, it suffices to show: pAE
‚ q1 ă 0 on R.

Given β P R, want: pAE
‚ q1pβq ă 0.

Let P :“
řκ

i“1 r εi ¨ e´β¨εi s, P 1 :“
řκ

i“1 r p´ε2i q ¨ e´β¨εi s.

Let Q :“
řκ

j“1 r e´β¨εj s, Q1 :“
řκ

j“1 r p´εjq ¨ e´β¨εj s.

Then Q ą 0. Also, by the Quotient Rule, pAE
‚ q1pβq “ rQP 1 ´PQ1s{Q2.

Want: QP 1 ´ PQ1 ă 0.

We have: QP 1 “
řκ

i“1

řκ
j“1r p´ε2i q ¨ e´β¨pεi`εjq s.
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We have: PQ1 “
řκ

i“1

řκ
j“1 r p ´ εiεjq ¨ e´β¨pεi`εjq s.

Then: QP 1 ´ PQ1 “
řκ

i“1

řκ
j“1 r p´ε2i ` εiεjq ¨ e´β¨pεi`εjq s.

Interchanging i and j, we get:

QP 1 ´ PQ1 “
řκ

j“1

řκ
i“1 r p´ε2j ` εjεiq ¨ e´β¨pεj`εiq s.

By commutativity of addition and multiplication,

adding the last two equations gives:

2 ¨ pQP 1 ´ PQ1q “
řκ

i“1

řκ
j“1 r p´ε2i ´ ε2j ` 2εiεjq ¨ e´β¨pεi`εjq s.

Then: 2 ¨ pQP 1 ´ PQ1q “
řκ

i“1

řκ
j“1 r ´pεi ´ εjq

2 ¨ e´β¨pεi`εjq s.

Then: 2 ¨ pQP 1 ´ PQ1q ă 0. Then: QP 1 ´ PQ1 ă 0. □

DEFINITION 15.6. Let E Ď R.
Assume: 2 ď #E ă 8. Let α P pminE; maxEq.

The α-Boltzmann parameter on E is: BPE
α :“ pAE

‚ q´1pαq.

So the α-Boltzmann parameter on E is the unique β P R s.t. AE
β “ α.

Example: Computations at the end of §6 show:

@β P R, if
e´β ` 10e´10β

1 ` e´β ` 10e´10β
“ 1, then e´β “ 9´1{10.

Then, @β P R, if A
t0,1,10u
‚ pβq “ 1, then β “ pln 9q{10.

Then: pA
t0,1,10u
‚ q´1p1q “ pln 9q{10.

Then: BP
t0,1,10u

1 “ pln 9q{10.

Example: Let E :“ t2, 4, 8, 9u, α :“ 5, β :“ BPE
α .

To compute β, we need to solve AE
β “ 5 for β.

Since AE
‚ is strictly-decreasing, there are iterative methods of solution,

and we get: β « 0.0918, accurate to four decimal places.

(Thanks to C. Prouty for these calculations. See §27.)

THEOREM 15.7. Let E Ď R. Assume: 2 ď #E ă 8.

Let α P pminE; maxEq. Let ξ P R. Then: BPE´ξ
α´ξ “ BPE

α .

Proof. Let β :“ BPE
α . Want: BPE´ξ

α´ξ “ β.

Since β “ BPE
α “ pAE

‚ q´1pαq, we get: pAE
‚ qpβq “ α.

By Theorem 15.3, AE´ξ
β “ AE

β ´ ξ.

Since pAE´ξ
‚ qpβq “ AE´ξ

β “ AE
β ´ ξ “ ppAE

‚ qpβqq ´ ξ “ α ´ ξ,

we get: β “ pAE´ξ
‚ q´1pα ´ ξq.

So, since BPE´ξ
α´ξ “ pAE´ξ

‚ q´1pα ´ ξq, we get: BPE´ξ
α´ξ “ β. □
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16. Residue-unconstrained finite sets

In the next three theorems, we generalize

from t0, 1, 10u to arbitrary finite residue-unconstrained sets.

In the example at the end of this section,

we show that Theorem 16.3 below reproduces the result of §12.

Recall (§8): @ nonempty finite set F , @f P F , νF tfu “ 1{p#F q.

Recall (§8): @countable set Θ,

FMΘ is the set of finite measures on Θ

and FMˆ
Θ is the set of nonzero finite measures on Θ

and PΘ is the set of probability measures on Θ.

Recall (Definition 8.2): @countable set Θ, @µ P FMΘ,

@x P Θn, µntxu “ pµtx1uq ¨ ¨ ¨ pµtxnuq.

THEOREM 16.1. Let E Ď Z be finite and residue-unconstrained.

Let α P pminE; maxEq. Let β :“ BPE
α .

Let t1, t2, . . . P Z. Assume: ttn ´ nα |n P Nu is bounded.

For all n P N, let Ωn :“ tf P En | f1 ` ¨ ¨ ¨ ` fn “ tnu.

Let ε0 P E. Then: as n Ñ 8, νΩn tf P Ωn | fn “ ε0u Ñ BE
β tε0u.

Recall (§8): νHpHq “ ´1.

So, since BE
β tε0u ą 0, part of the content of this theorem is:

@sufficiently large n P N, Ωn ‰ H.

See Claim 2 in the proof below.

Proof. Let µ :“ BE
β . Then: µ P PE and Sµ “ E.

By hypothesis, E is finite. Then Sµ is finite.

So, since µ P PE Ď FME, we get: |µ|1 ă 8 and |µ|2 ă 8.

Since β “ BPE
α “ pAE

‚ q´1pαq, we get: pAE
‚ qpβq “ α.

So, since pAE
‚ qpβq “ AE

β “ MBE
β

“ Mµ, we get: Mµ “ α.

For all n P N, define ψn : Z Ñ R by:

@t P Z, ψnp t q “ µntf P En | f1 ` ¨ ¨ ¨ ` fn “ tu.

Then: @n P N, ψnptnq “ µnpΩnq.

Since E is finite and residue-unconstrained, we get: 2 ď #E ă 8.

Since #Sµ “ #E ě 2, by Theorem 8.6, we get: Vµ ą 0.

So, since Vµ “ |µ|22 ´ M2
µ ď |µ|22 ă 8, we conclude:

0 ă Vµ ă 8.

Let v :“ Vµ. Then 0 ă v ă 8. Then 1{
?
2πv ą 0.

Let τ :“ 1{
?
2πv. Then τ ą 0.
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Claim 1: As n Ñ 8,
?
n ¨ pψnptnqq Ñ τ .

Proof of Claim 1: By Theorem 9.6, we get:

as n Ñ 8,
?
n ¨ pµntf P En | f1 ` ¨ ¨ ¨ ` fn “ tnuq Ñ 1{

?
2πv.

Then: as n Ñ 8,
?
n ¨ p ψnptnq q Ñ τ .

End of proof of Claim 1.

Since τ ą 0, by Claim 1, choose n0 P N s.t.

@n P rn0..8q,
?
n ¨ pψnptnqq ą 0.

Claim 2: Let n P rn0..8q. Then: µnpΩnq ą 0.

Proof of Claim 2: Recall: ψnptnq “ µnpΩnq. Want: ψnptnq ą 0.

By the choice of n0, we get:
?
n ¨ pψnptnqq ą 0. Then: ψnptnq ą 0.

End of proof of Claim 2.

Recall: µ P PE.

Then: @n P N, µn P PEn , so µnpΩnq ď 1.

So, by Claim 2, @n P rn0..8q, 0 ă µnpΩnq ď 1.

Also, we have: @n P N, pµn|ΩnqpΩnq “ µnpΩnq.

Then: @n P rn0..8q, 0 ă pµn|ΩnqpΩnq ď 1.

Then: @n P rn0..8q, µn |Ωn P FMˆ
Ωn
.

Then: @n P rn0..8q, N pµn |Ωnq P PΩn .

Claim 3: Let n P rn0..8q. Then: N pµn |Ωnq “ νΩn .

Proof of Claim 3: Let θ :“ N pµn|Ωnq, F :“ Ωn. Then θ P PF .

Want: θ “ νF . By Theorem 8.9, given f, g P F , want: θtfu “ θtgu.

By Claim 2, we have: µnpΩnq ą 0.

Since pµn|ΩnqpΩnq “ µnpΩnq and θ “ N pµn|Ωq, we get: θ “
µn|Ωn

µnpΩnq
.

Want:
pµn|Ωnqtfu

µnpΩnq
“

pµn|Ωnqtgu

µnpΩnq
.

Want: pµn|Ωnqtfu “ pµn|Ωnqtgu.

Since f, g P F “ Ωn, we get:

pµn|Ωnqtfu “ µntfu and pµn|Ωnqtgu “ µntgu.

Want: µntfu “ µntgu.

Since #E ě 2, we get: E ‰ H. Then pBE
β pEq ą 0.

Let C :“ 1{p pBE
β pEqq. Then N p pBE

β q “ C ¨ pBE
β

By definition of pBE
β , we have: @ε P E, pBE

β tεu “ e´β¨ε.
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So, since µ “ BE
β “ N p pBE

β q “ C ¨ pBE
β ,

we get: @ε P E, µtεu “ Ce´β¨ε.

Since f P F “ Ωn, by definition of Ωn, we get: f1`¨ ¨ ¨`fn “ tn.

Since g P F “ Ωn, by definition of Ωn, we get: g1`¨ ¨ ¨`gn “ tn.

Since f1 ` ¨ ¨ ¨ ` fn “ tn “ g1 ` ¨ ¨ ¨ ` gn,

we get: Cne´β¨pf1`¨¨¨`fnq “ Cne´β¨pg1`¨¨¨`gnq.

Then: pCe´β¨f1q ¨ ¨ ¨ pCe´β¨fnq “ pCe´β¨g1q ¨ ¨ ¨ pCe´β¨gnq.

Then: p µtf1u q ¨ ¨ ¨ p µtfnu q “ p µtg1u q ¨ ¨ ¨ p µtgnu q.

Then: µntfu “ µntgu.

End of proof of Claim 3.

By hypothesis, E is residue-unconstrained and ε0 P E and

t1, t2, . . . P Z and ttn ´ nα |n P Nu is bounded.

Recall: µ P PE and Sµ “ E and |µ|2 ă 8 and Mµ “ α.

Let P :“ µtε0u. Then, since µ “ BE
β , we get: P “ BE

β tε0u.

We want: as n Ñ 8, νΩn tf P Ωn | fn “ ε0u Ñ P .

By Theorem 11.2, as n Ñ 8, pN pµn|Ωnqqtf P Ωn | fn “ ε0u Ñ P .

So, by Claim 3, as n Ñ 8, νΩn tf P Ωn | fn “ ε0u Ñ P . □

Recall (§2): @t P R, ttu is the floor of t.

We record the tn “ tnαu version of the preceding theorem:

THEOREM 16.2. Let E Ď Z be finite and residue-unconstrained.

Let α P pminE; maxEq. Let β :“ BPE
α .

For all n P N, let Ωn :“ tf P En | f1 ` ¨ ¨ ¨ ` fn “ tnαuu.

Let ε0 P E. Then: as n Ñ 8, νΩn tf P Ωn | fn “ ε0u Ñ BE
β tε0u.

We record the α P Z special case of the preceding theorem:

THEOREM 16.3. Let E Ď Z be finite and residue-unconstrained.

Let α P pminE; maxEq. Let β :“ BPE
α . Assume α P Z.

For all n P N, let Ωn :“ tf P En | f1 ` ¨ ¨ ¨ ` fn “ nαu.

Let ε0 P E. Then: as n Ñ 8, νΩn tf P Ωn | fn “ ε0u Ñ BE
β tε0u.

Example: Suppose E “ t0, 1, 10u and α “ 1.

Then ΩN “ tf P EN | f1 ` ¨ ¨ ¨ ` fN “ Nu,

so ΩN represents the set of all GFA dispensations,

as described in §3.

The measure νΩN
gives equal probability to each dispensation,

so νΩN
represents the GFA’s first system for awarding grants,

also described in §3.



38

Since β “ BPE
α “ BP

t0,1,10u

1 , we calculate: β “ pln 9q{10.

More calculation gives: pBE
β t0u, BE

β t1u, BE
β t10uq “

p1, 9´1{10, 9´1q

1 ` 9´1{10 ` 9´1
.

Since N is large, by Theorem 16.3, we get:

νΩN
tf P ΩN | fN “ ε0u « BE

β tε0u.

So, if I am the Nth professor, then, under the first system,

my probability of receiving ε0 dollars

is approximately equal to BE
β tε0u.

Thus Theorem 16.3 reproduces the result of §12.

17. Rational award sets

In this section, we investigate what happens if

the set of awards is an arbitrary set of rational numbers.

Recall that, on our Earth, which is Earth-1218,

grants are $0, $1, $10, with average grant $1.

Example: Let N0 be a positive integer.

In a parallel universe, on Earth-googol-plex,

there are N0 professors, and

grants are $10, $14.45, $54, with average grant $13.37,

Earth-googol-plex has its own GFA.

This GFA there is using the “first system” for awarding grants,

in which every dispensation is equally likely.

Question: Under this system, for any professor,

what is the approximate probability of receiving $10? $14.45? $54?

To simplify this problem, we can imagine that

the GFA makes two rounds of awards.

In the first round, it simply dispenses $10 to each professor.

In the second round, using the first system, it dispenses

additional grants of $0, $4.45, $44, with average grant $3.37.

We seek the approximate probability of the additional grant being

each of the numbers $0, $4.45, $44.

To simplify this problem still more, we can

change monetary units so that the grant amounts are all integers:

Additional grants, in pennies, are 0, 445, 4400, with average grant 337,

and we seek the approximate probability of receiving 0, 445, 4400.

Unfortunately, t0, 445, 4400u Ď 5Z ` 0,

so t0, 445, 4400u is not residue-unconstrained,
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making it difficult to apply the Discrete Local Limit Theorem.

Since gcdt0, 445, 4400u “ 5, we can change monetary units again:

Additional grants, in nickels, are 0, 89, 880, with average grant 337/5,

and we seek the approximate probability of receiving 0, 89, 880.

Let E :“ t0, 89, 880u and let α :“ 337{5.

Since 0 P E and gcdpEq “ 1, we get: E is residue-unconstrained.

The amount of money (in nickels) allocated by Congress is N0α,

to be dispensed among the N0 professors.

Unfortunately, a census reveals that: N0 is not divisible by 5.

Recall: α “ 337{5. Then N0α R Z, while 0, 89, 880 P Z.
It is therefore impossible to dispense the grant money.

The bureaucracy seizes up, there is pandemonium in the streets,

and the military steps in to impose order.

The superheros of Earth-googol-plex are committed to democracy,

and so they reverse time and select a different time-line.

On this new time-line, E and α are unchanged, but

the number, N1, of professors

is now blissfully divisible by 5, so N1α P Z.
Let ε0 P E be given.

We want: the approximate probability of receiving ε0 nickels.

Recall (§2): @t P R, ttu is the floor of t.

For all n P N, let Ωn :“ tf P En | f1 ` ¨ ¨ ¨ ` fn “ tnαu u.

Since N1α P Z, we get: ΩN1 “ tf P EN1 | f1 ` ¨ ¨ ¨ ` fN1 “ N1α u.

We want: an approximation to νΩN1
tf P ΩN1 | fN1 “ ε0u.

Since 0 P E and gcdpEq “ 1, we get: E is residue-unconstrained.

Let β :“ BPE
α . By Theorem 16.2, we have:

as n Ñ 8, νΩn tf P Ωn | fn “ ε0u Ñ BE
β tε0u.

So, assuming N1 is large, we get

νΩN1
tf P ΩN1 | fN1 “ ε0u « BE

β tε0u.

For each ε0 P t0, 89, 880u, we want to compute BE
β tε0u.

We therefore want to compute pBE
β t0u , BE

β t89u , BE
β t880u q.

Since β “ BPE
α “ BP

t0,89,880u

337{5 , we see that:

to evaluate β, we must solve A
t0,89,880u
‚ pβq “ 337{5 for β.

Since, by Theorem 15.5, A
t0,89,880u
‚ is strictly-decreasing,

there are simple iterative methods to do this.

We calculate β “ 0.003144, accurate to six decimals.

We also calculate pBE
β t0u , BE

β t89u , BE
β t880u q “ p 0.5498 , 0.4156 , 0.0345 q,
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all accurate to four decimals.

(Thanks to C. Prouty for this calculation. See §27.)

More generally: Imagine a parallel universe with N professors.

Let E0 denote the set of grant-awards.

Assume E0 Ď Q and 2 ď #E0 ă 8.

Let α0 denote the average award.

Since #E0 ě 2, we get: E0 ‰ H. Choose ε0 P E0. Then ε0 P Q.

Let E1 :“ E0 ´ ε0, α1 :“ α0 ´ ε0. Then 0 P E1.

So, by giving out awards in two rounds (first ε0, then the remainder),

we are reduced to a case where 0 is a possible grant-award.

Since E1 “ E0 ´ ε0 Ď Q, choose m P N s.t. mE1 Ď Z.
Let E2 :“ mE1, α2 :“ mα1. Then: E2 Ď Z.
So, by change of monetary unit,

we are reduced to a case where every grant-award is an integer

and where 0 is still a possible grant-award.

Let g :“ gcdpE2q, E :“ E2{g, α :“ α2{g.

Then 0 P E and gcdpEq “ 1, so E is residue-unconstrained.

So, by change of monetary unit, we are reduced to a case where

the set of grant-awards is residue-unconstrained.

Since every grant-award is an integer,

if Nα R Z, then no dispensation is possible, leading to

your typical military dictatorship and superhero intervention.

On the other hand, recalling that N is a large positive integer,

if Nα P Z, then, using Theorem 16.2,

we can compute the approximate probability of each award.

18. Irrational awards

In this section, we briefly discuss the case where

NOT every grant award is a rational number.

Here, we only present an example to show that

the award probabilities may NOT follow a Boltzmann distribution.

Example: On Earth-aleph-1, the GFA gives

grants of 0 ,
?
2 ,

?
3 , 10 ´

?
2 ´

?
3 dollars,

with an average grant of 1 dollar,

giving equal probability to every possible dispensation.

Assume: N is the number of professors and N is divisible by 10.
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Let M :“ N{10. Then M P N and there are 10M professors.

Moreover, since the average grant is 1 dollar, we get:

there are 10M dollars to dispense among the 10M professors.

Claim: On Earth-aleph-1, every dispensation of awards has

7M grants of 0 dollars,

M grants of
?
2 dollars,

M grants of
?
3 dollars,

M grants of 10 ´
?
2 ´

?
3 dollars.

Proof of Claim: Given a dispensation,

let w be the number of 0 dollar grants and

let x be the number of
?
2 dollar grants and

let y be the number of
?
3 dollar grants and

let z be the number of 10 ´
?
2 ´

?
3 dollar grants,

want: w “ 7M and x “ y “ z “ M .

Because the total money dispensed is 10M dollars, we get:

w ¨ 0 ` x ¨
?
2 ` y ¨

?
3 ` z ¨ p10 ´

?
2 ´

?
3q “ 10M .

Then: p10z ´ 10Mq ¨ 1 ` px ´ zq ¨
?
2 ` py ´ zq ¨

?
3 “ 0.

So, since 1,
?
2,

?
3 are linearly indpendent over Q, we get:

10z ´ 10M “ 0 and x ´ z “ 0 and y ´ z “ 0.

Then z “ M and x “ z and y “ z. Then x “ y “ z “ M .

It remains only to show: w “ 7M .

Because there are 10M professors, we get: w ` x ` y ` z “ 10M .

Then: w ` M ` M ` M “ 10M . Then: w “ 7M .

End of proof of Claim.

Of the four grant amounts, the largest is 10 ´
?
2 ´

?
3.

So, if I am one of the 10M professors, then I would hope to be among

the lucky M who receive 10 ´
?
2 ´

?
3 dollars.

My probability of being so lucky is: M{p10Mq, i.e., 10%.

That is, we obtain a probabity of:

10% for 10 ´
?
2 ´

?
3 dollars.

Extending this reasoning, we obtain probabities of:

70% for 0 dollars,

10% for
?
2 dollars,

10% for
?
3 dollars,

10% for 10 ´
?
2 ´

?
3 dollars.

In a Boltzmann distribution, depending on whether β “ 0 or β ‰ 0,
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either the probabilities are all equal

or the probabilities are all distinct from one another.

The numbers 70,10,10,10 are neither all equal nor all distinct.

Thus, the 70-10-10-10 distribution above is NOT Boltzmann.

19. Earth-minimum-Mahlo-cardinal and the BUA

Next, we wish to handle thermodynamic systems in which

many states may have a single energy-level.

One says that such an energy-level is “degenerate”.

In this section, we develop a whimsical example.

In §20 and §21, we will develop a general theory.

Recall that N P N is large.

In a parallel universe, on Earth-minimum-Mahlo-cardinal,

the BUA (Best University Anywhere) employs N professors.

Each professor has a number, from 1 to N .

Each professor wanders the campus,

carrying two bags: one red, one blue.

Each bag is closed from view, but has money in it or is empty.

The “state” of a professor is the pair σ “ pσ1, σ2q such that

σ1 is the number of dollars in the professor’s red bag,

σ2 is the number of dollars in the professor’s blue bag;

the professor’s “wealth” is σ1 ` σ2 dollars.

So, if I am one of the professors, and if my state is p3, 2q,

then I have: $3 in my red bag and $2 in my blue bag,

and my wealth is $5.

By BUA rules, the amount of money in any bag is always

$0 or $1 or $2 or $3 or $4,

and each professor’s wealth is always ď $7.

Therefore, the set of allowable states is

p r0..4s ˆ r0..4s q z t p4, 4q u.

Let Σ :“ p r0..4s ˆ r0..4s q z t p4, 4q u.

Since #p r0..4s ˆ r0..4s q “ 5 ¨ 5 “ 25, we get: #Σ “ 24.

Define ε : Σ Ñ r0..7s by: @σ P Σ, εpσq “ σ1 ` σ2.

For convenience of notation, @σ P Σ, let εσ :“ εpσq.

If I am one of the professors,

and if my state is σ “ pσ1, σ2q P Σ,

then I have: $σ1 in my red bag and $σ2 in my blue bag,
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and my wealth is $εσ.

Since εp3,2q “ 5 “ εp1,4q, we see that ε is not one-to-one,

and we have a so-called “degeneracy” at 5.

This function ε has many other degeneracies, as well.

Recall: The professors are numbered, from 1 to N .

At random moments,

random pairs of wandering professors cross paths, and interact.

Each interaction involves three steps:

a game and then

a verbal offer and then

a rejection or a money transfer.

The first step, the game, is played as follows:

one of the two professors flips a fair coin and

if heads, then the lower-numbered professor wins and

if tails, then the higher-numbered professor wins.

Next, without touching any money,

the losing professor verbally offers $1 to the winning professor.

The losing professor then flips a fair coin, and

if heads, then the loser’s red bag is opened and

if tails, then the loser’s blue bag is opened.

If the loser’s open bag is empty, then

then the winner gallantly rejects the $1 offer and

the opened bag is closed, the interaction is over, and

the professors continue their wanderings.

On the other hand, if the loser’s open bag is NOT empty, then,

both of the winner’s bags are opened.

Recall that, by BUA rules, every professor’s wealth must be ď $7.

If the winner’s wealth is $7,

then the winner rejects the $1 offer and

the opened bags are closed, the interaction is over, and

the professors continue their wanderings.

On the other hand, if the winner’s wealth is ď $6,

then the winner flips a fair coin, and

if heads, then the winner’s red bag is closed and

if tails, then the winner’s blue bag is closed.

At this point, the winner has one open bag, as does the loser.

Moreover, the loser’s open bag is NOT empty.
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Recall that no bag may have more than $4.

If the winner’s open bag has $4,

then the winner rejects the $1 offer and

the opened bags are closed, the interaction is over, and

the professors continue their wanderings.

On the other hand, if the winner’s open bag has ď $3,

then $1 is transferred

from the losing professor’s open bag

to the winning professor’s open bag;

then the opened bags are closed, the interaction is over, and

the professors continue their wanderings.

Because of these interactions,

the wealth of an individual professor may change over time,

but the sum of the wealths of all of them is constant;

there is “conservation of (total) wealth”.

An audit reveals that, at the BUA, that total wealth is always N .

A “state-dispensation” is a function r1..N s Ñ Σ,

representing the states of all N professors.

So, if, at some point in time, the state-dispensation is ω : r1..N s Ñ Σ,

then, for every ℓ P r1..N s, the state of Professor #ℓ is ωpℓq,

and the wealth of Professor #ℓ is εωpℓq;

therefore, the total wealth of all the professors is
řN

ℓ“1 εωpℓq.

As we mentioned, at the BUA, that total wealth is N .

Let Ω˚ :“
!

ω : r1..N s Ñ Σ
ˇ

ˇ

řN
ℓ“1 εωpℓq “ N

)

.

Then Ω˚ represents the set of all state-dispensations at the BUA.

The random interactions, described above,

induce a discrete Markov-chain on Ω˚.

This, in turn, induces a map Π : PΩ˚ Ñ PΩ˚ .

Let T :“ #Ω˚. Fix an ordering of Ω˚, i.e., a bijection r1..T s ãÑą Ω˚.

The Markov-chain then has a T ˆ T transition-matrix Φ,

with entries in r0; 1s, whose column-sums are all “ 1.

For every ϕ, ψ P Ω˚, the probability of transitioning from ϕ to ψ

is equal to
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the probability of transitioning from ψ to ϕ.

That is, the transition-matrix Φ is symmetric.

So, since the column-sums of Φ are all 1,

we get: the row-sums of Φ are all 1.

Let v be a Tˆ1 column vector whose entries are all 1. Then Φv “ v.

Let w :“ v{T . Then: all the entries of w are 1{T and Φw “ w.

Recall that the probability-distribution νΩ˚ P PΩ˚

assigns equal probability to each state-dispensation in Ω˚.

That is, @ω P Ω˚, νΩ˚tωu “ 1{T .

Since the entries of w are equal to these νΩ˚-probabilities,

and since Φw “ w, we get: ΠpνΩ˚q “ νΩ˚ .

We will say that two state-dispensations ϕ, ψ P Ω˚ are “adjacent”,

if there is an interaction that carries ϕ to ψ.

For any ϕ, ψ P Ω˚,

Da finite sequence of interactions that carries ϕ to ψ.

That is: @ϕ, ψ P Ω˚, Dm P N, Dω0, . . . , ωm P Ω˚

s.t. ϕ “ ω0 and ωm “ ψ

and s.t. @i P r1..ms, ωi´1 is adjacent to ωi.

That is, any two state-dispensations

are connected by an adjacency-path.

That is, the Markov-chain is irreducible.

Recall that some interactions result in a rejection;

such interactions do not change the state-dispensation.

So, a state-dispensation is sometimes adjacent to itself.

That is, there are adjacency-cycles of length 1.

It follows that the Markov-chain is aperiodic.

So, since the Markov-chain is irreducible and since ΠpνΩ˚q “ νΩ˚ ,

by the Perron-Frobenius Theorem, we get:

@µ P PΩ˚ , µ , Πpµq , ΠpΠpµqq , ΠpΠpΠpµqqq , . . . Ñ νΩ˚ .

That is, for any starting probability-distribution on Ω˚,

after enough random interactions,

the resulting probability-distribution on Ω˚

will be approximately equal to νΩ˚ ,

to any desired level of accuracy.

Problem: Suppose I am Professor #N at the BUA.

Suppose that the probability-distribution µ of state-dispensations
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is approximately equal to νΩ˚ .

For each σ P Σ, compute my probability of being in state σ.

That is, @σ P Σ, compute µtω P Ω˚ |ωpNq “ σu.

Since #Σ “ 24, there will be 24 answers.

Approximate answers are acceptable.

To make a precise mathematical problem,

we, in fact, assume that µ is exactly equal to νΩ˚ ,

and we seek the exact “thermodynamic limit”, meaning

we replace N with a variable n P N, and let n Ñ 8.

In the next two sections, we will develop a theory

to solve problems like this one.

We need only adapt our earlier methods to allow for degeneracies.

Our main theorems are

Theorem 21.1 and Theorem 21.2 and Theorem 21.3,

and the solution to the above “precise mathematical problem”

appears in the example at the end of §21.

20. Boltzmann distributions on finite sets with

degeneracy

We begin by adapting our work on Boltzmann distributions

to allow for degeneracies.

DEFINITION 20.1. Let Σ be a nonempty finite set.

Let ε : Σ Ñ R. Let β P R.
Then pBε

β P FMˆ
Σ is defined by: @σ P Σ, pBε

βtσu “ e´β¨pεpσqq.

Also, we define: Bε
β :“ N p pBε

βq P PΣ.

Then: @nonempty finite set Σ, @ε : Σ Ñ R, @β P R,
pBε
βpΣq ą 0 and @σ P Σ, Bε

βtσu “ p pBε
βtσuq { p pBε

βpΣqq

and S
pBε
β

“ Σ “ SBε
β
.

Example: Let Σ :“ t0, 1, 10u and let β P R.
Define ε : Σ Ñ R by: @σ P Σ, εpσq “ σ.

Then: pBε
βt0u “ 1, pBε

βt1u “ e´β, pBε
βt10u “ e´10β.

Let C :“ 1{p1 ` e´β ` e´10βq.
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Then: Bε
βt0u “ C, Bε

βt1u “ Ce´β, Bε
βt10u “ Ce´10β.

Example: Let Σ :“ t2, 4, 8, 9u and let β P R.
Define ε : Σ Ñ R by: @σ P Σ, εpσq “ σ.

Then: pBε
βt2u “ e´2β, pBε

βt4u “ e´4β,
pBε
βt8u “ e´8β, pBε

βt9u “ e´9β.

Let C :“ 1{pe´2β ` e´4β ` e´8β ` e´9βq.

Then: Bε
βt2u “ Ce´2β, Bε

βt4u “ Ce´4β,

Bε
βt8u “ Ce´8β, Bε

βt9u “ Ce´9β.

Example: Let Σ :“ t1, 2, 3, 4u and let β P R.
Define ε : Σ Ñ R by:

εp1q “ 2, εp2q “ 4, εp3q “ 8, εp4q “ 9.

Then: pBε
βt1u “ e´2β, pBε

βt2u “ e´4β,
pBε
βt3u “ e´8β, pBε

βt4u “ e´9β.

Let C :“ 1{pe´2β ` e´4β ` e´8β ` e´9βq.

Then: Bε
βt1u “ Ce´2β, Bε

βt2u “ Ce´4β,

Bε
βt3u “ Ce´8β, Bε

βt4u “ Ce´9β.

In the preceding three examples, ε is one-to-one.

That is, ε has no degeneracies.

In the next, ε has one degeneracy, at energy-level 9.

Example: Let Σ :“ t1, 2, 3, 4u and define ε : Σ Ñ R by:

εp1q “ 2, εp2q “ 4, εp3q “ 9, εp4q “ 9.

Then: pBε
βt1u “ e´2β, pBε

βt2u “ e´4β,
pBε
βt3u “ e´9β, pBε

βt4u “ e´9β.

Let C :“ 1{pe´2β ` e´4β ` 2 ¨ e´9βq.

Then: Bε
βt1u “ Ce´2β, Bε

βt2u “ Ce´4β,

Bε
βt3u “ Ce´9β, Bε

βt4u “ Ce´9β.

In the next example, ε has many degeneracies.

Example: Let Σ :“ p r0..4s ˆ r0..4s q z t p4, 4q u.

Let β P R and define ε : Σ Ñ R by: @σ P Σ, εpσq “ σ1 ` σ2.

Then: pBε
βtp3, 2qu “ e´5β, pBε

βtp1, 4qu “ e´5β, pBε
βtp0, 0qu “ 1.

Generally, @σ P Σ, pBε
βtσu “ e´pσ1`σ2q¨β.
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Let C :“ 1{p
ř

σPΣ re´pσ1`σ2q¨βsq.

Then: Bε
βtp3, 2qu “ Ce´5β, Bε

βtp1, 4qu “ Ce´5β, Bε
βtp0, 0qu “ C.

Generally, @σ P Σ, Bε
βtσu “ Ce´pσ1`σ2q¨β.

THEOREM 20.2. Let Σ be a nonempty finite set.

Let ε : Σ Ñ R, ξ, β P R. Then: Bε
β “ Bε´ξ

β .

Proof. For all σ P Σ, let εσ :“ εpσq.

Since, @σ P Σ, pBε
βtσu “ e´β¨εσ “ e´β¨ξ ¨ e´β¨pεσ´ξq “ e´β¨ξ ¨ p pBε´ξ

β tσuq,

we get: pBε
β “ e´β¨ξ ¨ pBε´ξ

β .

Since e´βξ ą 0, we get: N pe´β¨ξ ¨ pBε´ξ
β q “ N p pBε´ξ

β q.

Then: Bε
β “ N p pBε

βq “ N pe´β¨ξ ¨ pBε´ξ
β q “ N p pBε´ξ

β q “ Bε´ξ
β . □

DEFINITION 20.3. Let Σ be a nonempty finite set, ε : Σ Ñ R.
For all σ P Σ, let εσ :“ εpσq.

For all β P R, let Γε
β :“

ř

σPΣ rεσ ¨ e´β¨εσ s,

∆ε
β :“

ř

σPΣ re´β¨εσ s,

Aε
β :“ Γε

β {∆ε
β.

Let Σ be a nonempty finite set, ε : Σ Ñ R.
Then: Γε

β “
ř

σPΣ rεσ ¨ p pBε
βtσuqs.

Then: Γε
β is the integral of ε wrt pBε

β.

Since ∆ε
β “

ř

σPΣ r pBε
βtσus,

we get: ∆ε
β “ pBε

βpΣq.

Since
Γε
β

∆ε
β

“

ř

σPΣ rεσ ¨ p pBε
βtσuqs

pBε
βpΣq

,

we get: Aε
β “

ř

σPΣ rεσ ¨ pBε
βtσuqs.

Then: Aε
β is the average value of ε wrt Bε

β.

Recall (§2) the notations If , f˚A. Recall (§8) the notation ε˚µ.

Recall (Definition 8.5) the notation Mµ.

THEOREM 20.4. Let Σ be a nonempty finite set.

Let ε : Σ Ñ R, β P R. Then: Mε˚Bε
β

“ Aε
β.

Proof. For all σ P Σ, let εσ :“ εpσq.

Because Σ is the disjoint union, over t P Iε, of ε˚ttu,

we get:
ř

tPIε

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs “

ř

σPΣ rεσ ¨ pBε
βtσuqs.

Also, Aε
β “

ř

σPΣ rεσ ¨ pBε
βtσuqs.
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Then:
ř

tPIε

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs “ Aε

β.

So, since
ř

tPIε rt ¨ ppε˚B
ε
βqttuqs “ Mε˚Bε

β
,

we want:
ř

tPIε rt ¨ ppε˚B
ε
βqttuqs “

ř

tPIε

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs.

Want: @t P Iε, t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs.

Given t P Iε, want: t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs.

For all σ P ε˚ttu, since εσ “ εpσq P ttu, we get: t “ εσ.

Want: t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu r t ¨ pBε
βtσuq s.

Because ε˚ttu is the disjoint union, over σ P ε˚ttu, of tσu,

we get: Bε
βpε˚ttuq “

ř

σPε˚ttu r Bε
βtσu s.

Also, pε˚B
ε
βqttu “ Bε

βpε˚ttuq.

Then: t ¨ ppε˚B
ε
βqttuq “ t ¨ pBε

βpε˚ttuqq “
ř

σPε˚ttu r t ¨ pBε
βtσuqs. □

THEOREM 20.5. Let Σ be a nonempty finite set.

Let ε : Σ Ñ R, β, ξ P R. Then: Aε´ξ
β “ Aε

β ´ ξ.

Proof. We have: Bε
βpΣq “

ř

σPΣ rBε
βtσu s.

Since Bε
β P PΣ, we get: Bε

βpΣq “ 1.

By Theorem 20.2, we have: Bε
β “ Bε´ξ

β .

For all σ P Σ, let εσ :“ εpσq.

Then: Aε´ξ
β “

ř

σPΣ r pεσ ´ ξq ¨ pBε´ξ
β tσuq s

“
ř

σPΣ r pεσ ´ ξq ¨ pBε
βtσuq s

“ p
ř

σPΣ r εσ ¨ pBε
βtσuq s q ´ p

ř

σPΣ r ξ ¨ pBε
βtσuq s q

“ p
ř

σPΣ r εσ ¨ pBε
βtσuq s q ´ ξ ¨ p

ř

σPΣ rBε
βtσu s q

“ Aε
β ´ ξ ¨ pBε

βpΣqq “ Aε
β ´ ξ ¨ 1 “ Aε

β ´ ξ. □

THEOREM 20.6. Let Σ be a nonempty finite set, ε : Σ Ñ R.
Then: as β Ñ 8, Aε

β Ñ min Iε
and as β Ñ ´8, Aε

β Ñ max Iε.

The proof is a matter of bookkeeping, best explained by example:

Let Σ :“ t1, 2, 3, 4u and define ε : Σ Ñ R by:

εp1q “ 2, εp2q “ 4, εp3q “ 9, εp4q “ 9.

Then Iε “ t2, 4, 9u, so min Iε “ 2 and max Iε “ 9.

Since @ β P R, Aε
β “

2e´2β ` 4e´4β ` 9e´9β ` 9e´9β

e´2β ` e´4β ` e´9β ` e´9β
,

“
2e´2β ` 4e´4β ` 18e´9β

e´2β ` e´4β ` 2e´9β
,

we get as β Ñ 8, Aε
β Ñ 2{1

and as β Ñ ´8, Aε
β Ñ 18{2,

and so as β Ñ 8, Aε
β Ñ min Iε

and as β Ñ ´8, Aε
β Ñ max Iε.
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For any nonempty finite set Σ, for any ε : Σ Ñ R,
define Aε

‚ : R Ñ R by: @β P R, Aε
‚pβq “ Aε

β.

THEOREM 20.7. Let Σ be a finite set.

Let ε : Σ Ñ R. Assume: #Iε ě 2.

Then: Aε
‚ is a strictly-decreasing Cω-diffeomorphism

from R onto pmin Iε; max Iεq.

Proof. For all σ P Σ, let εσ :“ εpσq.

We have: @β P R, Aε
‚pβq “

ř

σPΣ rεσ ¨ e´β¨εσ s
ř

τPΣ re´β¨ετ s
. Then Aε

‚ : R Ñ R is Cω.

So, by Theorem 20.6 and the Cω-Inverse Function Theorem and

the Mean Value Theorem, it suffices to show: pAε
‚q1 ă 0 on R.

Given β P R, want: pAε
‚q1pβq ă 0.

Let P :“
ř

σPΣ r εσ ¨ e´β¨εσ s, P 1 :“
ř

σPΣ r p´ε2σq ¨ e´β¨εσ s.

Let Q :“
ř

τPΣ r e´β¨ετ s, Q1 :“
ř

τPΣ r p´ετ q ¨ e´β¨ετ s.

Then Q ą 0. Also, by the Quotient Rule, pAε
‚q1pβq “ rQP 1 ´PQ1s{Q2.

Want: QP 1 ´ PQ1 ă 0.

We have: QP 1 “
ř

σPΣ

ř

τPΣr p´ε2σ q ¨ e´β¨pεσ`ετ q s.

We have: PQ1 “
ř

σPΣ

ř

τPΣ r p ´ εσετ q ¨ e´β¨pεσ`ετ q s.

Then: QP 1 ´ PQ1 “
ř

σPΣ

ř

τPΣ r p´ε2σ ` εσετ q ¨ e´β¨pεσ`ετ q s.

Interchanging σ and τ , we get:

QP 1 ´ PQ1 “
ř

τPΣ

ř

σPΣ r p´ε2τ ` ετεσq ¨ e´β¨pετ`εσq s.

By commutativity of addition and multiplication,

adding the last two equations gives:

2 ¨ pQP 1 ´PQ1q “
ř

σPΣ

ř

τPΣ r p´ε2σ ´ ε2τ ` 2εσετ q ¨ e´β¨pεσ`ετ q s.

Then: 2 ¨ pQP 1 ´ PQ1q “
ř

σPΣ

ř

τPΣ r ´pεσ ´ ετ q2 ¨ e´β¨pεσ`ετ q s.

Then: 2 ¨ pQP 1 ´ PQ1q ă 0. Then: QP 1 ´ PQ1 ă 0. □

DEFINITION 20.8. Let Σ be a finite set. Let ε : Σ Ñ R.
Assume: #Iε ě 2. Let α P pmin Iε; max Iεq.
The α-Boltzmann parameter on ε is: BPε

α :“ pAε
‚q´1pαq.

So the α-Boltzmann parameter on ε is the unique β P R s.t. Aε
β “ α.

Example: Let Σ :“ t0, 1, 10u, and define ε : Σ Ñ R by:

@σ P Σ, εpσq “ σ.

Computation shows: Aε
pln 9q{10 “ 1. Then: BPε

1 “ pln 9q{10.
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Example: Let Σ :“ t2, 4, 8, 9u, and define ε : Σ Ñ R by:

@σ P Σ, εpσq “ σ.

To evaluate BPε
5, we must solve Aε

‚pβq “ 5 for β,

and, since, by Theorem 20.7, Aε
‚ is strictly-decreasing,

there are simple iterative methods to do this.

We compute: BPε
5 « 0.0918, accurate to four decimal places.

(Thanks to C. Prouty for this calculation. See §27.)

Next, let Σ :“ t1, 2, 3, 4u, and define ε : Σ Ñ R by:

εp1q “ 2, εp2q “ 4, εp3q “ 8, εp4q “ 9.

Then Aε
‚ “ Aε

‚, so BPε
5 “ BPε

5.

Then BPε
5 « 0.0918, accurate to four decimal places.

Example: Let Σ :“ t1, 2, 3, 4u and define ε : Σ Ñ R by:

εp1q “ 2, εp2q “ 4, εp3q “ 9, εp4q “ 9.

To evaluate BPε
5, we must solve Aε

‚pβq “ 5 for β,

and, since, by Theorem 20.7, Aε
‚ is strictly-decreasing,

there are simple iterative methods to do this.

We compute: BPε
5 « 0.1060, accurate to four decimal places.

(Thanks to C. Prouty for this calculation. See §27.)

Example: Let Σ :“ p r0..4s ˆ r0..4s q z t p4, 4q u.

Define ε : Σ Ñ R by: @σ P Σ, εpσq “ σ1 ` σ2.

To evaluate BPε
1, we must solve Aε

‚pβq “ 1 for β,

and, since, by Theorem 20.7, Aε
‚ is strictly-decreasing,

there are simple iterative methods to do this.

We compute: BPε
1 « 1.0670, accurate to four decimal places.

(Thanks to C. Prouty for this calculation. See §27.)

THEOREM 20.9. Let Σ be a finite set.

Let ε : Σ Ñ R. Assume: #Iε ě 2.

Let α P pmin Iε; max Iεq. Let ξ P R. Then: BPε´ξ
α´ξ “ BPε

α.

Proof. Let β :“ BPε
α. Want: BPε´ξ

α´ξ “ β.

Since β “ BPε
α “ pAε

‚q´1pαq, we get: pAε
‚qpβq “ α.

By Theorem 20.5, Aε´ξ
β “ Aε

β ´ ξ.

Since pAε´ξ
‚ qpβq “ Aε´ξ

β “ Aε
β ´ ξ “ ppAε

‚qpβqq ´ ξ “ α ´ ξ,

we get: β “ pAε´ξ
‚ q´1pα ´ ξq.

So, since BPε´ξ
α´ξ “ pAε´ξ

‚ q´1pα ´ ξq, we get: BPε´ξ
α´ξ “ β. □
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21. Degenerate energy levels

Recall (§2): the notations If and f˚A.

THEOREM 21.1. Let Σ be a finite set.

Let ε : Σ Ñ Z. Assume Iε is residue-unconstrained.

Let α P pmin Iε; max Iεq. Let β :“ BPε
α.

Let t1, t2, . . . P Z. Assume: ttn ´ nα |n P Nu is bounded.

For all n P N, let Ωn :“ tf P Σn | pεpf1qq ` ¨ ¨ ¨ ` pεpfnqq “ tnu.

Let σ0 P Σ. Then: as n Ñ 8, νΩn tf P Ωn | fn “ σ0u Ñ Bε
βtσ0u.

Recall (§8): νHpHq “ ´1.

So, since Bε
βtσ0u ą 0, part of the content of Theorem 21.1 is:

@sufficiently large n P N, Ωn ‰ H.

See Claim 2 in the proof below.

Proof. Since Iε is residue-unconstrained, we get: Iε ‰ H.

So, since ε : Σ Ñ Z, we conclude: Σ ‰ H.

By hypothesis, Σ is finite. Then: Σ is a nonempty finite set.

Since β “ BPε
α “ pAε

‚q´1pαq, we get: Aε
‚pβq “ α.

By Theorem 20.4, we have: Mε˚Bε
β

“ Aε
β.

So, since Aε
β “ Aε

‚pβq “ α, we get: Mε˚Bε
β

“ α.

Let µ :“ Bε
β. Then: µ P PΣ and Mε˚µ “ α.

Let E :“ Iε, rµ :“ ε˚µ. Then: rµ P PE and M
rµ “ α.

By hypothesis, E is residue-unconstrained.

Since ε : Σ Ñ Z, we get: E Ď Z.
Since Σ is finite, we get: E is finite.

So, since rµ P PE Ď FME, we get: |rµ|1 ă 8 and |rµ|2 ă 8.

For all σ P Σ, let εσ :“ εpσq.

Then: @n P N, Ωn “ tf P Σn | εf1 ` ¨ ¨ ¨ ` εfn “ tnu.

For all n P N, define εn : Σn Ñ En by:

@f1, . . . , fn P Σ, εnpf1, . . . , fnq “ pεf1 , . . . , εfnq.

Then, since ε˚µ “ rµ, we get: @n P N, pεnq˚pµnq “ rµn.

For all n P N, let rΩn :“ t rf P En | rf1 ` ¨ ¨ ¨ ` rfn “ tnu;

then pεnq˚
rΩn “ Ωn.

Then: @n P N, µnppεnq˚
rΩnq “ µnpΩnq.

Then: @n P N, ppεnq˚µ
nqprΩnq “ µnpΩnq.

Then: @n P N, rµnprΩnq “ µnpΩnq.

For all n P N, define ψn : Z Ñ R by:

@t P Z, ψnp t q “ rµnt rf P En | rf1 ` ¨ ¨ ¨ ` rfn “ tu.
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Then: @n P N, ψnptnq “ rµnprΩnq.

Since E is finite and residue-unconstrained, we get: 2 ď #E ă 8.

Since ε : Σ Ñ Z, we get: SBε
β

“ Σ.

So, since µ “ Bε
β, we get: Sµ “ Σ.

So, since ε : Σ Ñ Z, we get: Sε˚µ “ Iε.
So, since ε˚µ “ rµ and Iε “ E, we get: S

rµ “ E.

Since E is finite, we get: E is countable.

So, since rµ P PE and |rµ|1 ă 8 and #S
rµ “ #E ě 2,

by Theorem 8.6, we get: V
rµ ą 0.

So, since V
rµ “ |rµ|22 ´ M2

rµ ď |rµ|22 ă 8, we conclude:

0 ă V
rµ ă 8.

Let v :“ V
rµ. Then 0 ă v ă 8. Then 1{

?
2πv ą 0.

Let τ :“ 1{
?
2πv. Then τ ą 0.

Claim 1: As n Ñ 8,
?
n ¨ pψnptnqq Ñ τ .

Proof of Claim 1: Recall: E Ď Z, E is residue-unconstrained,

rµ P PE, S
rµ “ E, |rµ|2 ă 8, α “ M

rµ, v “ V
rµ.

By hypothesis, t1, t2, . . . P Z and ttn ´ nα |n P Nu is bounded.

Then, by Theorem 9.6, we get:

as n Ñ 8,
?
n ¨ prµnt rf P En | rf1 ` ¨ ¨ ¨ ` rfn “ tnuq Ñ 1{

?
2πv.

Then, as n Ñ 8,
?
n ¨ p ψnptnq q Ñ τ .

End of proof of Claim 1.

Since τ ą 0, by Claim 1, choose n0 P r2..8q s.t.

@n P rn0..8q,
?
n ¨ pψnptnqq ą 0.

Claim 2: Let n P rn0..8q. Then: µnpΩnq ą 0.

Proof of Claim 2: Recall: rµnprΩnq “ µnpΩnq and ψnptnq “ rµnprΩnq.

By the choice of n0, we get:
?
n ¨ pψnptnqq ą 0. Then: ψnptnq ą 0.

Then: µnpΩnq “ rµnprΩnq “ ψnptnq ą 0.

End of proof of Claim 2.

Recall: Σ ‰ H and ε : Σ Ñ Z. Then pBε
βpΣq ą 0.

Let C :“ 1{p pBε
βpΣqq. Then N p pBε

βq “ C ¨ pBε
β

By definition of pBε
β, we have: @σ P Σ, pBε

βtσu “ e´β¨εσ .

So, since µ “ Bε
β “ N p pBε

βq “ C ¨ pBε
β,

we get: @σ P Σ, µtσu “ Ce´β¨εσ .
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Since µ P PΣ, we get: @n P N, µn P PΣn , so µnpΩnq ď 1.

So, by Claim 2, @n P rn0..8q, 0 ă µnpΩnq ď 1.

Also, we have: @n P N, pµn|ΩnqpΩnq “ µnpΩnq.

Then: @n P rn0..8q, 0 ă pµn|ΩnqpΩnq ď 1.

Then: @n P rn0..8q, µn |Ωn P FMˆ
Ωn
.

Then: @n P rn0..8q, N pµn |Ωnq P PΩn .

Also, @n P N, @S Ď Ωn, pµn|ΩnqpS q “ µnpS q.

Then: @n P N, pµn|ΩnqpΩnq “ µnpΩnq.

For all n P N, let zn :“ µnpΩnq.

Then: @n P rn0..8q, pµn|ΩnqpΩnq “ zn and 0 ă zn ď 1.

For all n P rn0..8q, let λn :“ N pµn|Ωnq.

Then: @n P rn0..8q, λn “ pµn|Ωnq{zn.

Then: @n P rn0..8q, @S Ď Ωn, λnpSq “ pµnpSqq{zn.

Claim 3: Let n P rn0..8q. Then: λn “ νΩn .

Proof of Claim 3: Let F :“ Ωn. Want: λn “ νF .

Since λn “ N pµn|Ωnq “ N pµn|F q, we get: λn P PF .

By Theorem 8.9, given f, g P F , want: λntfu “ λntgu.

Want: pµntfuq{zn “ pµntguq{zn. Want: µntfu “ µntgu.

For all i P r1..ns, let rfi :“ εfi and rgi :“ εgi .

Then: @i P r1..ns, µtfiu “ Ce´β¨ rfi and µtgiu “ Ce´β¨rgi .

Since f P F “ Ωn, we get: εf1 ` ¨ ¨ ¨ ` εfn “ tn.

Since g P F “ Ωn, we get: εg1 ` ¨ ¨ ¨ ` εgn “ tn.

Since rf1 ` ¨ ¨ ¨ ` rfn “ εf1 ` ¨ ¨ ¨ ` εfn “ tn
“ εg1 ` ¨ ¨ ¨ ` εgn “ rg1 ` ¨ ¨ ¨ ` rgn,

we get: Cne´β¨p rf1`¨¨¨` rfnq “ Cne´β¨prg1`¨¨¨`rgnq.

Then: pCe´β¨ rf1q ¨ ¨ ¨ pCe´β¨ rfnq “ pCe´β¨rg1q ¨ ¨ ¨ pCe´β¨rgnq.

Then: p µtf1u q ¨ ¨ ¨ p µtfnu q “ p µtg1u q ¨ ¨ ¨ p µtgnu q.

Then: µntfu “ µntgu.

End of proof of Claim 3.

Claim 4: Let σ P ε˚tεσ0u. Then: µtσu “ µtσ0u.

Proof of Claim 4: Since σ P ε˚tεσ0u, we get: εpσq P tεσ0u.

Since εσ “ εpσq P tεσ0u, we get: εσ “ εσ0 .

Then: µtσu “ Ce´β¨εσ “ Ce´β¨εσ0 “ µtσ0u.

End of proof of Claim 4.

Since εpσ0q “ εσ0 P tεσ0u, we get: σ0 P ε˚tεσ0u.
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Then ε˚tεσ0u ‰ H, so #pε˚tεσ0uq ě 1.

Let k :“ #pε˚tεσ0uq. Then: k ě 1.

Claim 5: µpε˚tεσ0uq “ k ¨ pµtσ0uq.

Proof of Claim 5: Since ε˚tεσ0u is equal to

the disjoint union, over σ P ε˚tεσ0u, of tσu,

we get: µpε˚tεσ0uq “
ř

σPε˚tεσ0u
rµtσu s,

So, by Claim 4, we get: µpε˚tεσ0uq “
ř

σPε˚tεσ0u
rµtσ0us.

So, since k “ #pε˚tεσ0uq, we get: µpε˚tεσ0uq “ k ¨ pµtσ0uq.

End of proof of Claim 5.

Claim 6: Let n P r2..8q. Let σ P ε˚tεσ0u.

Then: µntf P Ωn | fn “ σu “ µntf P Ωn | fn “ σ0u.

Proof of Claim 6:

Let X :“ tf P Σn´1 | εf1 ` ¨ ¨ ¨ ` εfn´1 “ tn ´ εσu.

Recall: Ωn “ tf P Σn | εf1 ` ¨ ¨ ¨ ` εfn´1 ` εfn “ tnu.

Since tf P Ωn | fn “ σ u

“ tf P Σn | rεf1 ` ¨ ¨ ¨ ` εfn´1 ` εfn “ tns& rfn “ σsu

“ tf P Σn | rεf1 ` ¨ ¨ ¨ ` εfn´1 ` εσ “ tns& rfn “ σsu

“ tf P Σn | rεf1 ` ¨ ¨ ¨ ` εfn´1 “ tn ´ εσ s& rfn “ σsu,

it follows that, under the standard bijection Σn Ø Σn´1 ˆ Σ, we have:

tf P Ωn | fn “ σu Ď Σn

corresponds to X ˆ tσu Ď Σn´1 ˆ Σ.

Then: µntf P Ωn | fn “ σ u “ pµn´1pXqq ¨ pµtσuq.

Want: µntf P Ωn | fn “ σ0u “ pµn´1pXqq ¨ pµtσuq.

By Claim 4, we have: µtσu “ µtσ0u.

Want: µntf P Ωn | fn “ σ0u “ pµn´1pXqq ¨ pµtσ0uq.

Since σ P ε˚tεσ0u, we get: εpσq P tεσ0u.

Since εσ “ εpσq P tεσ0u, we get: εσ “ εσ0 .

Then X “ tf P Σn´1 | εf1 ` ¨ ¨ ¨ ` εfn´1 “ tn ´ εσ0u.

Since tf P Ωn | fn “ σ0 u

“ tf P Σn | rεf1 ` ¨ ¨ ¨ ` εfn´1 ` εfn “ tns& rfn “ σ0su

“ tf P Σn | rεf1 ` ¨ ¨ ¨ ` εfn´1 ` εσ0 “ tns& rfn “ σ0su

“ tf P Σn | rεf1 ` ¨ ¨ ¨ ` εfn´1 “ tn ´ εσ0s& rfn “ σ0su,

it follows that, under the standard bijection Σn Ø Σn´1 ˆ Σ, we have:

tf P Ωn | fn “ σ0u Ď Σn

corresponds to X ˆ tσ0u Ď Σn´1 ˆ Σ.

Then: µntf P Ωn | fn “ σ0u “ pµn´1pXqq ¨ pµtσ0uq.
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End of proof of Claim 6.

Claim 7: Let n P r2..8q.

Then: rµnt rf P rΩn | rfn “ εσ0u “ k ¨ pµntf P Ωn | fn “ σ0uq.

Proof of Claim 7: Recall: rµn “ pεnq˚pµnq and pεnq˚
rΩn “ Ωn.

Since pεnq˚t rf P rΩn | rfn “ εσ0u “ tf P Ωn | fn P ε˚tεσ0uu,

we get: µnppεnq˚t rf P rΩn | rfn “ εσ0uq “ µntf P Ωn | fn P ε˚tεσ0uu.

Then: ppεnq˚pµnqqt rf P rΩn | rfn “ εσ0u “ µntf P Ωn | fn P ε˚tεσ0uu.

Then: rµnt rf P rΩn | rfn “ εσ0u “ µntf P Ωn | fn P ε˚tεσ0uu.

Want: µntf P Ωn | fn P ε˚tεσ0uu “ k ¨ pµntf P Ωn | fn “ σ0uq.

Since tf P Ωn | fn P ε˚tεσ0uu

is the disjoint union, over σ P ε˚tεσ0u, of

tf P Ωn | fn “ σu,

we get: µntf P Ωn | fn P ε˚tεσ0uu “
ř

σPε˚tεσ0u
rµntf P Ωn | fn “ σ us.

Then, by Claim 6, we conclude:

µntf P Ωn | fn P ε˚tεσ0uu “
ř

σPε˚tεσ0u
rµntf P Ωn | fn “ σ0us.

So, since k “ #pε˚tεσ0uq, we get:

µntf P Ωn | fn P ε˚tεσ0uu “ k ¨ pµntf P Ωn | fn “ σ0uq.

End of proof of Claim 7.

Recall: @n P N, µnpΩnq “ rµnprΩnq.

Recall: @n P rn0..8q, 0 ă µnpΩnq ď 1.

Then: @n P rn0..8q, 0 ă rµnprΩnq ď 1.

Also, @n P N, @S Ď rΩn, prµn|rΩnqp S q “ rµnp S q.

Then: @n P N, prµn|rΩnqp rΩnq “ rµnp rΩnq.

By dividing the last two equations, we get:

@n P rn0..8q, @S Ď rΩn, pN prµn|rΩnqqpSq “ prµnpSqq{prµnprΩnqq.

For all n P rn0..8q, let rλn :“ N prµn|rΩnq.

Then: @n P rn0..8q, @S Ď rΩn, rλnpSq “ prµnpSqq{prµnprΩnqq.

So, since @n P N, zn “ µnpΩnq “ rµnprΩnq, we get:

@n P rn0..8q, @S Ď rΩn, rλnpSq “ prµnpSqq{zn.

Recall: @n P rn0..8q, λn “ N pµn|Ωnq.

Recall: @n P rn0..8q, @S Ď Ωn, λnpSq “ pµnpSqq{zn.

Claim 8: Let n P rn0..8q.

Then: rλnt rf P rΩn | rfn “ εσ0u “ k ¨ pλntf P Ωn | fn “ σ0uq.

Proof of Claim 8: By choice of n0, we have: n0 P r2..8q.
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Then rn0..8q Ď r2..8q, so, since n P rn0..8q, we get: n P r2..8q.

Then, by Claim 7, rµnt rf P rΩn | rfn “ εσ0u “ k ¨ pµntf P Ωn | fn “ σ0uq.

Dividing this last equation by zn yields
rλnt rf P rΩn | rfn “ εσ0u “ k ¨ pλntf P Ωn | fn “ σ0uq.

End of proof of Claim 8.

Let P :“ µtσ0u and rP :“ rµtεσ0u. Recall: k ě 1.

By Claim 5, we have: µpε˚tεσ0uq “ k ¨ pµtσ0uq.

Recall: rµ “ ε˚µ.

Since rP “ rµtεσ0u “ pε˚µqtεσ0u “ µpε˚tεσ0uq “ k ¨ pµtσ0uq “ k ¨ P ,

we get: rP {k “ P .

Recall: M
rµ “ α and rµ P PE and S

rµ “ E.

Recall: E is residue-unconstrained and |rµ|2 ă 8.

Since εσ0 “ εpσ0q P Iε “ E, we get: εσ0 P E.

Let rε0 :“ εσ0 . Then: rε0 P E and rP “ rµtrε0u.

Recall: @n P N, rΩn :“ t rf P En | rf1 ` ¨ ¨ ¨ ` rfn “ tnu.

By hypothesis, t1, t2, . . . P Z and ttn ´ nα |n P Nu is bounded.

By Theorem 11.2, as n Ñ 8, N prµn|rΩnqt rf P rΩn | rfn “ rε0u Ñ rP .

Recall: @n P rn0..8q, rλn “ N prµn|rΩnq.

Then: as n Ñ 8, rλnt rf P rΩn | rfn “ rε0 u Ñ rP .

Then: as n Ñ 8, rλnt rf P rΩn | rfn “ εσ0u Ñ rP .

So, by Claim 8, as n Ñ 8, k ¨ pλntf P Ωn | fn “ σ0 u q Ñ rP .

Then: as n Ñ 8, λntf P Ωn | fn “ σ0 u Ñ rP {k.

So, by Claim 3, as n Ñ 8, νΩntf P Ωn | fn “ σ0 u Ñ rP {k.

Recall: µ “ Bε
β.

Then, since rP {k “ P “ µtσ0u “ Bε
βtσ0u, we get:

as n Ñ 8, νΩntf P Ωn | fn “ σ0u Ñ Bε
βtσ0u. □

The possibility of degeneracy at rε0 (i.e., the possibility that k ‰ 1)

causes a number of complications in the preceding proof.

Here is another approach to proving Theorem 21.1:

By density of the set of injective functions Σ Ñ R
in the topological space of all functions Σ Ñ R,

we reduce to the case where ε is injective.

Then the proof can follow the proof of Theorem 16.1, avoiding

the degeneracy complications in the preceding proof.
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Recall (§2): @t P R, ttu is the floor of t.

Next, we record the tn “ tnαu version of the preceding theorem:

THEOREM 21.2. Let Σ be a finite set.

Let ε : Σ Ñ Z. Assume Iε is residue-unconstrained.

Let α P pmin Iε; max Iεq. Let β :“ BPε
α.

For all n P N, let Ωn :“ tf P Σn | pεpf1qq ` ¨ ¨ ¨ ` pεpfnqq “ tnαuu.

Let σ0 P Σ. Then: as n Ñ 8, νΩn tf P Ωn | fn “ σ0u Ñ Bε
βtσ0u.

We record the α P Z special case of the preceding theorem:

THEOREM 21.3. Let Σ be a finite set.

Let ε : Σ Ñ Z. Assume Iε is residue-unconstrained.

Let α P pmin Iε; max Iεq. Assume α P Z. Let β :“ BPε
α.

For all n P N, let Ωn :“ tf P Σn | pεpf1qq ` ¨ ¨ ¨ ` pεpfnqq “ nαu.

Let σ0 P Σ. Then: as n Ñ 8, νΩn tf P Ωn | fn “ σ0u Ñ Bε
βtσ0u.

Example: Suppose Σ “ t0, 1, 10u and α “ 1.

Suppose, also, @σ P Σ, εpσq “ σ.

Then ΩN represents

the set of all GFA dispensations to the N professors.

Since νΩN
gives equal probability to each dispensation,

νΩN
represents the GFA’s first system for awarding grants.

Since β “ BPε
α “ BPε

1, we calculate: β “ pln 9q{10.

More calculation gives: pBε
βt0u, Bε

βt1u, Bε
βt10uq “

p1, 9´1{10, 9´1q

1 ` 9´1{10 ` 9´1
.

Since N is large, by Theorem 21.3, we get:

νΩN
tf P ΩN | fN “ σ0u « Bε

βtσ0u.

So, if I am the Nth professor, then, under the first system,

my probability of receiving σ0 dollars

is approximately equal to Bε
βtσ0u.

Thus Theorem 21.3 reproduces the result of §12.

Example: Suppose Σ “ p r0..4s ˆ r0..4s q z t p4, 4q u.

Suppose, also, α “ 1 and @σ P Σ, εpσq “ σ1 ` σ2.

Then ΩN represents

the set of all state-distributions at the BUA. (See §19.)

Since β “ BPε
α “ BPε

1, we calculate:

β « 1.0670, accurate to four decimal places.

Let M P R5ˆ5 be the matrix defined by: M55 “ 0 and

@pi, jq P p r1..5s ˆ r1..5s q z t p5, 5q u, Mij “ Bε
βtpi ´ 1, j ´ 1qu.
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Then M «

»

—

—

—

—

–

0.4345 0.1495 0.0514 0.0177 0.0061

0.1495 0.0514 0.0177 0.0061 0.0021

0.0514 0.0177 0.0061 0.0021 0.0007

0.0177 0.0061 0.0021 0.0007 0.0002

0.0061 0.0021 0.0007 0.0002 0

fi

ffi

ffi

ffi

ffi

fl

all accurate to four decimal places.

(Thanks to C. Prouty for these calculations. See §27.)

According to Theorem 21.3, this answers

the problem formulated near the end of §19.

Since Bε
βtp0, 0qu “ M11 “ 0.4345, it is possible (cf. §14) to prove:

If N is sufficiently large, then, more than 99% of the time,

over 43% of the BUA professors have $0 wealth.

22. 8-properness and p´8q-properness

Recall (§2): the notations If and f˚A.

DEFINITION 22.1. Let Σ be a set. Let ε : Σ Ñ R.
By ε is 8-proper , we mean: @t P R, #tσ P Σ | εpσq ď tu ă 8.

That is, @t P R, #p σ˚p´8; ts q ă 8.

Note that, for any finite set Σ, for any ε : Σ Ñ R,
we have: ε is 8-proper.

THEOREM 22.2. Let Σ be a nonempty set.

If Dε : Σ Ñ R s.t. ε is 8-proper, then Σ is countable.

The next result asserts that, for a nonempty set Σ,

if ε : Σ Ñ R is 8-proper,

then its image Iε has a minimal element, i.e., min Iε exists.

THEOREM 22.3. Let Σ be a set. Let ε : Σ Ñ R be 8-proper.

Assume: Σ ‰ H. Then: Dt0 P Iε s.t., @t P Iε, t ě t0.

THEOREM 22.4. Let Σ be a set. Let ε : Σ Ñ R be 8-proper.

Then: Iε is bounded below and @t P Iε, ε˚ttu is finite.

The preceding three theorems are basic; we omit the proofs.

When ε is Z-valued, the converse of Theorem 22.4 is also true:

THEOREM 22.5. Let Σ be a set. Let ε : Σ Ñ Z.
Then: r ε is 8-proper s

ô r p Iε is bounded below q & p @t P Iε, ε˚ttu is finite q s.
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The preceding is basic; we omit the proof.

The following two results are corollaries of Theorem 22.5:

THEOREM 22.6. Let Σ be a set. Let ε : Σ Ñ Z be injective.

Then: r ε 8-proper s ô r Iε is bounded below s.

THEOREM 22.7. Let Σ Ď Z.
Define ε : Σ Ñ R by: @σ P Σ, εpσq “ σ.

Then: r ε 8-proper s ô r Σ is bounded below s.

DEFINITION 22.8. Let Σ be a set. Let ε : Σ Ñ R.
By ε is p´8q-proper , we mean: @t P R, #tσ P Σ | εpσq ě tu ă 8.

THEOREM 22.9. Let Σ be a set, ε : Σ Ñ R.
Then: p ε is p´8q-proper q ô p ´ε is 8-proper q.

THEOREM 22.10. Let Σ be a finite set.

Then: @ε : Σ Ñ R, ε is both 8-proper and p´8q-proper.

THEOREM 22.11. Let Σ be a set.

Assume: Dε : Σ Ñ R s.t. ε is both 8-proper and p´8q-proper.

Then: Σ is finite.

The preceding three theorems are basic; we omit the proofs.

23. Boltzmann distributions on countable sets

In the next few sections,

we generalize our earlier work on Boltzmann distributions (§20)

to allow for a countably infinite set of states.

Recall (§8) the notations: MΘ, FMˆ
Θ, PΘ, N pµq.

DEFINITION 23.1. Let Σ be a countable set, ε : Σ Ñ R, β P R.
Then pBε

β P MΣ is defined by: @σ P Σ, pBε
βtσu “ e´β¨pεpσqq.

DEFINITION 23.2. Let Σ be a set, ε : Σ Ñ R, β P R.
For all σ P Σ, let εσ :“ εpσq.

Then: ∆ε
β :“

ř

σPΣ r e´β¨εσ s P r0;8s.

We have: @nonempty set Σ, @ε : Σ Ñ R, @β P R, ∆ε
β ą 0.

Let Σ be a countable set, ε : Σ Ñ R, β P R.
Since ∆ε

β “
ř

σPΣ r pBε
βtσus, we get: ∆ε

β “ pBε
βpΣq.
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DEFINITION 23.3. Let Σ be a set, ε : Σ Ñ R.
Then the Delta-finite-set of ε is: DFε :“ tβ P R |∆ε

β ă 8u.

We have: @finite set Σ, @ε : Σ Ñ R, @β P R, ∆ε
β ă 8.

Then: @finite set Σ, @ε : Σ Ñ R, DFε “ R.

Let Σ be a set, ε : Σ Ñ R.
Since @β P R, ∆´ε

´β “ ∆ε
β, we get: DF´ε “ ´DFε.

Let Σ be a set, ε : Σ Ñ R, ξ P R.
Since @β P R, ∆ε`ξ

β “ e´β¨ξ ¨ ∆ε
β, we get: DFε`ξ “ DFε.

For any countable set Σ, for any ε : Σ Ñ R, for any β P R,
pΣ ‰ H and β P DFε q ô

p 0 ă ∆ε
β ă 8 q ô p 0 ă pBε

βpΣq ă 8 q ô p pBε
β P FMˆ

Σ q.

DEFINITION 23.4. Let Σ be a countable set, ε : Σ Ñ R, β P R.
Assume: 0 ă ∆ε

β ă 8. Then: Bε
β :“ N p pBε

βq P PΣ.

Let Σ be a countable set, ε : Σ Ñ R.
If DFε “ H, then, for all β P R, since pBε

βpΣq “ ∆ε
β “ 8,

we see that pBε
β cannot be normalized, i.e., there is no Bε

β.

So, if DFε “ H, then we have no Boltzmann distributions to study.

So, going forward, we generally focus on cases where DFε ‰ H.

Let Σ be a countable set, ε : Σ Ñ R.
In case Σ “ H, ε is the empty function, and there is nothing to say.

In case Σ is nonempty and finite,

we already developed a satisfactory Boltzmann theory, in §20.

So, going forward, we generally focus on cases where Σ is infinite.

Recall (§2): the notations If and f˚A.

Let Σ be an infinite set, ε : Σ Ñ R. Then: ε˚R “ Σ,

We have: p´8; 0s
Ť

r0;8q “ R.
Since p ε˚p´8; 0s q

Ť

p ε˚r0;8q q “ ε˚R “ Σ,

we get either ε˚p´8; 0s is infinite or ε˚r0;8q is infinite,

and the Boltzmann theory splits into those two cases.

Also, by Theorem 23.7 below, if DFε ‰ H,

then only one of the two cases can happen.
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THEOREM 23.5. Let Σ be a set, ε : Σ Ñ R.
Assume: ε˚r0;8q is infinite. Then: DFε Ď p0;8q.

Proof. Given β P DFε, want: β P p0;8q.

Since DFε Ď R, we get: β P R.
Want: β ą 0. Assume: β ď 0. Want: Contradiction.

For all σ P Σ, let εσ :“ εpσq.

For all σ P ε˚r0;8q, since εσ “ εpσq P r0;8q, we get: εσ ě 0.

So, since β ď 0, we get: @σ P ε˚r0;8q, ´β ¨ εσ ě 0.

Then: @σ P ε˚r0;8q, e´β¨εσ ě 1.

So, since ε˚r0;8q is infinite, we get:
ř

σPε˚r0;8qs
re´β¨εσ s “ 8.

Since ∆ε
β “

ř

σPΣ re´β¨εσ s ě
ř

σPε˚r0;8qs
re´β¨εσ s “ 8,

we get: β R DFε. Contradiction. □

THEOREM 23.6. Let Σ be a set, ε : Σ Ñ R.
Assume: ε˚p´8; 0s is infinite. Then: DFε Ď p´8; 0q.

Proof. Since p´εq˚r0;8q “ ε˚p´8; 0s, we get: p´εq˚r0;8q is infinite.

Then, by Theorem 23.5, we get: DF´ε Ď p0;8q.

Then DFε “ ´DF´ε Ď ´p0;8q “ p´8; 0q. □

THEOREM 23.7. Let Σ be a set, ε : Σ Ñ R.
Assume: ε˚p´8; 0s and ε˚r0;8q are both infinite. Then: DFε “ H.

Proof. By Theorem 23.5, we get: DFε Ď p0;8q.

By Theorem 23.6, we get: DFε Ď p´8; 0q.

Since DFε Ď p´8; 0q
Ş

p0;8q “ H, we get: DFε “ H. □

THEOREM 23.8. Let Σ be a set, ε : Σ Ñ R.
Assume: DFε

Ş

r0;8q ‰ H. Then: ε is 8-proper.

Proof. Given t P R, let Σ0 :“ tσ P Σ | εpσq ď tu, want: #Σ0 ă 8.

Since DFε

Ş

r0;8q ‰ H, choose β P DFε

Ş

r0;8q.

Then β P DFε and β P r0;8q.

Since β P DFε, we get: ∆ε
β ă 8. Then: eβ¨t ¨ ∆ε

β ă 8.

For all σ P Σ, let εσ :“ εpσq. Then: ∆ε
β “

ř

σPΣ re´β¨εσ s.

By definition of Σ0, we have: @σ P Σ0, εpσq ď t.

Since β P r0;8q and since @σ P Σ0, t ě εpσq “ εσ,

we get: @σ P Σ0, ´β ¨ t ď ´β ¨ εσ.

Then: @σ P Σ0, e´β¨t ď e´β¨εσ .

Then: #Σ0 “
ř

σPΣ0
r1s “ eβ¨t ¨

ř

σPΣ0
re´β¨ts ď eβ¨t ¨

ř

σPΣ0
re´β¨εσ s

ď eβ¨t ¨
ř

σPΣ re´β¨εσ s “ eβ¨t ¨ ∆ε
β ă 8. □
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THEOREM 23.9. Let Σ be a set, ε : Σ Ñ R.
Assume: DFε

Ş

p´8; 0s ‰ H. Then: ε is p´8q-proper.

Proof. Since ´ pDFε

Ş

p´8; 0s q ‰ H,

we get: DF´ε

Ş

r0;8q ‰ H.

Then, by Theorem 23.8, ´ε is 8-proper, and so ε is p´8q-proper. □

THEOREM 23.10. Let Σ be a set, ε : Σ Ñ R.
Assume: DFε ‰ H. Then: Σ is countable.

Proof. Since pDFε

Ş

p´8; 0sq q
Ť

pDFε

Ş

r0;8q q “ DFε ‰ H,

it follows that: either DFε

Ş

p´8; 0s ‰ H or DFε

Ş

r0;8q ‰ H.

Then, by Theorem 23.9 or Theorem 23.8,

we get: either ε is p´8q-proper or ε is 8-proper.

Then: either ´ε is 8-proper or ε is 8-proper.

In either case, by Theorem 22.2, we get: Σ is countable. □

THEOREM 23.11. Let Σ be a set, ε : Σ Ñ R.
Assume: DFε

Ş

p´8; 0s ‰ H ‰ DFε

Ş

r0;8q. Then: Σ is finite.

Proof. By Theorem 23.8, we get: ε is 8-proper.

By Theorem 23.9, we get: ε is p´8q-proper.

Then, by Theorem 22.11, we get: Σ is finite. □

THEOREM 23.12. Let Σ be a set, ε : Σ Ñ R.
Assume: ε˚r0;8q is infinite and DFε ‰ H. Then: ε is 8-proper.

Proof. By Theorem 23.5, we have: DFε Ď p0;8q.

Since DFε Ď p0;8q Ď r0;8q, we get: DFε

Ş

r0;8q “ DFε.

Since DFε

Ş

r0;8q “ DFε ‰ H, by Theorem 23.8,

we get: ε is 8-proper. □

THEOREM 23.13. Let Σ be a set, ε : Σ Ñ R.
Assume: ε˚p´8; 0s is infinite and DFε ‰ H. Then: ε is p´8q-proper.

Proof. Since p´εq˚r0;8q “ ε˚p´8; 0s, we get: p´εq˚r0;8q is infinite.

Since DF´ε “ ´DFε, we get: DF´ε ‰ H.

Then, by Theorem 23.12, ´ε is 8-proper, so ε is p´8q-proper. □

DEFINITION 23.14. Let Σ be a set, ε : Σ Ñ R, β P R.
For all σ P Σ, let εσ :“ εpσq.

Then, @real ρ ě 0, the ρ-exponent pβ, εq-absolute-sum is:

X
ρ
Sε
β :“

ř

σPΣ r |εσ|ρ ¨ |e´β¨εσ | s P r0;8s.
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Also, @ρ P r0..8q, if X
ρ
Sε
β ă 8,

then the ρ-exponent pβ, εq-sum is:

XρSε
β :“

ř

σPΣ r ερσ ¨ e´β¨εσ s P r0;8s.

Recall our convention (§2): 00 “ 1. Then: X
0
Sε
β “ X0Sε

β “ ∆ε
β.

Also, if X
ρ
Sε
β ă 8, then, by subadditivity of absolute value,

we get: |XρSε
β| ď X

ρ
Sε
β.

Also, if X
1
Sε
β ă 8, then X1Sε

β “ Γε
β.

THEOREM 23.15. Let Σ be a set, ε : Σ Ñ R.
Assume: DFε ‰ H and Iε is bounded below. Let ρ ě 0 be real.

Let β P DFε and let γ ą β be real. Then: X
ρ
Sε
γ ă 8.

We cannot replace “γ ą β” with “γ ě β”, see Theorem 23.18 below.

Proof. Since Iε is bounded below, choose t0 P R s.t. @σ P Σ, εpσq ě t0.

For all σ P Σ, let εσ :“ εpσq. Then: @σ P Σ, εσ ě t0.

Let δ :“ γ ´ β. Then δ ą 0, so, as t Ñ 8, |t|ρ ¨ e´δ¨t Ñ 0.

So, since t ÞÑ |t|ρ ¨ e´δ¨t : rt0;8q Ñ R is continuous,

by the Extreme Value Theorem, choose M P R s.t.,

@real t ě t0, | t |ρ ¨ e´δ¨t ď M .

Then: @σ P Σ, |εσ|ρ ¨ e´δ¨εσ ď M .

By definition of X
ρ
Sε
γ, we get: X

ρ
Sε
γ “

ř

σPΣ r |εσ|ρ ¨ e´γ¨εσ s.

So, since ´γ “ ´δ´β, we get: X
ρ
Sε
γ “

ř

σPΣ r p|εσ|ρ ¨ e´δ¨εσq ¨ pe´β¨εσq s.

Since β P DFε, we get: ∆ε
β ă 8. Then: M ¨ ∆ε

β ă 8.

Then: X
ρ
Sε
γ “

ř

σPΣ r p|εσ|ρ ¨ e´δ¨εσq ¨ pe´β¨εσq s

ď
ř

σPΣ r M ¨ pe´β¨εσq s

“ M ¨ p
ř

σPΣ r e´β¨εσ s q “ M ¨ ∆ε
β ă 8. □

THEOREM 23.16. Let Σ be a set, ε : Σ Ñ R.
Assume: Iε is bounded below and DFε ‰ H.

Let β P DFε and let γ ą β be real. Then: γ P DFε.

Proof. By Theorem 23.15, we have: X
0
Sε
γ ă 8.

Since ∆ε
γ “ X

0
Sε
γ ă 8, we get: γ P DFε. □

THEOREM 23.17. Let Σ be a set, ε : Σ Ñ R, β, ρ P R.
Assume: ρ ě 0, ε is 8-proper, X

ρ
Sε
β ă 8. Then: β P DFε.

The assumption of 8-properness is needed, see Theorem 23.19 below.
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Proof. Want: ∆ε
β ă 8.

Let F :“ tσ P Σ | εpσq ď 1u. Since ε is 8-proper, we get: F is finite.

For all σ P Σ, let εσ :“ εpσq. Then: F “ tσ P Σ | εσ ď 1u.

Since F is finite, we get:
ř

σPF re´β¨εσ s ă 8.

So, since ∆ε
β “ p

ř

σPF re´β¨εσ sq ` p
ř

σPΣzF re´β¨εσ sq,

it suffices to show:
ř

σPΣzF re´β¨εσ s ă 8.

Since F “ tσ P Σ | εσ ď 1u,

we get: @σ P ΣzF , εσ ą 1.

Then: @σ P ΣzF , since εσ ą 1 ą 0,

we get: εσ “ |εσ|.

Since @σ P ΣzF , 1 ă εσ “ |εσ|,

we get: @σ P ΣzF , 1ρ ď |εσ|ρ.

Then: @σ P ΣzF , 1ρ ¨ e´β¨εσ ď |εσ|ρ ¨ e´β¨εσ .

Then:
ř

σPΣzF re´β¨εσ s “
ř

σPΣzF r1ρ ¨ e´β¨εσ s ď
ř

σPΣzF r|εσ|ρ ¨ e´β¨εσ s

ď
ř

σPΣ r|εσ|ρ ¨ e´β¨εσ s “ X
ρ
Sε
β ă 8. □

THEOREM 23.18. Let Σ :“ r3..8q.

Define ε : Σ Ñ R by: @k P Σ, εpkq “ pln kq ` 2 ¨ plnpln kqq.

Let β :“ 1, ρ :“ 1. Then: β P DFε and X
ρ
Sε
β “ 8.

Proof. For all k P Σ, let εk :“ εpkq.

Then: @k P r3..8q, εk “ pln kq ` 2 ¨ plnpln kqq.

Since ∆ε
β “

ř

kPΣ re´β¨εks “
ř

kPΣ re´εks “
ř8

k“3 re´εks

“

8
ÿ

k“3

„

1

eεk

ȷ

“

8
ÿ

k“3

„

1

epln kq`2plnpln kqq

ȷ

“

8
ÿ

k“3

„

1

k ¨ pln kq2

ȷ

ă 8,

we get: β P DFε. It remains only to show: X
ρ
Sε
β “ 8.

We have: @k P r3..8q, k ą e, so ln k ą 1, so lnpln kq ą 0.

For all k P r3..8q, since εk “ pln kq ` 2 ¨ plnpln kqq ą 1 ` 2 ¨ 0 “ 1 ą 0,

we get: |εk| “ εk.

Since X
ρ
Sε
β “ X

1
Sε
1 “

ř

kPΣ r|εk| ¨ e´εks

“
ř8

k“3 r|εk| ¨ e´εks

“
ř8

k“3 rεk ¨ e´εks

“

8
ÿ

k“3

” εk
eεk

ı

“

8
ÿ

k“3

„

pln kq ` 2 ¨ plnpln kqq

epln kq`2plnpln kqq

ȷ

“

8
ÿ

k“3

„

pln kq ` 2 ¨ plnpln kqq

k ¨ pln kq2

ȷ

ě

8
ÿ

k“3

„

ln k

k ¨ pln kq2

ȷ
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“

8
ÿ

k“3

„

1

k ¨ pln kq

ȷ

“ 8,

we get: X
ρ
Sε
β “ 8. □

THEOREM 23.19. Let Σ :“ N.
Define ε : Σ Ñ R by: @k P Σ, εpkq “ 1{k2.

Let β :“ 1, ρ :“ 1. Then: X
ρ
Sε
β ă 8 and β R DFε.

Proof. For all k P Σ, let εk :“ εpkq. Then: @k P Σ, εk “ 1{k2.

We have: @k P Σ, both |εk| “ 1{k2 and ´εk “ ´1{k2.

Since X
ρ
Sε
β “ X

1
Sε
1 “

ř

kPΣ r |εk| ¨ e´εks

“
ř8

k“1 rp1{k2q ¨ e´1{k2s

ď
ř8

k“1 rp1{k2q ¨ 1 s

“
ř8

k“1 r1{k2s ă 8,

it remains only to show: β R DFε Want: ∆ε
β “ 8.

We have: as k Ñ 8, e´1{k2 Ñ 1. Then:
ř8

k“1 re´1{k2s “ 8.

Then: ∆ε
β “ ∆ε

1 “
ř

kPΣ re´εks “
ř8

k“1 re´εks “
ř8

k“1 re´1{k2s “ 8. □

THEOREM 23.20. Let Σ be a set, ε : Σ Ñ R.
Assume: ε˚r0;8q is infinite and DFε ‰ H. Let β0 :“ inf DFε.

Then: 0 ď β0 ă 8 and pβ0;8q Ď DFε.

Proof. By Theorem 23.5, DFε Ď p0;8q. Then: inf DFε ě infp0;8q.

Since DFε ‰ H, we get: inf DFε ă 8.

Since β0 “ inf DFε ě infp0;8q “ 0 and since β0 “ inf DFε ă 8,

we get: 0 ď β0 ă 8.

It remains to show: pβ0;8q Ď DFε.

Given γ P pβ0;8q, want: γ P DFε.

By Theorem 23.12, ε is 8-proper.

Then, by Theorem 22.4, we have: Iε is bounded below.

Since γ ą β0 “ inf DFε, choose β P DFε s.t. γ ą β.

Then, by Theorem 23.16, we get: γ P DFε. □

THEOREM 23.21. Let Σ be a set, ε : Σ Ñ R.
Assume: ε˚r0;8q is infinite and DFε ‰ H. Let β0 :“ inf DFε.

Then either p DFε “ rβ0;8q and 0 ă β0 ă 8 q

or p DFε “ pβ0;8q and 0 ď β0 ă 8 q.

Proof. By Theorem 23.20, we get: 0 ď β0 ă 8 and pβ0;8q Ď DFε.

Since β0 “ inf DFε, we get: DFε Ď rβ0;8q.

By Theorem 23.5, we get: DFε Ď p0;8q.
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Case 1: β0 P DFε. Want: DFε “ rβ0;8q and 0 ă β0 ă 8.

Recall: pβ0;8q Ď DFε and DFε Ď rβ0;8q and DFε Ď p0;8q.

Since β0 P DFε and pβ0;8q Ď DFε,

we get: tβ0u
Ť

pβ0;8q Ď DFε.

Since rβ0;8q “ tβ0u
Ť

pβ0;8q Ď DFε and since DFε Ď rβ0;8q,

we get: DFε “ rβ0;8q.

It remains only to show: 0 ă β0 ă 8.

Recall: 0 ď β0 ă 8. Then: β0 ă 8.

It remains only to show: 0 ă β0.

Since β0 P rβ0;8q “ DFε Ď p0;8q, we get: 0 ă β0.

End of Case 1.

Case 2: β0 R DFε. Want: DFε “ pβ0;8q and 0 ď β0 ă 8.

Recall: 0 ď β0 ă 8.

It remains only to show: DFε “ pβ0;8q.

Recall: DFε Ď rβ0;8q,

Since β0 R DFε and DFε Ď rβ0;8q,

we get: DFε Ď rβ0;8qztβ0u. Recall: pβ0;8q Ď DFε.

Since DFε Ď rβ0;8qztβ0u “ pβ0;8q and pβ0;8q Ď DFε,

we get: DFε “ pβ0;8q.

End of Case 2. □

Replacing ε by ´ε in Theorem 23.21 yields:

THEOREM 23.22. Let Σ be a set, ε : Σ Ñ R.
Assume: ε˚p´8; 0s is infinite and DFε ‰ H. Let β0 :“ ´ supDFε.

Then one of the following holds:

Either p DFε “ p´8;´β0s and 0 ă β0 ă 8 q

or p DFε “ p´8;´β0q and 0 ď β0 ă 8 q.

THEOREM 23.23. Let Σ be a set, ε : Σ Ñ R. Assume: DFε ‰ H.

Then one of the following is true:

(i) DFε “ R.
(ii) Dreal β0 ě 0 s.t. DFε “ pβ0;8q.

(iii) Dreal β0 ą 0 s.t. DFε “ rβ0;8q.

(iv) Dreal β0 ě 0 s.t. DFε “ p´8;´β0q.

(v) Dreal β0 ą 0 s.t. DFε “ p´8;´β0s.
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Proof. Since ε : Σ Ñ R, we get: ε˚R “ Σ.

Since p´8; 0s
Ť

r0;8q “ R, we get: ε˚p´8; 0s
Ť

ε˚r0;8q “ ε˚R.
In case #Σ ă 8, we get: (i) holds. We therefore assume #Σ “ 8.

Want: (ii) or (iii) or (iv) or (v) holds.

Because ε˚p´8; 0s
Ť

ε˚r0;8q “ ε˚R “ Σ,

and because Σ is infinite, we get:

either ε˚p´8; 0s is infinite or ε˚r0;8q is infinite.

Then, by Theorem 23.22 or Theorem 23.21, we get:

either (iv) or (v) holds or (ii) or (iii) holds. □

THEOREM 23.24. Let Σ be a set, ε : Σ Ñ R.
Then all of the following are true:

(i) p DFε “ R q ñ p Σ is finite q

ñ p ε is both 8-proper and p´8q-proper q.

(ii) p Dreal β0 ě 0 s.t. DFε “ pβ0;8q q ñ p ε is 8-proper q.

(iii) p Dreal β0 ą 0 s.t. DFε “ rβ0;8q q ñ p ε is 8-proper q.

(iv) p Dreal β0 ě 0 s.t. DFε “ p´8;´β0q q ñ p ε is p´8q-proper q.

(v) p Dreal β0 ą 0 s.t. DFε “ p´8;´β0s q ñ p ε is p´8q-proper q.

Proof. Proof of (i): By Theorem 23.11, p DFε “ R q ñ p Σ is finite q.

It remains to show:

p Σ is finite q ñ p ε is both 8-proper and p´8q-proper q.

By Theorem 22.10,

p Σ is finite q ñ p ε is both 8-proper and p´8q-proper q.

End of proof of (i).

Proof of (ii) and (iii):

By Theorem 23.8, we have:

p Dreal β0 ě 0 s.t. DFε “ pβ0;8q q ñ p ε is 8-proper q

and p Dreal β0 ą 0 s.t. DFε “ rβ0;8q q ñ p ε is 8-proper q.

End of proof of (ii) and iii).

Proof of (iv) and (v):

By Theorem 23.9, we have:

p Dreal β0 ě 0 s.t. DFε “ p´8;´β0q q ñ p ε is p´8q-proper q

and p Dreal β0 ą 0 s.t. DFε “ p´8;´β0s q ñ p ε is p´8q-proper q.

End of proof of (iv) and (v). □

Below, after each of

Theorem 23.27, Theorem 23.28, Theorem 23.29,
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we give examples of 8-proper ε : Σ Ñ Z such that:

DFε “ H, DFε “ pβ0;8q, DFε “ rβ0;8q, respectively.

It follows that: ´ε is p´8q-proper and

DF´ε “ H, DF´ε “ p´8;´β0q, DF´ε “ p´8;´β0s, respectively.

THEOREM 23.25. Let n1, n2, . . . P r0..8q.

Let Σ :“ tpk, jq P N ˆ N | j ď nku.

Define ε : Σ Ñ r0..8q by: @pk, jq P Σ, εpk, jq “ k ´ 1.

Then: @k P N, #p ε˚rk ´ 1; kq q “ nk.

Proof. Given k P N, want: #p ε˚rk ´ 1; kq q “ nk.

Since ε˚rk ´ 1; kq “ tpℓ, jq P Σ | εpℓ, jq P rk ´ 1; kqu

“ tpℓ, jq P Σ | ℓ ´ 1 P rk ´ 1; kqu

“ tpℓ, jq P Σ | ℓ ´ 1 “ k ´ 1u

“ tpℓ, jq P Σ | ℓ “ ku

“ tpℓ, jq P N ˆ N | ℓ “ k , j ď nℓu

“ tpℓ, jq P N ˆ N | ℓ “ k , j ď nku

“ t pk, 1q , . . . , pk, nkq u,

we get: #p ε˚rk ´ 1; kq q “ nk. □

THEOREM 23.26. Let Σ be a set, ε : Σ Ñ r0;8q.

For all k P N, let nk :“ #p ε˚rk ´ 1; kq q.

Let β P r0;8q. Then: p β P DFε q ô p
ř8

k“1 rnke
´β¨ks ă 8 q.

Proof. For all σ P Σ, let εσ :“ εpσq.

Proof of ñ: Assume: β P DFε. Want:
ř8

k“1 rnke
´β¨ks ă 8.

Since β P DFε, we get: ∆ε
β ă 8.

Because Σ is the disjoint union, over k “ 1 to 8, of ε˚rk ´ 1; kq,

we get:
ř

σPΣ re´β¨εσ s “
ř8

k“1

ř

σPε˚rk´1;kq
re´β¨εσ s.

For all k P N, for all σ P ε˚rk ´ 1; kq, since εσ “ εpσq P rk ´ 1; kq,

we have: k ą εσ.

Since β P r0;8q, we get: ´β ď 0.

For all k P N, for all σ P ε˚rk ´ 1; kq, we have: ´β ¨ k ď ´β ¨ εσ.

For all k P N, for all σ P ε˚rk ´ 1; kq, we have: e´β¨k ď e´β¨εσ .

Then: @k P N,
ř

σPε˚rk´1;kq
re´β¨ks ď

ř

σPε˚rk´1;kq
re´β¨εσ s.

Also, @k P N,
ř

σPε˚rk´1;kq
re´β¨ks “ nke

´β¨k.

Then: @k P N, nke
´β¨k ď

ř

σPε˚rk´1;kq
re´β¨εσ s.

Then:
ř8

k“1 rnke
´β¨ks ď

ř8

k“1

ř

σPε˚rk´1;kq
re´β¨εσ s

“
ř

σPΣ re´β¨εσ s “ ∆ε
β ă 8.
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End of proof of ñ.

Proof of ð: Assume:
ř8

k“1 rnke
´β¨ks ă 8. Want: β P DFε.

Because Σ is the disjoint union, over k “ 1 to 8, of ε˚rk ´ 1; kq,

we get:
ř

σPΣ re´β¨pεσ`1qs “
ř8

k“1

ř

σPε˚rk´1;kq
re´β¨pεσ`1qs.

For all k P N, for all σ P ε˚rk ´ 1; kq, since εσ “ εpσq P rk ´ 1; kq,

we have: εσ ě k ´ 1.

For all k P N, for all σ P ε˚rk ´ 1; kq, we have: εσ ` 1 ě k.

Since β P r0;8q, we get: ´β ď 0.

For all k P N, for all σ P ε˚rk ´ 1; kq, we have: ´β ¨ pεσ ` 1q ď ´β ¨ k.

For all k P N, for all σ P ε˚rk ´ 1; kq, we have: e´β¨pεσ`1q ď e´β¨k.

Then: @k P N,
ř

σPε˚rk´1;kq
re´β¨pεσ`1qs ď

ř

σPε˚rk´1;kq
re´β¨ks.

Also, @k P N, nke
´β¨k “

ř

σPε˚rk´1;kq
re´β¨ks.

Then: @k P N,
ř

σPε˚rk´1;kq
re´β¨pεσ`1qs ď nke

´β¨k.

Then:
ř8

k“1

ř

σPε˚rk´1;kq
re´β¨pεσ`1qs ď

ř8

k“1 rnke
´β¨ks.

By assumption,
ř8

k“1 rnke
´β¨ks ă 8. Then eβ ¨

ř8

k“1 rnke
´β¨ks ă 8.

Since ∆ε
β “

ř

σPΣ r e´β¨εσ s

“
ř

σPΣ r eβ ¨ e´β¨pεσ`1q s

“ eβ ¨
ř

σPΣ r e´β¨pεσ`1q s

“ eβ ¨
ř8

k“1

ř

σPε˚rk´1;kq
r e´β¨pεσ`1q s

ď eβ ¨
ř8

k“1 rnke
´β¨ks ă 8, we get: β P DFε.

End of proof of ð. □

THEOREM 23.27. Let Σ be a set, ε : Σ Ñ r0;8q.

For all k P N, let nk :“ #p ε˚rk ´ 1; kq q.

Assume: @k P N, nk ě ek
2
. Then: DFε “ H.

Proof. Since @k P N, nk ě ek
2

ą 1, we get:
ř8

k“1 nk “ 8.

Since #pε˚r0;8qq “
ř8

k“1 r#pε˚rk ´ 1; kqqs “
ř8

k“1 nk “ 8,

it follows, from Theorem 23.5, that: DFε Ď p0;8q.

It therefore suffices to show: @β P p0;8q, β R DFε.

Given β P p0;8q, want: β R DFε.

Since, as k Ñ 8, ek
2´β¨k Ñ 8, we get:

ř8

k“1 rek
2´β¨ks “ 8.

Since
ř8

k“1 rnke
´β¨ks ě

ř8

k“1 rek
2
e´β¨ks “

ř8

k“1 rek
2´β¨ks “ 8,

and since β P p0;8q Ď r0;8q,

by Theorem 23.26, we get: β R DFε. □

Recall (§2): @t P R, ttu denotes the floor of t.
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Example: For all k P N, let nk :“ tek
2

` 1u.

Then: @k P N, nk ě ek
2
. Let Σ :“ tpk, jq P N ˆ N | j ď nku.

Define ε : Σ Ñ r0..8q by: @pk, jq P Σ, εpk, jq “ k ´ 1.

Then, by Theorem 23.25 and Theorem 23.27, we get: DFε “ H.

THEOREM 23.28. Let Σ be a set, ε : Σ Ñ r0;8q.

For all k P N, let nk :“ #p ε˚rk ´ 1; kq q. Let β0 P r0;8q.

Assume: as k Ñ 8, nke
´β0¨k Ñ 1. Then: DFε “ pβ0;8q.

Proof. Since as k Ñ 8, nke
´β0¨k Ñ 1, we get:

#tk P N |nke
´β0¨k “ 0u ă 8.

Then: #tk P N |nk “ 0u ă 8.

Then #tk P N |nk ě 1u “ 8, and so
ř8

k“1 nk “ 8.

Since #pε˚r0;8qq “
ř8

k“1 r#pε˚rk ´ 1; kqqs “
ř8

k“1 nk “ 8,

it follows, from Theorem 23.5, that: DFε Ď p0;8q.

Since DFε Ď p0;8q Ď r0;8q, we get: DFε

Ş

r0;8q “ DFε.

Since β0 P r0;8q, we get: pβ0;8q Ď p0;8q.

Since pβ0;8q Ď p0;8q Ď r0;8q, we get: pβ0;8q
Ş

r0;8q “ pβ0;8q.

We have: @β P R, @k P N, rnke
´β¨ks { re´pβ´β0q¨ks “ nke

´β0¨k.

By hypothesis, as k Ñ 8, nke
´β0¨k Ñ 1.

Then: @β P R, as k Ñ 8, rnke
´β¨ks { re´pβ´β0q¨ks Ñ 1.

Then: @β P R, p
ř8

k“1 rnke
´β¨ks ă 8q ô p

ř8

k“1 re´pβ´β0q¨ks ă 8q.

Also, @β P R, pβ ą β0q ô p
ř8

k“1 re´pβ´β0q¨ks ă 8q.

Then: @β P R, p
ř8

k“1 rnke
´β¨ks ă 8q ô pβ ą β0q.

Then, by Theorem 23.26,

@β P r0;8q, pβ P DFεq ô pβ ą β0q.

Then DFε

Ş

r0;8q “ pβ0;8q
Ş

r0;8q.

Then DFε “ DFε

Ş

r0;8q “ pβ0;8q
Ş

r0;8q “ pβ0;8q. □

Example: Let β0 P r0;8q. For all k P N, let nk :“ teβ0¨ku.

Then: as k Ñ 8, nke
´β0¨k Ñ 1. Let Σ :“ tpk, jq P NˆN | j ď nku.

Define ε : Σ Ñ r0..8q by: @pk, jq P Σ, εpk, jq “ k ´ 1.

Then, by Theorem 23.25 and Theorem 23.28, we get: DFε “ pβ0;8q.

THEOREM 23.29. Let Σ be a set, ε : Σ Ñ r0;8q, p P p1;8q.

For all k P N, let nk :“ #p ε˚rk ´ 1; kq q. Let β0 P p0;8q.

Assume: as k Ñ 8, kpnke
´β0¨k Ñ 1. Then: DFε “ rβ0;8q.

Proof. Since as k Ñ 8, kpnke
´β0¨k Ñ 1, we get:

#tk P N | kpnke
´β0¨k “ 0u ă 8.

Then #tk P N | nk “ 0u ă 8.
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Then #tk P N |nk ě 1u “ 8, and so
ř8

k“1 nk “ 8.

Since #pε˚r0;8qq “
ř8

k“1 r#pε˚rk ´ 1; kqqs “
ř8

k“1 nk “ 8,

it follows, from Theorem 23.5, that: DFε Ď p0;8q.

Since DFε Ď p0;8q Ď r0;8q, we get: DFε

Ş

r0;8q “ DFε.

Since β0 P p0;8q, we get: rβ0;8q Ď p0;8q.

Since rβ0;8q Ď p0;8q Ď r0;8q, we get: rβ0;8q
Ş

r0;8q “ rβ0;8q.

We have: @β P R, @k P N, rnke
´β¨ks{rk´pe´pβ´β0q¨ks “ kpnke

´β0¨k.

By hypothesis, as k Ñ 8, kpnke
´β0¨k Ñ 1.

Then: @β P R, as k Ñ 8, rnke
´β¨ks{rk´pe´pβ´β0q¨ks Ñ 1.

Then: @β P R, p
ř8

k“1 rnke
´β¨ks ă 8q ô p

ř8

k“1 rk´pe´pβ´β0q¨ks ă 8q.

Also, since p P p1;8q, we get:

@β P R, pβ ě β0q ô p
ř8

k“1 rk´pe´pβ´β0q¨ks ă 8q.

Then: @β P R, p
ř8

k“1 rnke
´β¨ks ă 8q ô pβ ě β0q.

Then, by Theorem 23.26,

@β P r0;8q, pβ P DFεq ô pβ ě β0q.

Then DFε

Ş

r0;8q “ rβ0;8q
Ş

r0;8q.

Then DFε “ DFε

Ş

r0;8q “ rβ0;8q
Ş

r0;8q “ rβ0;8q. □

Example: Let β0 P p0;8q. For all k P N, let nk :“ tk´2eβ0¨ku.

Then: as k Ñ 8, k2nke
´β0¨k Ñ 1. Let Σ :“ tpk, jq P N ˆ N | j ď nku.

Define ε : Σ Ñ r0..8q by: @pk, jq P Σ, εpk, jq “ k ´ 1.

Then, by Theorem 23.25 and Theorem 23.29, we get: DFε “ rβ0;8q.

Let Σ be an infinite set, ε : Σ Ñ r0;8q.

For all k P N, let nk :“ #p ε˚rk ´ 1; kq q.

In many applications, the sequence n1, n2, . . . is subexponential.

By the next theorem, whenever that happens, we get: DFε “ p0;8q.

THEOREM 23.30. Let Σ be an infinite set, ε : Σ Ñ r0;8q.

For all k P N, let nk :“ #p ε˚rk ´ 1; kq q.

Assume: @β P p0;8q, as k Ñ 8, nke
´β¨k Ñ 0.

Then: DFε “ p0;8q.

Proof. Since ε : Σ Ñ r0;8q, we get: ε˚r0;8q “ Σ.

So, since Σ is infinite, we get: ε˚r0;8q is infinite.

It follows, from Theorem 23.5, that: DFε Ď p0;8q.

Want: p0;8q Ď DFε.

Given β P p0;8q, want: β P DFε.

Since β P p0;8q Ď r0;8q, by Theorem 23.26,

it suffices to show:
ř8

k“1 rnke
´β¨ks ă 8.
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Let β1 :“ β{2. Since β P p0;8q, we get: β1 P p0;8q.

Then, by hypothesis, we have: as k Ñ 8, nke
´β1¨k Ñ 0.

It follows that: tnke
´β1¨k | k P Nu is bounded.

Choose M P R s.t., @k P N, nke
´β1¨k ď M .

Since β1 P p0;8q, it follows that 1 ´ e´β1

ą 0

and that e´β1

` e´2β1

` e´3β1

` ¨ ¨ ¨ “ e´β1

{p1 ´ e´β1

q.

Then: e´β1

` e´2β1

` e´3β1

` ¨ ¨ ¨ ă 8.

Then: M ¨ pe´β1

` e´2β1

` e´3β1

` ¨ ¨ ¨ q ă 8.

Then
ř8

k“1 rnke
´β¨ks “

ř8

k“1 rnke
´2β1¨ks

“
ř8

k“1 rpnke
´β1¨kq¨e´β1¨ks ď

ř8

k“1 rMe´β1¨ks “ M ¨
ř8

k“1 re´β1¨ks

“ M ¨ pe´β1

` e´2β1

` e´3β1

` ¨ ¨ ¨ q ă 8. □

Example: Let Σ :“ r0..8q. Define ε : Σ Ñ R by: @σ P Σ, εpσq “ σ.

Then, @k P N, ε˚rk´ 1; kq “ tk´ 1u, and so #p ε˚rk´ 1; kq q “ 1.

Then, by Theorem 23.30, we get: DFε “ p0;8q.

DEFINITION 23.31. Let Σ be a set, ε : Σ Ñ R.
Let IDFε denote the interior in R of DFε.

THEOREM 23.32. Let Σ be a set, ε : Σ Ñ R. Assume: IDFε ‰ H.

Then one of the following is true:

(i) IDFε “ R.
(ii) Dreal β0 ě 0 s.t. IDFε “ pβ0;8q.

(iii) Dreal β0 ě 0 s.t. IDFε “ p´8;´β0q.

Proof. MORE LATER □

THEOREM 23.33. Let Σ be a set, ε : Σ Ñ R.
Then all of the following are true:

(i) p IDFε “ R q ñ p Σ is finite q

ñ p ε is both 8-proper and p´8q-proper q.

(ii) p Dreal β0 ě 0 s.t. IDFε “ pβ0;8q q ñ p ε is 8-proper q.

(iii) p Dreal β0 ě 0 s.t. IDFε “ p´8;´β0q q ñ p ε is p´8q-proper q.

Proof. MORE LATER □

24. Boltzmann averages on countable sets

DEFINITION 24.1. Let Σ be a set, ε : Σ Ñ R, β P C.
For all σ P Σ, let εσ :“ εpσq.

Then, @real ρ ě 0, the ρ-exponent pβ, εq-absolute-sum is:
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X
ρ
Sε
β :“

ř

σPΣ r |εσ|ρ ¨ |e´β¨εσ | s P r0;8s.

Also, @ρ P r0..8q, if X
ρ
Sε
β ă 8,

then the ρ-exponent pβ, εq-sum is:

XρSε
β :“

ř

σPΣ r ερσ ¨ e´β¨εσ s P r0;8s.

DEFINITION 24.2. Let Σ be a set, ε : Σ Ñ R, β P R.
For all σ P Σ, let εσ :“ εpσq.

Assume: X
1
Sε
β ă 8. Then: Γε

β :“
ř

σPΣ r εσ ¨ e´β¨εσ s.

We have: X
1
Sε
β “

ř

σPΣ r|εσ| ¨ e´β¨εσ s,

So, by subadditivity of absolute value, if X
1
Sε
β ă 8, then |Γε

β| ď X
1
Sε
β.

Let Σ be a countable set, ε : Σ Ñ R, β P R.
If X

1
Sε
β ă 8, then Γε

β “
ř

σPΣ rεσ ¨ p pBε
βtσuqs,

and so Γε
β is the integral of ε wrt pBε

β.

In the next definition, in order that Γε
β{∆ε

β is defined,

we need: both Γε
β is defined and 0 ă ∆ε

β ă 8.

We therefore assume X
1
Sε
β ă 8, to ensure that Γε

β is defined.

We also assume Σ is nonempty, to ensure that ∆ε
β ą 0.

Finally, we assume β P DFε, to ensure that ∆ε
β ă 8.

DEFINITION 24.3. Let Σ be a nonempty set, ε : Σ Ñ R, β P R.
Assume: X

1
Sε
β ă 8 and β P DFε. Then: Aε

β :“ Γε
β{∆ε

β.

Note that, by Theorem 23.17, if ε is 8-proper, then

pX
1
Sε
β ă 8 q ñ p β P DFε q.

Without 8-properness, this fails, see Theorem 23.19.

By Theorem 23.18, even with 8-properness,

p β P DFε q ñ pX
1
Sε
β ă 8 q.

25. Uniform convergence and differentiation results

Recall (§2): the notations If and f˚A.

Fix an element of tz P C | z2 “ ´1u and denote it by
?

´1 .

Define ℜ : C Ñ R and ℑ : C Ñ R by:

@x, y P R, ℜpx ` y
?

´1q “ x and ℑpx ` y
?

´1q “ y.
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We have: @z P C, |ez| “ eℜpzq.

Also, @S Ď R, ℜ˚S “ tx ` y
?

´1 |x P Su.

DEFINITION 25.1. Let Σ be a set, ε : Σ Ñ R.
Let DFC

ε :“ ℜ˚pDFεq and let IDFC
ε :“ ℜ˚pIDFεq.

THEOREM 25.2. Let Σ be a set, ε : Σ Ñ R, β P DFC
ε .

For all σ P Σ, let εσ :“ εpσq. Then:
ř

σPΣ |e´β¨εσ | ă 8.

Proof. MORE LATER □

THEOREM 25.3. Let Σ be a set, ε : Σ Ñ R, β P IDFC
ε .

For all σ P Σ, let εσ :“ εpσq.

Then: @ρ ě 0, X
ρ
Sε
β ă 8.

Proof. MORE LATER □

DEFINITION 25.4. Let Σ be a set, ε : Σ Ñ R.
For all σ P Σ, let εσ :“ εpσq.

For all β P DFC
ε , let ∆ε

β :“
ř

σPΣ re´β¨εσ s P C.

For all β P IDFC
ε , let Γε

β :“
ř

σPΣ rεσ ¨ e´β¨εσ s P C.

DEFINITION 25.5. Let Σ be a set, ε : Σ Ñ R.
For all real ρ ě 0,

define X
ρ
Sε

‚ : IDFε Ñ R by: @β P IDFε, X
ρ
Sε

‚pβq “ X
ρ
Sε
β.

Define ∆ε
‚ : IDFε Ñ R by: @β P IDFε, ∆

ε
‚pβq “ ∆ε

β.

Define Γε
‚ : IDFε Ñ R by: @β P IDFε, Γ

ε
‚pβq “ Γε

β.

DEFINITION 25.6. Let Σ be a set, ε : Σ Ñ R.
For all real ρ ě 0,

define X
ρ
Sε

‚C : IDFC
ε Ñ C by: @β P IDFC

ε , X
ρ
Sε

‚Cpβq “ X
ρ
Sε
β.

Define ∆ε
‚C : IDFC

ε Ñ C by: @β P IDFC
ε , ∆

ε
‚Cpβq “ ∆ε

β.

Define Γε
‚C : IDFC

ε Ñ C by: @β P IDFC
ε , Γ

ε
‚Cpβq “ Γε

β.

By “unif-on-cpta on” we mean: “uniformly on compact subsets of”.

THEOREM 25.7. Let Σ be an infinite set.

Let ε : Σ Ñ R be 8-proper.

For all t P R, let Σt :“ ε˚p´8; ts and εt :“ ε|Σt.

Assume DFε ‰ H. Let ρ ě 0 be real.

Then: as t Ñ 8, XρSεt

‚C Ñ XρSε
‚C unif-on-cpta on IDFC

ε .

Proof. MORE LATER □
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THEOREM 25.8. Let Σ be an infinite set.

Let ε : Σ Ñ R be 8-proper.

Let ρ ě 0 be real.

Then X
ρ
Sε

‚C : IDFC
ε Ñ C is complex-differentiable

and pX
ρ
Sε

‚Cq1 “ ´X
ρ`1

Sε
‚C.

Proof. For all t P R, let Σt :“ ε˚p´8; ts and εt :“ ε|Σt.

Then: @t P R, XρSεt

‚C : IDFC
ε Ñ C is complex-differentiable

and pXρSεt

‚Cq1 “ ´Xρ`1Sεt

‚C. By Theorem 25.7, as t Ñ 8, we

have

both XρSεt
‚C Ñ XρSε

‚C unif-on-cpta on IDFC
ε

and Xρ`1Sεt
‚C Ñ Xρ`1Sε

‚C unif-on-cpta on IDFC
ε .

Then X
ρ
Sε

‚C : IDFC
ε Ñ C is complex-differentiable

and pX
ρ
Sε

‚Cq1 “ ´X
ρ`1

Sε
‚C. □

THEOREM 25.9. Let Σ be an infinite set. Let ε : Σ Ñ R be p´8q-

proper.

Let ρ ě 0 be real.

Then X
ρ
Sε

‚C : IDFC
ε Ñ C is complex-differentiable

and pX
ρ
Sε

‚Cq1 “ ´X
ρ`1

Sε
‚C.

Proof. MORE LATER □

THEOREM 25.10. Let Σ be an infinite set. Let ε : Σ Ñ R.
Let ρ ě 0 be real.

Then X
ρ
Sε

‚C : IDFC
ε Ñ C is complex-differentiable

and pX
ρ
Sε

‚Cq1 “ ´X
ρ`1

Sε
‚C.

Proof. MORE LATER □

THEOREM 25.11. Let Σ be a set. Let ε : Σ Ñ R be 8-proper.

Let ρ ě 0 be real. Then X
ρ
Sε

‚ : IDFε Ñ R is Cω

and pX
ρ
Sε

‚q1 “ X
ρ`1

Sε
‚.

Proof. Since complex-differentiable implies complex-analytic,

by Theorem 25.8, we see that X
ρ
Sε

‚C : IDFC
ε Ñ C is complex-analytic.

So, since X
ρ
Sε

‚ : IDFε Ñ R is the restriction to IDFε of

X
ρ
Sε

‚C : IDFC
ε Ñ C,

it follows that X
ρ
Sε

‚ : IDFε Ñ R is Cω.

Want: pX
ρ
Sε

‚q1 “ X
ρ`1

Sε
‚.

Given β P IDFε, want: pX
ρ
Sε

‚q1pβq “ X
ρ`1

Sε
‚pβq.
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By Theorem 25.8, we see that pX
ρ
Sε

‚Cq1pβq “ X
ρ`1

Sε
‚Cpβq.

Since X
ρ
Sε

‚ : IDFε Ñ R is the restriction to IDFε of

X
ρ
Sε

‚C : IDFC
ε Ñ C,

we get: pX
ρ
Sε

‚q1pβq “ pX
ρ
Sε

‚Cq1pβq.

Since X
ρ`1

Sε
‚ : IDFε Ñ R is the restriction to IDFε of

we get: pX
ρ`1

Sε
‚qpβq “ pX

ρ`1
Sε

‚Cqpβq.

Then: pX
ρ
Sε

‚q1pβq “ pX
ρ
Sε

‚Cq1pβq “ X
ρ`1

Sε
‚Cpβq “ X

ρ`1
Sε

‚pβq. □

THEOREM 25.12. Let Σ be a nonempty countable set, ε : Σ Ñ R.
Let β P DFε. Assume X

1
Sε
β ă 8. Then X

1
Sε
β “ |ε˚B

ε
β|1.

Proof. CHECK (Copied from Theorem 20.4):

Since β P DFε, we get: DFε ‰ H. Then Σ is countable.

Since Σ ‰ H, we get: ∆ε
β ą 0.

Since β P DFε, we get: ∆ε
β ă 8.

For all σ P Σ, let εσ :“ εpσq, εσ :“ |εpσq|.

Because Σ is the disjoint union, over t P Iε, of ε˚ttu,

we get:
ř

tPIε

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs “

ř

σPΣ rεσ ¨ pBε
βtσuqs.

Also, Aε
β “

ř

σPΣ rεσ ¨ pBε
βtσuqs.

Then:
ř

tPIε

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs “ Aε

β.

So, since
ř

tPIε rt ¨ ppε˚B
ε
βqttuqs “ Mε˚Bε

β
,

we want:
ř

tPIε rt ¨ ppε˚B
ε
βqttuqs “

ř

tPIε

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs.

Want: @t P Iε, t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs.

Given t P Iε, want: t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs.

For all σ P ε˚ttu, since εσ “ εpσq P ttu, we get: t “ εσ.

Want: t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu r t ¨ pBε
βtσuq s.

Because ε˚ttu is the disjoint union, over σ P ε˚ttu, of tσu,

we get: Bε
βpε˚ttuq “

ř

σPε˚ttu r Bε
βtσu s.

Also, pε˚B
ε
βqttuq “ Bε

βpε˚ttuq.

Then: t ¨ ppε˚B
ε
βqttuq “ t ¨ pBε

βpε˚ttuqq “
ř

σPε˚ttu r t ¨ pBε
βtσuqs. □

THEOREM 25.13. Let Σ be a nonempty countable set, ε : Σ Ñ R.
Let β P DFε. Assume X

1
Sε
β ă 8. Then |ε˚B

ε
β|1 ă 8 and Aε

β “ Mε˚Bε
β
.

Proof. CHECK (Copied from Theorem 20.4):

Since β P DFε, we get: DFε ‰ H. Then Σ is countable.

Since Σ ‰ H, we get: ∆ε
β ą 0.

Since β P DFε, we get: ∆ε
β ă 8.

For all σ P Σ, let εσ :“ εpσq.
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Because Σ is the disjoint union, over t P Iε, of ε˚ttu,

we get:
ř

tPIε

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs “

ř

σPΣ rεσ ¨ pBε
βtσuqs.

Also, Aε
β “

ř

σPΣ rεσ ¨ pBε
βtσuqs.

Then:
ř

tPIε

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs “ Aε

β.

So, since
ř

tPIε rt ¨ ppε˚B
ε
βqttuqs “ Mε˚Bε

β
,

we want:
ř

tPIε rt ¨ ppε˚B
ε
βqttuqs “

ř

tPIε

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs.

Want: @t P Iε, t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs.

Given t P Iε, want: t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu rεσ ¨ pBε
βtσuqs.

For all σ P ε˚ttu, since εσ “ εpσq P ttu, we get: t “ εσ.

Want: t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu r t ¨ pBε
βtσuq s.

Because ε˚ttu is the disjoint union, over σ P ε˚ttu, of tσu,

we get: Bε
βpε˚ttuq “

ř

σPε˚ttu r Bε
βtσu s.

Also, pε˚B
ε
βqttuq “ Bε

βpε˚ttuq.

Then: t ¨ ppε˚B
ε
βqttuq “ t ¨ pBε

βpε˚ttuqq “
ř

σPε˚ttu r t ¨ pBε
βtσuqs. □

THEOREM 25.14. Let Σ be a set, ε : Σ Ñ R.
Assume: ε˚r0;8q is infinite and DFε ‰ H. Let β0 :“ inf DFε.

Then: @real γ ą β0, @real ρ ą 0, X
ρ
Sε
γ ă 8.

Proof. Given a real γ ą β0 and a real ρ ą 0, want: X
ρ
Sε
γ ă 8.

Since γ ą β0 “ inf DFε, choose β P DFε s.t. γ ą β.

By Theorem 23.15, we have: X
ρ
Sε
γ ă 8. □

DEFINITION 25.15. Let Σ be a set, ε : Σ Ñ R.
Then Aε

‚ : IDFε Ñ R is defined by: @β P IDFε, Aε
‚pβq “ Aε

β.

THEOREM 25.16. Let Σ be a set.

Let ε : Σ Ñ R. Assume: #Iε ě 2.

Then: Aε
‚ is a strictly-decreasing Cω-diffeomorphism

from IDFε onto pinf IAε
‚
; sup IAε

‚
q.

Proof. (MODIFY!) For all σ P Σ, let εσ :“ εpσq.

We have: @β P

IDFε, A
ε
‚pβq “

ř

σPΣ rεσ ¨ e´β¨εσ s
ř

τPΣ re´β¨ετ s
.

Then Aε
‚ : IDFε Ñ R is Cω.

We have: @β P

IDFε, A
ε
‚pβq “

ř

σPΣ rΓε
‚pβqs

ř

τPΣ r∆ε
‚pβqs

.

We have: @β P

IDFε, A
ε
‚pβq “

ř

σPΣ rX1Sε
‚pβqs

ř

τPΣ rX0Sε
‚pβqs

.
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So, by Theorem 20.6 and the Cω-Inverse Function Theorem and

the Mean Value Theorem, it suffices to show: pAε
‚q1 ă 0 on IDFε.

Given β P IDFε, want: pAε
‚q1pβq ă 0.

Let P :“
ř

σPΣ r εσ ¨ e´β¨εσ s, P 1 :“
ř

σPΣ r p´ε2σq ¨ e´β¨εσ s.

Let Q :“
ř

τPΣ r e´β¨ετ s, Q1 :“
ř

τPΣ r p´ετ q ¨ e´β¨ετ s.

Then Q ą 0. Also, by the Quotient Rule, pAε
‚q1pβq “ rQP 1 ´PQ1s{Q2.

Want: QP 1 ´ PQ1 ă 0.

We have: QP 1 “
ř

σPΣ

ř

τPΣr p´ε2σq ¨ e´β¨pεσ`ετ q s.

We have: PQ1 “
ř

σPΣ

ř

τPΣ r p´εσετ q ¨ e´β¨pεσ`ετ q s.

Then: QP 1 ´ PQ1 “
ř

σPΣ

ř

τPΣ r p´ε2σ ` εσετ q ¨ e´β¨pεσ`ετ q s.

Interchanging σ and τ , we get:

QP 1 ´ PQ1 “
ř

τPΣ

ř

σPΣ r p´ε2τ ` ετεσq ¨ e´β¨pετ`εσq s.

By commutativity of addition and multiplication,

adding the last two equations gives:

2 ¨ pQP 1 ´PQ1q “
ř

σPΣ

ř

τPΣ r p´ε2σ ´ ε2τ ` 2εσετ q ¨ e´β¨pεσ`ετ q s.

Then: 2 ¨ pQP 1 ´ PQ1q “
ř

σPΣ

ř

τPΣ r ´pεσ ´ ετ q2 ¨ e´β¨pεσ`ετ q s.

Then: 2 ¨ pQP 1 ´ PQ1q ă 0. Then: QP 1 ´ PQ1 ă 0. □

Recall (Theorem 22.3):

If ε is 8-proper, then Iε has a minimum element, i.e., min Iε exists.

THEOREM 25.17. Let Σ be a set, ε : Σ Ñ R.
Assume: ε˚r0;8q is infinite and DFε ‰ H.

Then: ε is 8-proper and as β Ñ 8, Aε
β Ñ min Iε.

Proof. By Theorem 23.12, ε is 8-proper.

It remains to show: as β Ñ 8, Aε
β Ñ min Iε.

Let t0 :“ min Iε. Want: Aε
β Ñ t0.

Let Σ1 :“ Σzpε˚tt0uq. Let n0 :“ #pε˚tt0uq.

Since tt0u Ď p´8; t0s, we get ε˚tt0u Ď ε˚p´8; t0s.

Since ε is 8-proper, we get: ε˚p´8; t0s is finite.

Then ε˚tt0u is finite. That is, n0 ă 8.

Since t0 P Iε, we get ε˚tt0u ‰ H, and so n0 ą 0. Then 0 ă n0 ă 8.

For all β P pβ0;8q, we have:

Aε
β “

n0 ¨ t0 ¨ e´β¨t0 `
ř

σPΣ1 rεσ ¨ e´β¨εσ s

n0 ¨ e´β¨t0 `
ř

σPΣ1 re´β¨εσ s

“
n0 ¨ t0 ¨ e´β¨t0 `

ř

σPΣ1 rεσ ¨ e´β¨εσ s

n0 ¨ e´β¨t0 `
ř

σPΣ1 re´β¨εσ s
¨
eβ¨t0

eβ¨t0

“
n0 ¨ t0 `

ř

σPΣ1 rεσ ¨ e´β¨pεσ´t0qs

n0 `
ř

σPΣ1 re´β¨pεσ´t0qs
.
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Let β1 :“ β0 ` 1.

Then, for all β P rβ1;8q, for all σ P Σ, we have

|εσ ¨ e´β¨pεσ´t0q| “ |εσ| ¨ e´β1¨pεσ´t0q

and |e´β¨pεσ´t0q| “ e´β1¨pεσ´t0q.

We have:
ř

σPΣ r|εσ| ¨ e´β1¨pεσ´t0qs “ X
1
Sε
β1
.

Also,
ř

σPΣ re´β1¨pεσ´t0qs “ X
0
Sε
β1
.

By Theorem 25.14, we have: X
1
Sε
β1

ă 8 and X
0
Sε
β1

ă 8.

So, by the Dominated Convergence Theorem, as β Ñ 8,
ř

σPΣ1 rεσ ¨ e´β¨pεσ´t0qs Ñ 0

and
ř

σPΣ1 re´β¨pεσ´t0qs Ñ 0.

Then: as β Ñ 8, Aε
β Ñ

n0 ¨ t0 ` 0

n0 ` 0
.

Then: as β Ñ 8, Aε
β Ñ t0. □

Let Σ be an infinite set and let ε : Σ Ñ N be 8-proper.

Then sup Iε “ 8. Assume DFε ‰ H. Let β0 :“ inf DFε.

By Theorem 23.20, pβ0;8q Ď DFε.

Even though sup Iε “ 8,

it does NOT necessarily follow that: as β Ñ pβ0q
`, Aε

β Ñ 8.

Here is an example:

For all k P N, let nk :“ tek{k3u.

Let Σ :“ tpk, jq P N ˆ N | k P N, j P r1..nksu.

Define ε : Σ Ñ r0..8q by: @k P N, @j P r1..nks, εpk, jq “ k ´ 1.

Then DFε “ r1;8q, so inf DFε “ 1.

Also, Γε
1 ă 8 and 0 ă ∆ε

1 ă 8, so Aε
1 ă 8.

Also, by the Dominated Convergence Theorem, we have:

as β Ñ 1`, both Γε
β Ñ Γε

1 and ∆ε
β Ñ ∆8

1 .

Then, as β Ñ 1`, Aε
β Ñ Aε

1 ă 8.

This, then, leads to an Open Problem, as follows:

For all k P N, let nk :“ tek{k3u.

Let Σ :“ tpk, jq P N ˆ N | k P N, j P r1..nksu.

Define ε : Σ Ñ N by: @k P N, @j P r1..nks, εpk, jq “ k.

By Theorem 25.16, Aε
‚ is strictly-decreasing, and so

and since as β Ñ 1`, Aε
β Ñ Aε

1, we get:

IAε
‚
is bounded above by Aε

1.

Let α P N. Assume: α ą Aε
1. Then: α R IAε

‚
.
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Suppose N professors, numbered 1 to N , have states in Σ.

Suppose each state σ P Σ has wealth εpσq.

Suppose the total wealth of all professors is Nα.

Give equal probability to every dispensation of states.

For each σ0 P Σ, we seek a method to approximate

the probability that Professor#N is in state σ0.

More precisely: For all n P N,
let Ωn :“ tω : r1..ns Ñ Σ |

řn
ℓ“1 rεpωpℓqqs “ nαu.

Then ΩN represents the set of all state-dispensations.

Open Problem: For each σ0 P Σ,

determine whether

the limit, as n Ñ 8, of νΩntω P Ωn |ωpnq “ σ0u exists,

and, if it does, compute it.

This is a well-defined mathematical problem.

However, since α R IAε
‚
, we cannot solve Aε

β “ α for β,

so our earlier techniques do not immediately apply.

THEOREM 25.18. Let β0 P R, I :“ pβ0;8q, g : I Ñ R.
Assume: g is differentiable on I and g1 is semi-decreasing on I.

Assume: as β Ñ pβ0q
`, g pβq Ñ ´8.

Then: as β Ñ pβ0q`, g1pβq Ñ 8.

Proof. Let M :“ sup Ig1 P p´8;8s.

Since g1 is strictly-decreasing, we get: as β Ñ pβ0q`, g1pβq Ñ M .

Want: M “ 8. Assume M ă 8. Want: Contradiction.

Let β1 :“ β0 ` 1.

Since as β Ñ pβ0q
`, g pβq Ñ ´8,

choose β P pβ0; β1q s.t. gpβq ă pgpβ1qq ´ M .

By the Mean Value Theorem, choose ξ P pβ; β0 ` 1q s.t.
pgpβ1q ´ pgpβqq

β1 ´ β
“ g1

pξq.

Since M “ sup Ig1 , we get: g1pξq ď M .

Since β P pβ0; β1q, we get: β1 ´ β ą 0.

Then pg1pξqq ¨ pβ1 ´ βq ď M ¨ pβ1 ´ βq.

Since pgpβ1q ´ pgpβqq “ pg1pξqq ¨ pβ1 ´ βq ď M ¨ pβ1 ´ βq,

we get: gpβq ě pgpβ1qq ´ M ¨ pβ1 ´ βq.

By the choice of β, we get: pgpβ1qq ´ M ą gpβq.

Since pgpβ1qq ´ M ą gpβq ě pgpβ1qq ´ M ¨ pβ1 ´ βq,

we get: M ă M ¨ pβ1 ´ βq.
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Then M ¨ pβ ` 1 ´ β1q ă 0.

So, since β1 “ β0 ` 1, we get M ¨ pβ ´ β0q ă 0.

So, since β P pβ0; β1q, we get M ă 0.

So, since M “ sup Ig1 , we get: g1 ă 0 on pβ0;8q.

Then, by the Mean Value Theorem, we get:

g is strictly-decreasing on pβ0;8q.

We conclude: @β P pβ0; β1q, gpβq ą gpβ1q.

This contradicts the hypothesis that as β Ñ pβ0q
`, gpβq Ñ ´8. □

THEOREM 25.19. Let Σ be a set, ε : Σ Ñ R, β0 P R.
Assume: DFε “ pβ0;8q. Then: as β Ñ pβ0q`, ∆ε

β Ñ 8.

Proof. Otherwise, since β ÞÑ ∆ε
β is strictly-decreasing,

we get t∆ε
β | β P DFεu is bounded.

Let M be an upper bound.

Since β0 R pβ0;8q “ DFε, we get: ∆ε
β “ 8.

That is,
ř

σPΣ re´β¨εσ s “ 8.

Choose a finite subsum that is ą M .

Perturb β0 to a slightly larger β.

If the perturbation is small enough, then the subsum stays ą M .

This implies ∆ε
β ą M , contradicting that M is an upper bound. □

THEOREM 25.20. Let Σ be a set, ε : Σ Ñ R, β0 P R.
Assume: DFε “ pβ0;8q. Then: as β Ñ pβ0q

`, Aε
β Ñ 8.

Proof. Let I :“ pβ0;8q. Define f : I Ñ R by: @β P I, fpβq “ ∆ε
β.

We have: @β P I, f 1pβq “ Γε
β.

Define g : I Ñ R by: @β P I, gpβq “ ´plnpfpβqqq.

Then: g is differentiable on I and @β P I, g1pβq “ Aε
β.

Want: as β Ñ pβ0q
`, g1pβq Ñ 8.

By Theorem 25.16, we get: g is strictly-decreasing on I.

By Theorem 25.19, we get: as β Ñ pβ0q
`, ∆ε

β Ñ 8.

Then: as β Ñ pβ0q`, fpβq Ñ 8.

Then: as β Ñ pβ0q`, lnpfpβqq Ñ 8.

Then: as β Ñ pβ0q`, gpβq Ñ ´8.

Then, by Theorem 25.18, we get: as β Ñ pβ0q
`, g1pβq Ñ 8. □

26. Countably infinite sets of states

MORE LATER



83

27. Appendix: Python code

Thanks once again to C. Prouty, for writing the Python code to do

the Boltzmann computations in this paper:

First code: The GFA and 0, 2, 20 dollar awards, with average 3 dollars.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

def F(beta):

z = np.zeros(3)

z[0] = 1

z[1] = np.exp(-2 * beta)

z[2] = np.exp(-20 * beta)

return z

def G(beta):

z = np.zeros(3)

z[0] = 0

z[1] = 2 * np.exp(-2 * beta)

z[2] = 20 * np.exp(-20 * beta)

return z

def f(beta):

return np.sum(F(beta))

def g(beta):

return np.sum(G(beta))

def bisection(minval, maxval, y, fn):

mid = (maxval + minval) / 2

while((fn(mid) - y) ** 2 ą 0.0000001):

if(fn(mid) ă y):

maxval = mid

else:

minval = mid

mid = (maxval + minval) / 2

return mid

fn = lambda x: g(x) / f(x)
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target = bisection(-25, 25, 3, fn)

b = 0.07410049 # hard-coded result of bisection

r = F(b) / f(b)

df = pd.DataFrame(r)

df.to excel(“results2.xlsx”, index=False)

betas = np.linspace(-25,25,100000)

z = np.zeros(len(betas))

for i in range(len(betas)):

z[i] = fn(betas[i])

plt.plot(betas,z)

plt.show()

Second code: The BUA and red bags and blue bags

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

def F(beta):

z = np.zeros(25).reshape(5,5)

for i in range(5):

for j in range(5):

z[i,j] = np.exp(-(i+j)*beta)

z[4,4] = 0

return z

def G(beta):

z = np.zeros(25).reshape(5,5)

for i in range(5):

for j in range(5):

z[i,j] = (i+j) * np.exp(-(i+j)*beta)

z[4,4] = 0

return z

def f(beta):

return np.sum(F(beta))

def g(beta):

return np.sum(G(beta))

def bisection(minval, maxval, y, fn):
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mid = (maxval + minval) / 2

while((fn(mid) - y) ** 2 ą 0.0000001):

if(fn(mid) ă y):

maxval = mid

else:

minval = mid

mid = (maxval + minval) / 2

return mid

fn = lambda x: g(x) / f(x)

target = bisection(-25, 25, 1, fn)

b = 1.06697083 # hard-coded result of bisection

r = F(b) / f(b)

df = pd.DataFrame(r)

df.to excel(”results5.xlsx”, index=False)

betas = np.linspace(-25,25,100000)

z = np.zeros(len(betas))

for i in range(len(betas)):

z[i] = fn(betas[i])

plt.plot(betas, z)

plt.show()
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