Professors and Grants

1. INTRODUCTION

This note is intended as a compliment and complement to
B. Zhang’s very enjoyable “Coconuts and Islanders”,

which motivates the Boltzmann distribution in the case where
every nonnegative integer is a possible energy-level.

Here, our initial focus is, instead, on Boltzmann distributions where
0 and 1 and 10 are the only possible energy-levels.

Taking our cue from “Coconuts and Islanders”, we motivate by story.

From §3 to §13, we analyze three systems for
dispensing  grant money to N professors.
Congress allocates N dollars to award to the N professors.
The grant rules stipulate:  each professor receives $0 or $1 or $10.
Each professor is identified by a number, from 1 to N.
By a dispensation, we mean a full complement of awards,
with a specific amount ($0 or $1 or $10) to Professor#1,
a specific amount ($0 or $1 or $10) to Professor#2,
etc., up to and including Professor# N,
such that the total of the awards is the $N allocated by Congress.

The first system (see §3) for awarding grants is very simple:
There are many possible dispensations, and, among all of them,
one is selected randomly,
giving equal probability to each possible dispensation.
The main problem is to figure out:

Using this first system, for a given professor,
what is the probability of being awarded $07 $17 $107?

Later (see §5), we describe
second and third probabilistic award systems.
Each of these systems depends on three parameters p, g, r
satisfying p,¢,r >0 and p+qg+7r=1=q+10r.
The second system uses
an iid system of random-variables, Xi,..., Xy
such that, V¢, Pr[X,= 0] =p,
Pr[X, = 1] =g,
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Pl"[Xg = 10] =T.
For all /, the second system awards X, dollars to Professor#/.
The total dollar payout X; +---+ Xy 1is then random;
if Xy =---=Xy= 0, itcould be as small as 0 dollars,
and if X7 =-.--= Xy =10, it could be as large as 10N dollars.
The third system is obtained from the second
by conditioning on the event X; +---4+ Xy =N,
so that the total payout is exactly the $/V allocated by Congress.

KEY POINT: With exactly the right choice of p, g, r,
the first and third systems are shown to be equivalent.
In §6 and §7, we show that this parameter choice is Boltzmann,
meaning:  (p,q,r) is, for some real number 3,
a scalar multiple of (e 97 e71F 7108,
That is, 1B3,CeR st. (p,qr) = (C, Ce? Ce108),

The second and third systems are
accessible by  basic tools of probability theory,
while  the above “main problem” involves the first system.
However, once we know the first and third systems are equivalent,
we can bring these probabilistic tools to bear on the main problem.
Thanks to J. Steif, for pointing out to me that
the Discrete Local Limit Theorem, which is described in §10,
is the right tool for the main problem, which is solved in §13.

Boltzmann distributions are often motivated by entropy, but,
from our perspective,
what’s special about  (p,q,r) = (C,Ce™?,Ce19) s
For any 7,7,k > 0, we have
piqu‘k = (ititk. 675-(141%)7
¥ depends only on: i+ j+k and j+ 10k.
In the third system of grant awards,
there exists a normalizing constant S >0  s.t.,

SO piqu

for any dispensation in which
i professors receive $ 0,
j professors receive $ 1,
k professors receive $10,
the probability of that dispensation is pig/r*/S,



which is equal to CiHith . =B G+I0k) /g,
That proabability, then, depends only on
i+ 7+ k, which is the number of professors,
and J + 10k,  which is the total dollar payout.
So, since the number of professors is = N
and the total dollar payout is also = N,
we conclude:  each award-dispensation has probability CV.e=#V /S,
so they are all equally likely, = which exactly describes the first system.
Therefore, under the Boltzmann assumption,
the first and third systems are equivalent.

In §15, we expose the inequitablity of the first system.
In fact, assuming N is sufficiently large, we show, in §15, that:
with probability > 99%, over half of the professors receive $0.
Thanks to V. Reiner for suggesting
applying Chebyshev’s inequality  to a sum of indicator variables,
to transition from individual statistics to population statistics.
In §16 and §17 and §18, we extend the theory to handle cases where
the award-sets are arbitrary finite sets of rational numbers,
not necessarily equal to {0, 1, 10}.
In §19, we show that
irrational award amounts can lead to non-Boltzmann statistics.
In §20 and §21 and §22, we extend our earlier results to include
degenerate energy-levels, with a finite set of states.
In §23 through §27, we extend these results further to include
cases that involve a countably infinite set of states.

Thanks to C. Prouty for help with many calculations.
For some of his Python code, see §28.

2. SOME NOTATION

A box around an expression indicates that it is global,
meaning that it is fixed (or “bound”) to the end of these notes.
Unboxed variables are freed at the end of each section, if not earlier.

Let  [R']:i= {~oo}URUfw},  [Z']:= {~0} UZU{=}.

For any s,t € R*, let



(s;t)[:={zeR*|s<x<t}, |[s;t)]:={xeR*|s
(s;t]|:={zeR*|s<ax<t}, |[s;t]|:={xeR*|s
For any s, t e R*, let |(s..t)|:= (s;t)(Z*, |[s..t)|:=[s;t)[)Z",
(s..t]|:= (s;t]\Z*, |[s..t]|:= [s;t] (" Z*.
Let [N [1..00) be the set of positive integers.

For any ﬁmte set F, let be the number of elements in F.

For any infinite set F', let :=00. Then #Z = o = #R.
For any set F, we have: #F € [0..00].

For all t € R, let |[¢||:= max{n € N|n <t} be the [floor of ¢].

For any sets S,T, for any function f S —T,

theis: x)|lreS} < T.

For any sets S, T', for any functlon f S—-T,

for any set A, we define: ={x eS| f(x)e A}

By convention, in these notes, we define = 1.
By “C*” we mean: “real-analytic”.

Fix an element of {z € C|z? = —1} and denote it by [v/—1|

Define :(C—>R and :C—>R by:

Ve,ye R, Rx+yy/—1)=2 and (z+yv—1)=1y.

3. FIRST SYSTEM OF GRANT AWARDS

Let e N.  Think of N as large.
Whenever we need to
formulate and prove precise mathematical statements,
we will “pass to the thermodynamic limit”, which means:
we replace N by a variable n € N, and let n — 0.
((Alternatively, within nonstandard analysis,
N  could be defined as  an infinite integer,
and  the various approximations involving N,
could be defined as  equality-modulo-infinitesimals.))
Suppose there are N professors, numbered 1 to NV,
who apply, once per year, to the GFA (Grant Funding Agency),
seeking funding for the very important work they are doing.
Each year, Congress authorizes $N for the GFA to dispense
to the N professors.
The GFA has the rule:  every award is 0 or 1 or 10 dollars.



The set of grant-dispensations is represented by:
= { wi[L.N] > {0,1,10} | 2N, [w(®)] = N }
The GFA has set aside #(2 pieces of paper,
and has written down all possible dispensations,
one on each piece of paper.
So, for example, there is a piece of paper that says:
Professors 1 to N each get $1.
Another piece of paper says:
Professors 1 to N — 10 each get $1 and
Professors N — 9 to N — 1 each get $0 and
Professor N gets $10.
Since N is large, it follows that #2 is large, and so
there are many, many, many other pieces of paper.
Each year, a GFA bureaucrat
places all the pieces of paper in a big bin,
then selects one at random and
makes the awards as indicated on that piece of paper.
Under this first system of awarding grants, we have:
Yw e 2, the probability that
the selected grant-dispensation is w
is equal to 1/ (#%Q).
Suppose I am one of the professors. Here is our main problem:
Calculate my probability of getting $0.
Then calculate my probability of getting $1.
Then calculate my probability of getting $10.
Approximate answers are acceptable.
In §5 to §13 of this note,
we reformulate and then solve  this problem.
Spoiler: It’s a Boltzmann distribution, approximately.

4. PARTICLES AND ENERGY

Recall that N e N.  Think of N as large.
Suppose there are N particles, numbered 1 to N,
each of which has a certain amount of energy.
Suppose the total energy is N, dispensed among the N particles.
Suppose physicists have somehow determined that, for any particle,
its possible energy-levels are: 0 or 1 or 10.
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Recall: Q = { w: [1..N] - {0,1,10} | SN w@)] =N }
Then 2 represents the set of energy-dispensations.
Assume that physicists have somehow determined
that this system of particles has a random energy-dispensation
and that all energy-dispensations in {2 are equally probable.
That is, physicists tell us:
VYw e Q, the probability that
the energy-dispensation is w
is equal to 1/ (#Q).
The equal probability of all energy-dispensations
is a recurring theme in microcanonical-ensemble thermodynamics,
and can often be motivated through
rules of random energy transfer between random pairs of particles.
For examples of this, either see §20 below or
search for  “Coconuts and Islanders” by B. Zhang,
and, in particular, see the work leading up to
the last paragraph of §3.2 therein.
In §20 below,
instead of  particles exchanging energy,
there are professors exchanging dollars,
but the principle is exactly the same.
In Zhang’s exposition,
instead of  particles exchanging energy,
there are islanders exchanging coconuts,
but the principle is exactly the same.

Returing to our N particles, pick any one of them.
Problem: Calculate its probability of having energy-level 0.
Then calculate its probability of having energy-level 1.
Then calculate its probability of having energy-level 10.
Approximate answers are acceptable.
Spoiler:  It’s a Boltzmann distribution, approximately.

Except for terminology, this problem is the same as

the main problem (end of §3) about professors and grants.
We will go back to professors and grants.
Mathematically it makes no difference, but it’s more fun.



5. SECOND AND THIRD SYSTEMS OF GRANT AWARDS

In an effort to go paperless, the GFA changes to a new system:
In this second system, instead of all those pieces of paper,
the GFA chooses p,g,7 >0 st. p+qg+r=1,
and then, for each of the N professors,
awards $ 0 with probability p,
$ 1 with probability ¢,
$10 with probability r.
No professor’s award depends in any way on any other professor’s;
the awards are independent.
The expected payout, for any professor, is p- 0+ ¢ -1 + r - 10 dollars.
Under this second system,
there is no guarantee that  the total payout will be $.1V,
which is a difficulty that we will discuss later.
However, recognizing that the average award is intended to be $1,
the GFA chooses the numbers p, ¢, 7 subject to the constraint that
p-04+q-14+7r-10=1, de, q+10r=1.
For each function w : [1..N] — {0,1,10}, let
= #{le[1.N]|w)= 0},
= #{le[l.N]|wl)= 1},
= #{le[l.N]|w() =10}
that is, i, 1s the number of professors awarded $ 0 and
j., is the number of professors awarded $ 1 and
k., is the number of professors awarded $10.
Then, Vw:[l.N]— {0,1,10}, we have:
the total number of awards is i, + j, + kg,
and the total dollar payout is 4, -0+ j, - 1 + k, - 10,
i.€., Jw + 10k,.
Then, Vw:[l.N]— {0,1,10}, we have:
Qv+ juthke =N and g, + 10k, =3, [w(0)].
Recall: Q = { w: [L.N] = {0,1,10} | ¥, [w(0)] = N }
That is, §2 is the set of all payout functions
w: [1..N] — {0,1,10}
s.t.  the total dollar payout is V.
Then: Vw: [1..N] — {0,1, 10}, we have:
we N < Jo + 10k, = N.
For every i, j, k € [0..N],



if t+j7+k=N and j+ 10k =N,
then JweQ st (4,5,k) = (tw, Juw, ko);
indeed, one such w : [1..N] — {0, 1,10} is described by:
w=0on[l.i], w=1lon (i.i+j], w=10on (i+ j..N].
Let = { (G Juo Kioy) | w € Q.
Then A is the set of all (i,7,k) s.t. 4,j,ke[0..N] and
t+j7+k=N and j+ 10k=N.
Under the second system,
each $ 0 award happens with probability p and
each $ 1 award happens with probability ¢ and
each $10 award happens with probability r.
So, Vw:[l.N]—{0,1,10}, wunder the second system,
the probability that the grant-dispensation is equal to w
is ple ok
Let S:=3 _ pegert.
Then S is the probability (using the second system) that w € Q,
i.e., the probability that the total payout is exactly N dollars.
Assuming N is large, it turns out that S is close to zero.
So, under this second system,
the probability of paying out exactly N dollars
is very small.
Congress only allocates  $N per year for the N professors.
So, using this second system, each year,
with probability 1—S ~ 1, the GFA will run a surplus or a deficit.
On the other hand, since ¢ + 10r =1, we see that,
each year, the expected payout is  $1 per professor,
so, each year, the expected total payout is $N.
So these surpluses and deficits should, over time, cancel one another.
Unfortunately, Congress is a paragon of fiscal responsibility, and,
as soon as it finds out about the GFA’s second system,
it insists that the GFA never again underspend or overspend.
So the GFA  changes its system  one more time, as follows.
Under its third system, each year,
before announcing any of the awards publicly,
the GFA writes out, in an internal memo,
a tentative proposal of awards that,
independently, for each of the N professors,
awards $ 0 with probability p,



$ 1 with probability g,
$10 with probability r.
If the memo’s total award payout is NOT equal to  $N,
the GFA deems the memo as unacceptable,
deletes it, and starts over, making memo after memo,
until an acceptable one (meaning payout exactly $N) appears.
Each memo has a probability S of being acceptable, so, each year,
the GFA will likely need to repeat the memo process many times
to get to a memo  with  total payout exactly equal to $N.
However, as soon as that happens,
the GFA uses that first acceptable memo,
and publicizes its dispensation of awards.
Mathematically, we are conditioning on the event w € Q.
So, using the third system, the probability that w ¢ € is 0.
Also, for this third system, Vw € Q, the probability of w is p¢l=rk= / S.
The sum of these probabilities is 1:
e yJe gk

weN weN

This third system is not necessarily equivalent to the first, because
in the first system, all the probabilities were 1/ (#£),

whereas, in the third system, they are plegiorke /S,
So a new question arises:

Is it possible to choose p, ¢, > 0 in such a way that

p+q+r=1 and ¢g+10r=1 and
VweQ, plegerts /S =1/(#Q) ?

If yes, then, using that (p,q,r),

the first and third systems are equivalent.
We will see that the answer to this new question, in fact, is yes.
In the next two sections, assuming N > 10,

we will show how to compute the only (p, ¢, ) that works.
Spoiler: It’s a Boltzmann distribution, exactly.

6. COMPUTING p,q,7 A LA BOLTZMANN

Recall (§3): Q = { w:[1L.N] = {0,1,10} | ¥, [w(0)] = N }

As in the preceding section, let p,q,r >0, S:=>, . p“girk.
We assume: p+q+r=1 and g+ 10r = 1.

We also assume: Vwe Q, plegieort /S =1/ (#Q).



10

We will prove that, if N > 10, then
there is at most one (p, g, r) that satisfies these conditions,
‘ (179—1/1079—1)
specifically, (p,q,r) = =
Define the dot product, ®, on R3, by:
Ve,y,2, X, Y, Z e R, (z,y,2) ©(X,Y,Z) =xX +yY + 7.

Forallu € R} letul = {veR}|u®uv=0}
1

then ut is a vector subspace of R3.

Also, VYueR? weutt.
ForallUC R?, let Ut = {veR?|VuelU, u®uv=0}
then U+t is a vector subspace of R3.
Also, VteR? VYU < R?, (teU) = (tt2Uh).
Also, VT,U < R?, (T<U) = (TH2U").
For all u,v € R, let (u,v)span denote the R-span of {u,v}, i.e.,
let (u,v)span = {su+tv|s,teR };
then (u, v)span is a vector subspace of R3.
Recall (§5): A = {(iw, juw, kw) |w € Q}.
Recall (§5): A is the set of all (i,j,k) s.t. i,7,ke€[0.N] and
i+j+k=N and j+ 10k = N.
Then: A is the set of all (4,j,k) st. 4,7,ke[0.N] and
(1,1,1)0(,j,k) = N and  (0,1,10)0(i, j, k) = N.

For all a,b € A, we have

(1,1,1) @a=N=(1,1,1) b  and

(0,1,10)0a = N = (0,1,10) ©b,
so we get

(L1,)©(a—b)=0 and (0,1,10)® (a —b) =0,
so a—b e (1,1,1)F N (0,1,10)*.
Let V := (1,1,1)* ) (0,1,10)".
Then: Va,be A, a—beV.

Let D:={a—bla,be A} Then D < V.
Also, we have: V< (1,1,1)t  and V < (0,1,10)*.
Then: Vio (1,1, 1) and VE2(0,1,10)4.

Since (1,1,1) e (1,1,1)* = V+ and (0,1,10) € (0,1,10)*+ < V+,
we get:  ((1,1,1), (0,1,10) depan < V.

Let W :={(1,1,1), (0,1,10) span- Then: W c V%

Assume N > 10. Let a;:=(0,N,0), as:=(9,N —10,1).

Then aq,ay € A. Let d; :=ay—ay. Then d; € D.
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Since 1 # (0,0,0), we get:  dimdi = 2.
Since W = <( 1,1),(0,1,10))span, we get: dim W = 2.
Since dleDgVadVVCVl we get: di 2Dt 2VioW.
So, since dimd; =2 = dim W, we get: df =Dt =Vi=W.

Then Dt = W. Recall:  VYwe Q, pgiert/S = 1/(#Q).
So, since A = {(iw, Juw, kw) |w € Q}, we get:

V(i,j, k) € A, piquk/S = 1/(#9Q).
Equlvalently, (4, j, k) e
i-(Inp) +j (lnq) + k- (Inr) — (InS) = —(In(#Q)).
Equlvalently, V(i,j,k) €

(4,7,k) © (Inp, lnq, Inr) = (InS) — (In(#9)).
Then: Va,be A,

a®(lnp,Ing,Inr)=(InS) — (In(#Q2)) =b® (Inp, Ing, Inr),
so we get: (a—b)O(lnp, Ing, Inr) =0.
Then: Vde D, d O(lnp,Ing,Inr)=0

Then: (Inp,Ing, Inr)e D+
Since (Inp,Ing,Inr)e Dt =W ={(1,1,1), (0,1, 10) )span,
choose areal number C >0 and feR s.t.
(Inp,Ing,Inr) = (InC)-(1,1,1)—3-(0,1,10).

Then (Inp,Ing,Inr) = (InC, InC)—-p, (InC)—105).

Then (p,q,r) = (C,Ce P, Ce198),

Then (p,q,r) = C-(1,e7P e7108),

So, sincep+qg+r=1, weget: C-(1+e P +e 1) =1,

Then C = ! Then (p,q,r) = (L e, e ™)

L+e™ + et i 10’ o LTEr e

. e e

So, since ¢+ 10r =1, we get: [t o F 1 o105 —

Then e 4+ 10e71%% = 1 + 78 4 7108, Then 9¢~1%% = 1.

( 1 , 971/10 7 971)

~108 _ -1 —8 _ g-1/10 _
Then e 9=, Thene 9 . Then (p,q,r) [+ 9-Ud 5 91"
So this is the only (p, ¢, ) that can possibly work.
In the next section, we show that it does work.

7. SHOWING THE BOLTZMANN p, ¢, 7 WORK

In this section, we prove
the converse of  the result from the preceding section.

1,971/10 91 o
(1, ) and S =Y o plegierte,

That is, welet (p,q,r) := 1+ 9-1/10 £ g1
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and we wish to show: p+q¢+7r=1 and g¢+10r=1 and
VweQ, plegerte /S = 1/(#Q).
Let 8 := (In9)/10. Then e # =979 Then e1% = 91,
1,e P e 100 1
Then (p,q,7) = Le e )

Let C := )
1+e b + e~108° © 1+ eB + 108

Then (p7 q’ ) C (17 6 7 105) Then (p7 Q’ r) = (07 06757 Ceiloﬁ)

Let K := CVN e 7N,

IMMH%)Q::{w{LN}aNJJM]ZﬁJ@@FﬂV}

Claim: Yw e Q, pie glopke = |
Proof of Claim: Given we (), want: pgerte = K.
Recall (§5): iy + ju + ko =N and j, + 10k, = 3 | [w(0)].
By definition of 2, since w € (), we get: Zévzl [w(f)] = N.
Then:  j,+10k, = N. Recall: (p,q,7) = (C, 0676, 06*105).
Then: pleglorhe = Ol . (Ce™P)le . (Ce108)ke
= (lwtivthe | =B (ut10ky) — N . =8N _ [
End of proof of Claim.

By definition of S, we have: S = _, p“¢irk
So, by the Claim, we get: S = (#Q)- K. Then K/S = 1/(#Q).
We have  10/9 = 1+ (1/9). That is, 10-97'=1+97%

So, since e 710% =971 we get:  10e~108 = 1 4 108,
Then: e ? +10e71% =1+ 6—6 1108,
Recall: (p,q,7) = C-(1,e P e 108).
By definition of C, we get:  C' - (1 + e‘B +e 108y =1,
Since p+q+r=C-(1+ef +e100) =1
and since q+10r = C - (e7? + 10e~109)
=C - (1+eP+e1%) =1,

it remains only to show: VYwe Q, plegirt /S = 1/(#Q).
Given w € (, want: plegiorks /S =1/
By the Claim, we get: pieglophe = .
Recall: K/S = 1/(#%Q).
Then:  piegiork /S = K/S = 1/(#Q).
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8. INFINITE SUMMATION

DEFINITION 8.1. Let S be a set,
Let F:={Ac S|#A < w}.

Then: | > [f(x)]

zeS

DEFINITION 8.2. Let

and let f:S — [0;0].

[f(2)] € [0;0].

S be a set, and let f:S5 —R.

Assume: Y, o |f(x)| < 0.
Then: | Y [f(x)]|:= (Z |f(x)!) - (2 [1f(@)] = (f(if))]) € R

Recall (§2): the notations $(z) and J(z).

DEFINITION 8.3. Let S be a set, and let f:S5 — C.

Assume: Y, o |f(x)| < 0.
Then: [ [F(@)]] = (2 [%(f(x))]) - (2 [%<f<x>>]> Vec

NOTE: For any set S, for any f:S — C, we have:
(Dpes |f(@)] <o) = {xeS|f(x)+# 0} is countable
and, by subadditivity of absolute value, we get:

| 2aes F@]] < 2pes | (@) |-

THEOREM 8.4. Let S be a set. Let 51,5, ... 5S.
Assume: S; €Sy < -+ and S;US:---=S5.
Let f:S—C. Assume: ), _qo|f(x)| < 0.

Then: asn — o0, ersn [f(z)] — X.eqlf(x)]
The preceding is basic. We omit proof.

THEOREM 8.5. Let S and T be sets,
Then: et

THEOREM 8.6. Let

f:S—>R, g:5->T.
2acgriyy (O] = 2aes [F(@)].
S and T be sets, f:S—->R, g:5—>T.

Assume: Y, o |f(x)| < 0.
Then: VyeT, Xy f(@)] < ©
and ZyeT | erg*{y} [f(x)] | <
and 2yer wegrtyy (@] = s [f(@)]

The preceding two theorems are

elementary versions of Fubini’s Theorem.

We omit proofs.
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9. COUNTABLE MEASURE THEORY

By convention, in this note,
any countable set is given its discrete Borel structure.

Let O be a countable set.  Let B be the set of subsets of O.
A on © is a function p: B — [0; 0]

such that, Vpairwise-disjoint ©1,0,,... < O, we have:

u(©:UO: - ) = (u(01) + (1(02)) + - -

A measure 4 on a countable set ©
is completely determined by
the function ¢ +— u{t} : © — [0; 0],

because: V0o € ©, wehave u(0g) =0, [1{t}]
DEFINITION 9.1. Let © be a countable set.
Then denotes the set of measures on O,
and = {pe Mo | n(©) < o},
and FMS = {pe Mo |0 < u(®) < o},
and 77@ = {MEM@’/L<@) = 1}.
Then Mg is the set of measures on ©
and FMg 1is the set of finite measures on ©
and FMG is the set of nonzero finite measures on ©
and Po is the set of probability measures on ©.

The only measure on ¢ is the zero measure.
Therefore: FMG =0 =Py,

DEFINITION 9.2. Let © be a countable set, e FMeo.
Let neN.  Then € FMeon is defined by:

vee O, pt{ry = ({z}) - ({wn}).

The following is a basic fact, whose proof we omit:
Let O be a countable set, pe FMeg, ne[2.0).

Let ZcO" Xcov!l Yceo. Assume that:
under the standard bijection ©" — ot x 0,
we have: Z —> X x Y.
Then: 2y = (X)) ().

It is common to identify Z with X x Y, in which case we have:

pr X xY) = (X)) ().
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We also omit proof of:
Let © be a countable set, pe FMeg, neN.
Then: W) = (u(O))"
In particular, (pePo) = (u" e Pon).

The countable sets that are of interest in this note
all carry the discrete topology. ~ We therefore define:

DEFINITION 9.3. Let © be a countable set, € Meg.

Then the |support of,u‘ is: Su| = {teO|p{t}#0}.
DEFINITION 9.4. Let © < R be countable, pe Meg.
Let p > 1 be real. Then: lp| = (Do [1EP - (ufth)])Me.
Note: Vcountable © € R, Vue FMeg,
if  #S, <o, then:  Vreal p>1, |u|, < 0.

DEFINITION 9.5. Let © € R be countable.
Let 1€ Po. Assume: |ul; < o0.
Then the is: M,| = Yol t-(p{t})]
Also, the’variance of,u‘ is: Vil = Yo (=M, (pft]h)].
Let © < R be countable, u € Pe. Assume: |u|; < 0.
Then, by subadditivity of absolute value, we get |M,| < |ul|;.
In particular, |M,| <o, ie, —o0 <M, <.
Also, by expanding the square in the formula for V,,,

we get Vi, = |pul3 — M.

In particular, (V, <) < (|uls <o0).

Let © < R be countable and let X be a ©-valued random-variable.
Let 11 denote the distribution on © of X,

i.e., define e Pgby: VieO, u{t}=Pr[X =t].
Then, Vreal p > 1, we have: \wl, is  the LP-norm of X.
Then, Vreal p > 1, we have: (lplp<o) <= (XisLr).
In particular, (<o) = (XisL').
Also, if X is L', then M, = E[X] and V, = Var[X].
That is, if X is L', then

M,, is the mean (aka expected value, aka average value) of X
and V), is the variance of X.
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THEOREM 9.6. Let © < R be countable, e Pg.
Assume: |ply <oo.  Then: (#S,=22) < (V,>0).

The preceding result is a measure-theoretic analogue of the statement:
An L' random-variable is not deterministic iff its variance is > 0.
We omit proof.

Because VteZ, |t| <t?, we conclude:
for any Z-valued random-variable X, E[|X|] < E[ X?].
It follows that for any Z-valued L? random-variable X, we have:
X is L', andso E[X]is defined and finite.

Because VteZ, |t| <t?, we conclude:
VGQZ, VMEM@7 ’:u"l < ‘/’L|% )
it follows that if |u|s < oo, then
1 < o, and so M,, is defined and finite.

DEFINITION 9.7. Let © be a countable set.
Let pq, ps, ... € Po and let A € Po.
By’,ul,,uZ, .= A, wemean: YO, S O, u1(6y), 12(Og), ... — A(Op).

Recall (§2):  Vfunction f, the notation:  Ij.
Recall (§2):  Vfunction f, Vset A, the notation:  f*A.
For any countable set .S, for any set T,

for any function f: S — T, for any pue Mg,
we deﬁnee/\/lﬂf by: VAC Iy, (fap)(A) = p(f*A).

Let S be a countable set, T aset, f:S—>T. LetneN.
Define f*: S™ — T" by: VxeS", f"(z) = (f(x1), ..., f(za)).
Then: (f7), (1) = (furt)".

For any nonempty countable set ©, for any p e FMG,

let [N (u)]:= M(“@) € Po; then YO, <O, (N(1))(6) = ‘;

and N (p) is called the ‘normalization of i ‘

Let © be a countable set. Let peMg. Let©Oc o.
Then the ’restriction of pto ©f denoted |ul®| € Mg,
is defined by: VO, € O, (u|©)(0n) = u(Oy).
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NOTE: We have (u|0)(0) = u(0). So, if 0 < u(0) < o, then:
x s
1l e FM and N(u®)= ——
1(©o)

and VO, <O, (N(u0))(60) = @)

DEFINITION 9.8. Let F' be a nonempty finite set.
Then we define [vp|e Pp by:  VfeF, ve{f}=1/(#F).

Also, we define : (T} - {-1} by: vy(>)=-1
THEOREM 9.9. Let F' be a nonempty finite set. Let 0 € Pp.

Assume: Yf,ge F, 6{f}=0{g}. Then: 6 =vp.
Proof. Since F' is nonempty, choose gq€ F'. Let b := 6{go}.
Then: VfeF, 6{f}=0b. Then: > (0{f}) = (#F) b
Since 0 € Pp, we get: 0(F) =1.

Since  (#F) b= Y,0p (01F) = 0(F) =1, weget: b= 1/(#F)
Since VfeF, 0{f} =0b= 1/(#F)—1/F{f} we get: 0 =vp. O

10. THE DISCRETE LocAL LiMIT THEOREM

DEFINITION 10.1. Let F < Z.
By FE s ’residue—constrained ‘, we mean:
dme [2.00),IneZ st E<mZ+n.
we mean:
E is not residue-constrained.

By FEis ’residue-

Since @ < 2-7Z+ 1, we get: J is residue-constrained.
For all b € Z, since {b} < 2-Z + b, we get: {b} is residue-constrained.
Then:  Vresidue-unconstrained F € Z, #E > 2.
We have: {0,3,9} <3Z+0 and {2,511} € 3Z + 2,
so  {0,3,9} and {2,5,11} are both residue-constrained.
Here is a test for residue-unconstrainedness:
Let E<Z. Assume #E >2. Leteye FE.
Then: ( E is residue-unconstrained ) iff (ged(E—¢p) =1).
By this test, we see that:
{0,1,10} and {2,4, 8,9} and {3, 9, 13, 18} are all residue-unconstrained.

DEFINITION 10.2. For all o e R,  for all real v > 0,
2
—(t — 2
define | @ |: R — (0;0) by: Vte R, ®U(t) = exp( —(t —a)* / (2v) )

(6%
2mv
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Note: ®? is a PDF of a normal variable with mean « and variance v.

The next result is a version of the Discrete Local Limit Theorem;
this version is stated in probability-theoretic terms:

THEOREM 10.3. Let £ € Z be residue-unconstrained.
Let X1, X5, ... be an iid sequence of Z-valued L* random-variables.
Assume:  ¥neN, {teZ|Pr[X, =t]>0}=EFE.
Let a e R, ve [0;00]. Assume: Vn e N, E[X,] = a and Var[ X,,] = v.
Then: 0<wv< o0, and, Vty, to,... € Z,

asn— o0, /n-[(Pr[Xi+---+X, =1t,]) — (®r2(t,))] — 0.

For a good exposition of this theorem and its proof,
search on “Terence Tao Local Limit Theorem”.
Visit the website, and then expand “read the rest of this entry”,
and then scroll down to “~ 2. Local limit theorems —”.
In Theorem 10.3, since E < Z, we have, for each n € N,
X, < X?as., so E[X,|]] <E[X?],
so, since X, is L?, we get X, is L',
and so E[X,] and Var[X,,] are both defined.
Moreover, in Theorem 10.3, Vn e N,
since |E[X,]| < E[|X,|] < E[X?] < w0, we get: E[X,] is finite.
In Theorem 10.3, the proof that v > 0 is relatively simple:
Since FE is residue-unconstrained, we get: #FE > 2.
Then, VneN, #{teZ|Pr[X,=1t]>0}=>2,
so X,, is not deterministic,
which implies that Var[X,] > 0,
and so v > 0.
In Theorem 10.3, the proof that v < oo is relatively simple:
VneN, Var[X,] = E[X?] — (E[X,])? < E[X?] < o,
and so v < 0.

Next is another version of the Discrete Local Limit Theorem;
this version is stated in measure-theoretic terms:

THEOREM 10.4. Let E < Z be residue-unconstrained.
Let pe Pg. Assume: S, = E.  Assume: |p|s < 0.

Let a:=M,, v:=V,. Then: 0<v<oo, and, Vit ...€Z,

asn — o0, n-[(p{fe E" [ fit -+ fu=ta}) = (P5(tn))] — 0.
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In Theorem 10.4, since S, = E <€ Z we get: |u|i < |ul3.
Since |uly < |pl3 <, weget: M, and V), are both defined.
Moreover, since |M,| < |ul1 < |ul3 <, we get: M, is finite.
In Theorem 10.4, the proof that v > 0 is relatively simple:
Since FE is residue-unconstrained, we get: #E > 2.
Since #95, = #F > 2, by Theorem 9.6, we get: v > 0.
In Theorem 10.4, the proof that v < oo is relatively simple:
v=V,=|pp - M3 < |ui < o

Here is an application of Theorem 10.3:

THEOREM 10.5. Let E < Z be residue-unconstrained.
Let X, X5, ... be an iid sequence of Z-valued L? random-variables.
Assume: ¥neN, {teZ|Pr[X, =t]>0}=FE.
Let a e R, v e [0;:0]. Assume: ¥Yn e N, E[X,,] = a and Var[X,,| = v.
Then: 0 <v <.  Also, Vity,ts,...€Z,

if {t, — na|n e N} is bounded,

then, asn — o, /n-(Pr[Xi+ -+ X,=1t,]) — 1/v270.

Proof. By Theorem 10.3, we get 0 < v < o0.

Given ty,ts,... € Z, assume {t, —na|n € N} is bounded,
want: asn — o, /n-(Pr[X;+ -+ X, =t,]) — 1/4/27v.

By Theorem 10.3, it suffices to show:

asn — 0, /m-(®(t,)) — 1/4/27v.

2
—(ln — 2
We have: Vn e N, (1) = exp( (tn\/zni) / (2nv) )
™mv

Since {t, — na|n € N} is bounded and since 0 < v < 00, we get:

as n — oo, —(t, —na)* / (2nv) — 0.
Then: asn — o,  exp(—(t, —na)? / (2nv)) — 1.
Then:  asn — o, V(9 (t,)) — 1/4/27v. O

We record a measure-theoretic version of Theorem 10.5:

THEOREM 10.6. Let F < Z be residue-unconstrained.
Let 1€ Pg. Assume: S, = E and |p|y < 0.
Let a:=M,, v:=V,. Then: 0 < v < 0.
AZSO, Vthtg, ... E Z,
if {t, — na|n € N} is bounded,
then, asn — 0, n-(u™{f € E™| fi+ -+ fo=ta}) — 1/4/270.

We also record the t,, =ty + na special case of the past two theorems:
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THEOREM 10.7. Let E € Z be residue-unconstrained.
Let X, X5, ... be an iid sequence of Z-valued L? random-variables.
Assume:  VYneN, {teZ|Pr[X, =t]>0}=EFE.
Let ty,a€Z, ve[0;0]. Assume: ¥Yn e N, E[X,,] = a and Var[X,,] = v.
Then: 0<v<oo, and,

asn— o, ~m-(Pr[X;+ -+ X, =ty +na]) - 1/v/2mv.

THEOREM 10.8. Let E < 7Z be residue-unconstrained.
Let y1e Pg.  Assume: S, = E.  Assume: |p|s < 0.

Let a:=M,, v:=V,. Assume: a € 7. Let tg e Z.
Then: 0<v<oo, and,

asn— 0, /n-(W{feE"|fi+- -+ f, =1t +na}) — 1/v/2mv.

We also record the ¢ty = 0 special case of the past two theorems:

THEOREM 10.9. Let E < Z be residue-unconstrained.
Let X1, Xs,... be an iid sequence of Z-valued L* random-variables.
Assume:  ¥neN, {teZ|Pr[X,=1t>0}=FE.
Let a € Z, v e [0;m0]. Assume: VYne N, E[X, ] = « and Var[X,,] = v.
Then: 0<v<oo, and,

asn— oo, ~m-(Pr[X;+ -+ X, =na]) - 1/v/2m0.

THEOREM 10.10. Let E < Z be residue-unconstrained.
Let y1€ Pg.  Assume: S, = E.  Assume: |p|s < 0.

Let a:=M,, v:=V,. Assume: « € Z.

Then: 0<v<oo, and,

asn— o, /n-(p{feE"|fi+ -+ fn=na}) — 1/v2mv.

11. AVERAGE EVENTS HAVE LOW INFORMATION, PARTICULAR CASE

Suppose, in secret, I flip a coin 1000 times,
then reveal to you that
the total number of heads was 1000,
and then ask you to guess the last flip.
The answer is that, since all the coin flips were heads,
the last flip must have been a head.
Similarly, if I had told you that
the total number of heads was 0,
then you would have known that the last flip was a tail.
By contrast, if I had told you that
the total number of heads was 500,
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it seems intuitively clear that
you’d have had very little information about the last flip.
We wish to generalize and formalize that intuition,
and then provide rigorous proof of the resulting formal statement.
Our main theorem is Theorem 12.3, in the next section.
In this section, we go carefully through a special case:

Let Xi, X5... be Z-valued iid random-variables  s.t.,
VneN, Pr[X,=-1] = 1/2,
Pr[ X, = 0] = 1/3,
Pr[ X, = 3] = 1/6.

Then, Vn e N, X, is L' and X, is L.

Also, VneN, E[X,]=0 and Var[X,]=2.
Also, Vn e N, -1 <€ X, < 3 as.
ForallneN, let T,:=X1+ - +X,.

Then: Vn e N, -—n < T, < 3n as.

Then: —1000 < Tipoo < 3000 a.s.

AlSO, [T1000 = —1000] = [Xl == X1000 = —1],

and so PT[X1000 =—1 | T1000 = —1000] = 1.
SiIIlﬂEiI'ly7 PI’[XlO(]O = 3 | Twoo = 3000] =1.
By contrast, the event Tjggg =0
would seem to give very little information about Xjggq.
It therefore seems reasonable to expect that
Pr[Xi000 = —1| 71000 = 0] = 1/2 and
Pr[Xi000 = 0]Ti000 =0] ~ 1/3 and
Pr[Xi000 = 3|T1000 = 0] ~ 1/6.
To make this precise, we will work “in the thermodynamic limit”,
which means: we replace 1000 by a variable n € N, and let n — 0.
That is, more precisely, we expect that, as n — oo,
Pr[X, =-1|T,=0] — 1/2 and
Pr[X,= 0|T,=0] — 1/3 and
Pr[X,= 3|T,=0] — 1/6.
We will focus on proving the third of these limits;
proofs of the other two are similar.
By definition of conditional probability,
Pr[(X,, = 3)&(T,, = 0)]

we wish to prove: Asn — oo, Pr[T}, = 0]

~ 1/6.
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Claim: Let n e [2..0).
Then:  Pr[(X, =3)&(T,, =0)] = (1/6) - (Pr[T,,—1 = —3]).
Proof of Claim: We have: T, =X;+---+ X,,_1 + X,,.
Since  Pr[(X,, = 3)&(T,, = 0)]
= PI"[(Xn = 3)&<X1 + -+ Xn—l + Xn
= PI‘[(Xn = 3)&(X1 + -+ Xn—l + 3
= PI‘[(Xn = 3)&(X1 + -+ Xn—l = —3)],
it follows, from independence of X7,...,X,, that
Pr[(X, = 3)&(T, = 0)]
=(Pr[X,=3]) - (Pr[Xi+--+X,01=-3]).
So, since Pr[X,=3]=1/6and X; + - -+ X,,_1 =T,_1,
we get: Pr[(X, =3)&(T,=0)] = (1/6)  (Pr[T,,-1 = —3]).
End of proof of Claim.

0)]
0)]

By the claim, we wish to prove:
(1/6) - (Pr[Th—1 = —3])

A . — 1/6.
sn =@ Pr[T, = 0] /
Pr[T,,_, = -3
We wish to prove: Asn — o, 1rlgr[T: = 0] ] -t

That is, we wish to prove:
As n — o, Pr[T,,—1 = —3] is asymptotic to Pr[T,, = 0].
So the question becomes:
How do we get a handle on the asymptotics, asn — oo, of
both Pr[T,-; =—-3] and Pr[T,=0] 7
The Discrete Local Limit Theorem turns out to be just what we need.

Recall:  VneN, E[X,]=0 and Var[X,]=2.
Let a:=0and v:=2. Then: (Vne N, na =0 ) and ( 2rv = 47 ).
Also, VneN, E[X,]=a and Var[X,]=wv.
Let F :={-1,0,3}. Then E is residue-unconstrained.
Also, we have: VneN, {teZ|Pr[X, =1t] >0} =FE.
By Theorem 10.9, asn — o0,
V- (Pr[X) + -+ X, =nal) — 1/v2m,
Then: asn — o, +/n-(Pr[T,=0]) — 1/V4n,

S0, as n — oo, Pr[T,, = 0] is asymptotic to 1/v/4mn.
Want: asn — o, Pr[T,_1 = —3] is asymptotic to 1/v/4mn.
Let t; := —3. Then, VneN, ty+na=-3.

By Theorem 10.7, as n — oo,
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V- (Pr[Xi+--+ X, = tg+na]) — 1/4/2mv.
Recall: VneN, T, =X;+ -+ X,.
Then: as n — oo, vn-(Pr[T, =-3]) — 1/\/4r.
Then, as n — oo, Vn—1-(Pr[T,_; = -3]) — 1/\/4n.
Then, asn — o, Pr[T,_; = —3| is asymptotic to 1/+4/47(n — 1),
which  is asymptotic to 1/+v/4mn.

12. AVERAGE EVENTS HAVE LOW INFORMATION, GENERAL RESULT

We now seek to generalize our work in §11;
in the example at the end of this section, we show that
Theorem 12.3 reproduces the result of §11.

THEOREM 12.1. Let E < Z be residue-unconstrained.

Let X, Xs,... be an iid sequence of Z-valued L? random-variables.
Assume: YneN, {teZ|Pr[X, =t] >0} =F. Let o, P e R.
Assume: Yn e N, E[X,] = a and Pr[X, =] =P. Lete € E.
Let t1,ty,... € Z.  Assume: {t, — na|n € N} is bounded.

Then: asn—w, Pr[X,=¢|Xq3+ - +X,=1t,] » P.

I don’t know whether “L?” can be replaced by “L!”.

Part of the content of Theorem 12.1 is:
Vsufficiently large ne N, Pr[X; +---+ X, =1,] > 0
since, otherwise, Pr[ X,, = g9 | X1+ --+X,, = ¢, | would not be defined.

Proof. Since X1, X, ... are all Z-valued and L2,
and since VteZ, [t| <t? we get: X1, X,,...areall L.
So, since X1, Xs,... is an identically distributed sequence,
choose wve[0;00] s.t., VneN, Var[X,]|=w.
By Theorem 10.5, we have: 0 <wv <o and
asn — 0, n- (Pr[Xy+-+ X, =t,]) = 1/3/2mv.
ForallneN, letT, =X+ -+ X,.

Then: asn — o, /n- (Pr| T, =t,]) — 1/v2mv.
Want: asn — oo, Pr[X, =¢|T,=t,] — P.

Let D, := {t, —na|n e N}. By hypothesis, D, is bounded.
Let Dy := {t, — na|n e [2..00)}. Then Dy € Dj.

Let D3 :={t,.1 — (n+1)-a|neN}. Then D3 = Ds.
For all n € N, let t,
Let D4 SZ{

= tnt1 — €o-

tn :
t, — na |n e N}.
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Since Di—a+e={ 1, — na—a +¢e|neN}
= {thy1—co—(n+1)-a+ec|neN}
= {tn11 —(n+1)-a |neN}
= D3 =D, C Dl,

and since Dy is bounded,

we get Dy — a + € is bounded.

Then: Dy—a+e+ (a—¢)is bounded.

Then: D, is bounded.

Then, by Theorem 10.5, we have:

as n — oo, V- (Pr[T, = %, 1) — 1/v2mv.
Then, asn— o0, ~n—1-(Pr[T,_1= t,.1 |) — 1/3/270.
We have: Vn € [2..00), tho1 =t — 0.
Then, asn — o, +/n—1-(Pr[T,_1=1t,—¢c0]) — 1/+/2mv.
Recall: as n — oo, Vo (Pr[T, =t,]) — 1/4/27v.
Dividing the last two limits, we get:

Vn—1-(Pr[T1 =tu )

as n — o0, T (Pr[Th = ) 1.
n
Also, asn — oo, \/ﬁ — 1.
Multiplying the last two limits together, we get:
as n — o0 PriTn 1 = tn — 2o — 1
’ Pr[T, = t,] '
Since, Vn € [2..00),
Pr[(X,, = 20)&(T,, = t,)]
Pr(X,=c|T,=t,] = e[l = 1]
. Pl"[(Xn = 80)&(Tn_1 + Xn = tn)]
B Pr[T,, = t,]
. PI‘[(Xn = 80)&(Tn_1 + Eo = tn)]
B Pr|T, = t,]
_ Pr[(X, = e0)&(Th 1 = t, — £0)]
B Pr[T, = t,]
~(Pr[X, = ¢&o]) - (Pr[T,, 1 = t, — &0])
B Pr[T, = t,]
_p. Pl"[Tn_l =1, — E()]7
Pr([T,, = t,]
. PI“[Tn_l = tn — 80]
and since, as n — o0, Pl = 1] — 1,

we get: as n — oo,
Pr[X, =¢|T,=t,] — P.
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Recall (§9): Vcountable set O,
FMG is the set of nonzero finite measures on O
and Po is the set of probability measures on O.
Recall (§9): Vnonempty countable set ©, Vue FMG,
N(p) is the normalization of u.

Here is a measure-theoretic version of the preceding theorem:

THEOREM 12.2. Let £ € Z be residue-unconstrained.

Let e Pp.  Assume: S, = E. Assume: |ply < o0.

Let o := M,,. Let ¢g € E, P := u{eo}.
Let t1,t2,... € Z. Assume: {t, —na|n € N} is bounded.
ForallneN, let Q,:={feE"|fi+ -+ fu="1tn}

Then: asn— o, (N"|Q){f € Q| fu=2c} — P.

I don’t know whether “|u|s < o0” can be replaced by “|u|; < 0.

Part of the content of Theorem 12.2 is:
Vsufficiently large n e N, p"(Q2,,) > 0,
since, otherwise, 1" |2, would be the zero measure on 2,,,

and so N (™) would not be defined.

We record the t,, = na special case of the past two theorems:

THEOREM 12.3. Let E < Z be residue-unconstrained.

Let X, Xs,... be an iid sequence of Z-valued L? random-variables.

Assume: Y¥neN, {te Z|Pr[X,, =t] >0} = FE. Let ac€Z, PeR,.

Let ¢g € E.  Assume: VneN, E[X,] =« and Pr[X, = ¢g] = P.
Then: asn— o, Pr[X,=¢c|Xi+ - +X,=na] - P.

THEOREM 12.4. Let F < Z be residue-unconstrained.

Let y1€ Pp. Let a:= M,,. Assume: € Z and S, = E and |p|2 < .
ForallneN, let Q,:={feE"|fi+ -+ f, =nal.

Let g€ E. Let P := p{eo}.

Then: asn— 0, (N(u"|Q){f€ Q]| fn=2c0} — P.

Ezample: Let FE :={-1,0,3}.
Then: FE <7 and F is residue-unconstrained.
Let X, X,... be Z-valued iid random-variables  s.t.,
Vn e N, Pr[ X, =-1] = 1/2,
Pr[ X, = 0] = 1/3,



26

Then: VneN, {teZ |Pr[X,= t] >0} = E.

Let ¢ =3, P:=1/6.

Then: Vn e N, Pr[ X, = &] = P.

We have: Vn e N, E[X,] = 0. Let «:=0.
Then, Vn e N, E[X,] = a.

Then, by Theorem 12.3, we have:

asn—o, Pr(X,=¢|Xi+ - +X,=na] - P.
Then: asn—o, Pr(X,=3|Xi+---+X,=0] — 1/6.
For all n € N, let T, := X1+ -+ X,,.
Then: asn— o, Pr[X, =3 | T, = 0] — 1/6.
Thus Theorem 12.3 reproduces the result of §11.

13. SOLVING THE MAIN PROBLEM

We finally have all we need to solve the main problem (end of §3).

(L9097
Let (p7Q7T) T 1+ 9,1/10 + 9,1'
We compute (p,q,7) ~ (0.5225,0.4194, 0.0581),

all accurate to four decimal places.

Again, let’s say I am one of the professors applying to the GFA.
We will show: Under the GFA’s first system (§3),
my probability of getting $ 0 is p, approximately and
my probability of getting $ 1 is ¢, approximately and
my probability of getting $10 is r, approximately.

Recall: Q = { w:[1.N] = {0,1,10} | ¥¥, [w(0)] = N }
Recall (§5): the notations iy, j., kw-
Let S =Y o pegerk,
By the work in §7, p+q+r=1 and ¢+ 10r=1 and
VweQ, pegierte /S =1/(#Q).
Let X, X5, ... be Z-valued iid random-variables s.t., Vne N,
Pr[ X, = 0] = p,
Pr(X, = 1] = gq,
Pr[ X, =10] = r.
Then X, Xs,... is a sequence of L? random-variables.
Also, VneN, E[X,]=q+ 10r.
So, since q+ 10r =1, we get:
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VneN, E[X,]=1
We model the GFA’s second system (§5) by: V¥Vl e [1..N],
Professor#/{ receives X, dollars.
ForallneN, let T,:=X;+---+ X,.
We model the GFA’s third system (§5) by: V¢ e [1..N],
Professor#/{ receives X, dollars, conditioned on Ty = N.
Since VweQ, plegerte /S =1/(#Q),
it follows that:  the third system is equivalent to the first.
For definiteness, let’s assume that I am Professor# V.
Then, assuming N is large, we wish to show:
PI'[XNZ O|TN=N] X p and
Pr[Xy= 1|Ty =N] ~ ¢ and
Pr[ Xy =10|Ty =N] ~ r.
To be more precise, we wish to show: asn — oo,
Pr[X, = 0|1, =n] — p and
Pr[X, = 1|T, =n] — ¢ and
Pr[X, =10|T, =n] — 7.

Let E :={0,1,10}. Then: E is residue-unconstrained.
p, ifeg=0
Givenegye E, let P:=<¢q, ifeg=1
r, if gg = 10,
want: asn — oo, Pr[X, =¢g|T, =n] > P.
By definition of X, Xs,..., we get: VneN, Pr[X, =¢g] = P.
Let a := 1. Then: «a€Z and VneN, E[X,]=q.
Also, VneN, {teZ|Pr[X, =t]>0}=F.

Then, by Theorem 12.3, we have:
asn — o, Pr[X, =¢X;+ - +X,=na] - P.
Then: asn — o, Pr[X, =& T, =n |— P.

14. PROBABILITY OF TWO PROFESSORS GETTING ZERO

Under the GFA’s first system, since NN is large, one would expect:
the award amounts  of two different professors
are almost independent.
Then, for example, one would expect:
the probability that two professors both receive zero dollars
should be very close to  the square of
the probability that one professor receives zero dollars.



28

We will formalize this statement and prove it, below.
For definiteness, we will assume that
the two professors are Professor #(N — 1) and Professor #N.

(1’9—1/10’971)
Let (p,q,7) = o5 g1 Then (§7): p+q+r=1.

Let X, X5, ... be Z-valued iid random-variables s.t., Vne N,
Pr[X, = 0] = p,
Pr[X, = 1] = gq,
Pr[ X, =10] = r.
Then X, Xs,. .. is a sequence of L? random-variables.
ForallneN, let T,:=X;+ -+ X,.
Assuming N is large, our goal is to prove:
PI’[XN_1=0=XN|TN=N]%])2.
To be more precise, we will prove:
as n — o, Pr[X,,1=0=X,|T,=n]—p%.

For allne N, define ,:Z — R by:
VteZ, ,(t) =Pr[T, =t].
For all n e N, let a,:=v,(n+2), z,:=11Y(n).
Since, ¥n € N, we have ¢, (n) = Pr[T,, = n] = Pr[X;
>Pr[X;=--=X,=1]=¢">0,
we conclude: VneN, z,>0.

Claim: Let n € [3..50). Then Pr[X, ; = 0 = X, |T, = n] = p* - =2,

Proof of Claim: We have T,, = X1+ -+ X,, o+ X,,_1 + X,,.
Since  Pr[(X,-1 = 0= X,)&(T,, = n)]
=Pr[(X,-1=0=X)&(X1 + -+ Xy o+ Xpo1 + X, = n)]
=Pr[(X,-1 =0=X,)&(X1+ -+ X, 2+ 0 + 0 =n)]
=Pr[(X,-1 =0=X,)&(X1 + -+ X9 =n)],
it follows, from independence of Xi,...,X,, that
Pr[(X,—1 = 0= X,)&(T, = n)]
= (Pr[X,-1=0]) - (Pr[X, =0]) - (Pr[X1+ -+ X, 2=n]).
So, since Pr[X,_; =0]=p=Pr[X, =0]
and since X7+ -+ X,,_o =T,,_o,




29

P PTa=n]) (), aa
B Pr[T, = n| —r Un(n) P Zn
End of proof of Claim.

. Ap—2
Because of the Claim, we want to show: asn — o0, p? - —— — p°.
Zn
Ap—2
Want: as n — o, e |
Zn

0

We compute: VneN, E[X,]=q¢q

Recall (§7): ¢ +10r =1. Then: VneN, E[X,]=1
We compute:  VneN, Var[X,]=q

Let v := ¢ + 100r — 1. Then: VYneN, Var[X,]=v

Since v = (¢ + 10r — 1) + 90r = 0 + 90r = 90r, and since 0 < r < o0,
we get: 0 < v < o0.

Let 7:=1/v2mv.  Then: 0<7 < 0.

Let o := 1. Then: (ae€eZ)and (YneN, E[X,]=a).

Let E:={0,1,10}. Then, VneN, {teZ|Pt[X, =t >0} =E.

Also, F is residue-unconstrained.
By Theorem 10.9, asn — o, ~/n- (Pr[T}, = na]) — 1/v/27v.
Then: as n — o, (Pr[T,=n])—» .

vn
Then: asn — 0, /n-(Yp(n)) - 7.
Then: asn — o0, \/n-z, —>T.
Let to:=2. Then tyeZ and VneN, ty+na=n-+2.
By Theorem 10.7, asn — o, +/n- (Pr[T, =ty + nal) — 1/4/27v.
Then: asn— o, /n-(Pr[T,=n+2]) —> 7
Then: asn — 0, \/n-(p(n+2)—r.
Then: asn — o0, /n-a, > T.
Then: as n — oo, n—2-Qp_9—T.
Recall: as n — o, oz, o T

Dividing the last two limits, we get:

VN — 2 a2

asn — o, ———— — 1.
’ NS
vn
Also as n — oo — 1
Y Y /n — 2
Multiplying these last two limits, we get:
Ay
as n — o, LN |

Zn
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15. FRACTION OF PROFESSORS GETTING A ZERO AWARD
17 9—1/107 9-1
Let (p,q,r) := 1(+ 9-T/10 1 9)1.
We compute (p,q,7) ~ (0.5225, 0.4194, 0.0581 ),
all accurate to four decimal places.
Let X, X5, ... be Z-valued iid random-variables s.t., Vne N|
Pr[ X, = 0] = p,
Pr(X, = 1] = gq,
Pr[ X, =10] = r.
ForallneN, letT, =X+ - +X,.
For all n € N, let I, be the indicator variable of the event: X, = 0.
ForallneN, let J,:= (I + - -+ I,)/n.
Using the GFA’s first (or third) awards system, the random-variable
Jy conditioned on Ty =N
represents  the fraction of professors receiving a $0 award.
In this section, we will prove the following:

Claim: ¥6 >0,asn —»>o, Pr({p— ¢ <J,<p+ ¢ |T,=n]— 1

Assume, for a moment, that this Claim is true.

Then: asn — o, Pr[p—0.02 < J, <p+0.02|T, =n] — 1.

From this, it follows that, if N is sufficiently large, then
Prp—-002<Jy<p+0.02|Ty=N] > 0.99,

SO Pr[p—0.02 < Jy | Ty =N ] > 0.99,
SO Pr[Jy > p—0.02 | Ty =N | > 0.99.
Since p &~ 0.5225, accurate to four decimal places, we get
p—0.02 > 0.5,
SO [Jv > p—0.02] = [J, > 05],
SO PI"[JN>p—0.02 |TN=N]
SPI‘[JN>O.5 |TN=N]
Therefore, if N is sufficiently large, then, since
PI'[JN>O5 ‘TN:N]
> Pr[Jy > p—0.02 | Tv = N | > 0.99,

we conclude: under the GFA’s first system, with probability > 99%,
over 50% of the professors receive $0.

Proof of Clavm:
Given § > 0, want: asn — w0, Pr[p—0 < J,<p+d|T,=n] — 1.
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Let £ := {0, 1,10}. Then E is residue-unconstrained.
Also, VneN, {teZ|Pr[X, =t]>0}=
Let a := 1. Then: «a€Z and VneN, E[X,]=a.
For all neN, let k, ;= E[ I, |T,=n].
Then: Vn e N, kn = Pr[X,=0|T,=n].
By Theorem 12.3, we get:

asnm— o, Pr[X,=0|X;+ - +X,=na] - p
That is, asn — o0, Pr[X, =0] T, =n]|] — p.
Then: as n — o0, Kn — .
So, dngeN s.t., Vne [ng..0),

we have p—(6/2) < kn<p+(§/2),

and so both p—0 <k, —(§/2) and k,+ (§/2) <p+ 9,
and so  [kn,—(0/2) < J, <kpn+(0/2)] = [p—6<J,<p+4],
and so Pr[k, —(0/2) < Jy < kn + (6/2) | T, = 1]
< Pr[ p—9¢ <J,.< p+ 6 |T,=n]
It therefore suffices to show:
asn — oo, Prir,—(0/2) < J, < kn+(0/2)| T, =n] — L.
We have:  Vn e N, T, is invariant under permutation of Xy,..., X},
as is the joint-distribution of X, ..., X,,.

Then: VneN,Vie[l.n], E[L|T.,=n] = E|[L, |T,=n].
Then: VneN,Vie[l.n], E[L|T,=n] = k.
Since, VYneN, J,= ([ + - +1,)/n, we get:

VneN, E[J,|T,=n] = (X E[L|T,=n])/n.
Then: YneN, E[J,|T,=n] = (X, Kn )/ n.
Then: YneN, E[J,|T,=n] = ( Nk, )/ n.
Then: VneN, E[J,|T,=n] = k.

Forall neN, letw, := Var[J,|T,=n].

Then, by Chebyshev’s inequality, we have: Vne N,
Prik,—(0/2) < Jy < bn+ (6/2)| Ty =n] = 1— (v,/(5/2)?).

It therefore suffices to show: asn— o, v, — 0.

Recall: asn — o, Kk, —p.

Since Vn e N, v, = Var[J,|T, =n]

= (E[JT, =n]) - ;.
and since, asn — oo, K2 — p?
we want: as n — o0, E[J2|T,=n] — p
For all ne[2.0), let A\, := E[ I,1-1, | T, =n]

Then: Vn € [2..00), M =Pr[X,,=0=X,|T,=n]
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So, by the result of §14, we get:  asn — o, N\, — P

For all n € N, since [, is an indicator variable, we get: I, € {0, 1} a.s.
Then: VneN, I, = IZ  as.

Then: VneN, E[l,|T.,=n] =E[I?|T,=n].
Recall:  Vn e N, E[L|T,.=n] = k.

Then: VneN, kn = E[I2]|T,=n].

ForallneN, for alli,je[l.n],let ¢;j, == E[L;-1; | T, =n].
We have: Vn e N, T, is invariant under permutation of Xy,..., X,
as is the joint-distribution of Xy, ..., X,,.
Then VneN,Vie[l.n], E[I}|T,=n] = E[I}|T,=n]
so, VYneN, Vie[l.n], E[I}|T,=n] = ky,
so, VneN,Viel[l.n], Ciin = K.
Similarly, Vne[2.0), Vi,je[l.n], ifi+#j, then

Y

E[L-L|Th=n] = E[IL\ I |T.=n].
S0, Vn e [2..0), Vi,je[l.n], ifi#j, then
E[L-L|Ta=n] = A
S0, Vn € [2..00), Vi,je[l.n], ifi+#j, then
Cijn = )\n
. {mm if i = j
Then: VneN, Vi, je[l.n], Cijn = T
A, if i # 5.
Then: VneN, Dy 2oy Cijn = Mk (0P —n) - A
Recall: as n — o, Kk, —p and A\, — p*
Since VneN, v (I + -+ 1,)/n,
we get: Vn e N, J? = (X 2 [ L] ) /2
Then: VYneN, E[J?|T,= = (21201 Cign )/ 0P
Then: VvneN, E (

1/n)-kn+ (1= (1/n))- A, |
0 -p + 1 - P2

P

Then: asn — o0, E
Then: asn—o, E
End of proof of Claim.

16. BOLTZMANN DISTRIBUTIONS ON NONEMPTY FINITE SETS

Recall (§9): Vcountable set O,
Mg is the set of measures on ©
and FMS is the set of nonzero finite measures on O
and Peo is the set of probability measures on ©.
Recall (§9): Vnonempty countable set ©, Vue FMG,
N(p) is the normalization of pu.
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DEFINITION 16.1. Let FE < R be nonempty and finite, S € R.
The ‘unnormalized—B—Boltzmann distribution on F ‘ 18

the measure EﬁE e FMy defined by:
Vee E, ég{g} = e e,
f-Boltzmann distribution on E‘ 18

BBE = N(éﬂE) € PE

Also, the

Then: Ve € E, we have:  BE{e} = (BF{e})/(B5(E)).

Ezample: Let E :={0,1,10} and let 5 € R.
Then: BF{0} =1, BF{l} =e”  BF{10} = '
Let C :=1/(1 + e ? + ¢7108),
Then: BF{0} =C, BEF{1} = Ce™”, BF{10} = Ce '

Ezample: Let F := {2,4,8,9} and let § € R.
Then: §§{2} = e*Qf, ég{él} = 6*45,
BF{8} =e ™, BE{9} =e .
Let O :=1/(e72 4+ 748 4+ 780 4 ¢79).
Then: Bf{2} = Ce ™, Bf{4} = Ce ™,
BE{8} = Ce™®,  BF{9} = Ce .

Recall (§9): For any countable set ©, for any u € Mo,
S, is  the support of p.
Note: Vnonempty finite £ € R, V3 € R, we have: Ség =F= SBE'

THEOREM 16.2. Let £ < R be nonempty and finite.

Let soe E, B,£€R. Then: Bf *{eo — &} = B {eo}.
Be e—B(0—¢)
Proof. We have: By {gg — £} = S e o]
e—Beo . B¢
D leT? €]
eB€ . =B
P Yo7
A= Bifa). O
= =5 = €0J-
Yeeple ] P

Recall (§9): Let © < R be countable, g€ Po. Assume #S, < .
Then |p|; <o and M, is the mean of 4 and V), is the variance of p.
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Let £ < R be nonempty and finite. Let e R. We define:
L5| = Xeeple e,

Ag = Yeep el

Ag = Fg/Ag.

Then: Tf = Y..ple- (BF{e})]

Also, AF = ¥ . [BFel, andso A% = BE(E).
MY Y.ple- (Bf{e)
Since B _ ek =~ & (BEJ{ DI,
2 e &
we conclude:  Af = Mpge.

Then: Ag is the average value of any E-valued random-variable
whose distribution in E is Bf .

THEOREM 16.3. Let £ < R be nonempty and finite. Let 3, € R.
Then: Ay *=AF—¢.

Proof. Want: Mye-c = MB};; —&.
8

Let \:=B; ° u:=B~. Want: M, = M, — €.

We have: AePgp_ and pePg.

By Theorem 16.2, we have: Vee E, Bgfg{g — &} = Bi{e}.
Then: Vee E, Me—¢& = pfel

Since u € Pg, we get:  p(F) = 1.
Then: My = cpl(e =€) - (Me—¢&})]
=2eerl(E—8)- (M{E})]
= 2er e (ufe}) — & (ufe}) ]
= (2eeple- (b)) ]) — (Xeep € (n{eh) ])
= (Zeerle (Wb ]) — 5 (Ze [pde}])
=M, —¢& (WE) = M,-¢1 = M,-¢& O

THEOREM 16.4. Let E < R be nonempty and finite. Then:
as  — o0, Ag—>minE
and as f — —c0, Af — maxFE.

The proof is a matter of bookkeeping, best explained by example:
Let F :={2,4,8,9}. Then min F = 2 and max F = 9.

2 —28 4 —48 —-88 —-94
Since, VBeR, AE — e +4e™ + 87" + 9e

e 2 4 e 48 4 e
we get as  — oo, Ag — 2/1

Y
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and as f — —o, Af — 9/1,
and so as f —» o, Af — minFE
and as § —» -0, Af — maxFE.

For all nonempty, finite £ € R, define |AY|: R - R by:
VBeR, AEF(B) = Ag.

Recall (§2): “C“” means “real-analytic”.

THEOREM 16.5. Let EcR. Assume: 2<#FE < .
Then:  AF is a strictly-decreasing C-diffeomorphism
from R onto (min F;maxF).

Proof. Let k:= #E. Choose ¢1,...,6,€R s.t. E={ey,..., e}
Then: 2< K<™ ar;d €1, . 5 , €, are distinct.
Then: VBeR, AE(g) = Zé—; [566'66.5],]2]. Then AF : R — R is C¥.
So, by  Theorem 16.4 and Jthia C“-Inverse Function Theorem and
the Mean Value Theorem, it suffices to show: (AF) < 0 on R.
Given S e R, want: (AF)'(5) < 0.
Let — Pi=37 [e-e 7], P=37[(—€]) 7]
Let — Q:=37,[e 7], Q=37 [(—e5) e ]
Then @ > 0. Also, by the Quotient Rule, (AF)'(8) = [QP' — PQ']/Q>.
Want: QP — PQ' < 0.
We have: QP’ =2y 2ol (¢ ) - e FlEite) ],
We have: PQ =30 2 (0 —eigg) e Flitei) ],
Then: QP — PQ =37 X5 [(—&] +eigy) - e Pt ],
Interchanging 7 and j, we get:
QP —PQ =37 Y [ (=€} +eje) - e Plaatel ],
By commutativity of addition and multiplication,

adding the last two equations gives:
2-(QP — PQ) = Xy Sy [(—] — &1+ 2eiey) e P00 ]
Then: 2-(QP' — PQ') =", Z;:1 [ —(ei—g)? e Pletea)]

Then: 2-(QP' — PQ') <0. Then: QP'—PQ' <0. O
DEFINITION 16.6. Let £ c R.
Assume: 2 < #E < o0. Let « € (min E;max F).

The ‘a—Boltzmann—parameter on E‘ is: | BPZ|:= (AF)"(a).
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So the a-Boltzmann-parameter on F is the unique § € R s.t. Ag = a.

Example: Computations in §7  show:
v R 8- (1 n e P +10e"108 B
feR, if g=(In9)/10,t S S TP
Then, VBeR, if 8= (n9)/10, then (A" =1
Then: (A ((In9)/10) =1
Then:  (A%M)-1(1) = (1In9)/10.
Then: BP{®"'% = (1In9)/10.

Ezample: Let E:=1{2,4,89}, a:=5 f:=BP~
To compute 3, we need to solve A¥(3) =5 for 3.
Since AF is strictly-decreasing, there are iterative methods of solution,

and we get: 8 ~ 0.0918, accurate to four decimal places.
(Thanks to C. Prouty for these calculations. See §28.)
THEOREM 16.7. Let E c R. Assume: 2<#FE <.
Let o € (min E;max E). Let & € R. Then: BP._f{ = BPY.
Proof. Let § := BPY. Want: BPY7¢ = 5.
Since 8 = BPY = (AF)~'(a), weget: (AF)(B) = Q.

By Theorem 16.3, Agiﬁ = Ag —&.
Since  (A7)(B) = Ay * = Af — €= ((AD)(B) —€=a ¢
weget: = (AF)(a—¢)

So,since  BPZTf = (AF)"Ha—¢), weget: BPY =5 O

17. RESIDUE-UNCONSTRAINED FINITE SETS

In the next three theorems, we generalize our work in §13

from {0,1,10} to arbitrary finite residue-unconstrained sets.
In the example at the end of this section,

we show that Theorem 17.3 below reproduces the result of §13.

Recall (§9): Vcountable set O,
FMeg is the set of finite measures on ©
and FMS is the set of nonzero finite measures on ©
and Po is the set of probability measures on ©.
Recall (§9): V nonempty finite set F, Vfe F, vp{f} =1/(#F).
Recall (Definition 9.2):  Vcountable set ©, Vue FMeg, VneN,
Veeor, p{z} = (u{z}) - (n{za}).
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THEOREM 17.1. Let E < 7Z be finite and residue-unconstrained.
Let o € (min £;max E). Let 3 := BPE.

Let ty,ts,... € Z. Assume: {t, —na|n € N} is bounded.
ForallneN, let Q,:={feE"|fi+ -+ fu="1n}

Let o€ . Then: asn— ©, vo, {f€ Q| fn =c0} — Bf{eo}.

Recall (§9): vgx(g) = -1

So,  since Bg{eo} >0, part of the content of this theorem is:
Vsufficiently large n € N, Q, # J;

see Claim 1 in the proof below.

Proof. Since F is residue-unconstrained, we get: FE # (.
By hypothesis, F < 7Z and F is finite.
Then: FE <R and FE is nonempty and finite.

Let 1 := Bf. Then: pePgp and S, =E.

So, since € Pp S FMpg, weget: |uly < oo and |ulz < o0.
Since f = BPZ = (AF)~Y(a), we get:  (AE)(B) = a.
So, since (AL)(B) = Af = MBE =M,, we get: M, = .

For alne N, definevy,:Z —R by:
VteZ, Yu(t) =p{feE"|fi+ -+ fu=t}

Then: VneN, o,(t,) = u"(Q2,).
Let v :=V,. By Theorem 10.6, we get: 0 <wv <o0.
Let 7 := 1/\/% Then: 0< 71 < c0.
By Theorem 10.6, we get:

asn — o0, n-(E{feE" | fi+ -+ fu=1t}) — 1/ 270
Then: asn — w0, /n-( Un(ty) )— T
So, since 7 > 0, choose ng € N s.t.:  Vn € [ng..c0), \/n- (¥,(t,)) > 0.

Claim 1: Let n € [ng..0).  Then: p"(Q,) > 0.

Proof of Claim 1: Recall: 1, (t,) = p™*(Q,). Want: 1,(t,) > 0.
By the choice of ng, we get: y/n - (¥, (t,)) > 0. Then: 1, (t,) > 0.
End of proof of Claim 1.

Recall: i1 € Pg.

Then: VneN, u"e Pgn, SO u(82,) < 1.
So, by Claim 1, ¥n € [ng..00), 0<p™(Q,) <1
Also, we have: Vn e N, (1™2,) () = p™(82,).
Then: Vn € [ng..0), 0< (©"2,)(2,) < 1.

Then: Vn € [ng..0), p |, € FMg .



38

Then: Vn € [ng..o0), Np™|Q,) € Pa,.

Claim 2: Let n € [ng..o0). Then: N (u"|Q,) = vq,.

Proof of Claim 2: Let 6:=N(u"Q,), F:=Q,. Then e Pg.
Want: 0 = vp. By Theorem 9.9, given f,g € F, want: 6{f} = 0{g}.
By Claim 1, we have: — p™(€,) > 0.

Since (u"€2,)(Q2,) = ™ (Q,) and 6 = N (u™|Q), we get: 0 = Mﬂggn)
(2,
Want: AU (0tl0)ig)
1™ (S2) 1™ (S2)
Want: (1" [2){f} = (1" [€20){g}-
Since f,ge F =,, we get:
(W1} = ) and (0100 (g} = g

Want: p{f} = w{g}- ~
Since E < R is nonempty and finite, we get: BEE(E) > 0.
Let C:= 1/(BF(E)). Then N(BY)=C-B¥
By definition of E/;,E, we have: Ve € E, ﬁﬁE{g} = e P
So, since u = BY =N(§5E) =C- fy’ﬁE,

we get: Vee B, u{e} = CePe.

Since f € F'=,, by definition of 2,,, weget: fi+---+f, =1,.
Since g € F' =(),, by definition of €2,,, weget: g1+ --+g, = t,.
Since it Ffo=ta=qg1+ -+ gn,
we get:  Cne Alittfn) — Cne=B (g1t ton)
Then: (Ce #f1)...(CePfn) = (CeP9)...(CePon).
Then: ( lfi})= (plfad )= (o) )= (gl )
Then: n{fy = 1" {g}-
End of proof of Claim 2.

By hypothesis, FE is residue-unconstrained and ¢ype F  and
ti,ta,...€Z and {t, — na|n e N} is bounded.
Recall: pePp and S,=FE and |p]s <o and M, = a.

Let P := pf{eo}. Then, since p = Bf, we get: P = BE{eo}.

We want: asn — o0, va, {fe Q| fn=2c0} — P.
By Theorem 12.2, as n — o0, (N (") {f € Q| fn =0} — P.
So, by Claim 2, asn — o0, va, {feQ|fn=¢c} — P. O

Recall (§2): VteR, |[t]is the floor of t.

We record the t,, = |na] version of the preceding theorem:
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THEOREM 17.2. Let E < 7Z be finite and residue-unconstrained.
Let a € (min £; max F). Let 3 := BPE.

ForallneN, let Q,:={feE"|fi+ -+ f. = |nal}.

Let o€ . Then: asn— ©, vo, {f€ Q| fn =c0} — Bf{eo}.

We record the a € Z special case of the preceding theorem:

THEOREM 17.3. Let E < Z be finite and residue-unconstrained.
Let a € (min £;max F). Let 3 := BPE. Assume o € Z.
ForallneN, let Q, :={feE"|fi+ -+ f. =na}.

Let o€ . Then: asn— ©, vo, {f€ Q| fn =co} — Bf{eo}.

Example: Suppose E =1{0,1,10} and « = 1.
Then Quy = {(feEN|fi+ -+ fv =N},
so Qy represents the set of all GFA dispensations,
as described in §3.
The measure vq, gives equal probability to each dispensation,
so v, represents the GFA’s first system for awarding grants,
also described in §3.
Since 8 = BPY = BPEO’LIO}, we calculate: 5 = (In9)/10.
o 5 E B (1,910 9-1)
More calculation gives: (Bz{0}, B5{1}, B5{10}) =

1497110 491
Since N is large, by Theorem 17.3, we get:

VQN{f € QN ’ fN = 80} ~ Bg{éo}
So, if I am the Nth professor, then, under the first system,

my probability of receiving ¢y dollars
is approximately equal to Bg{so}.
Thus Theorem 17.3 reproduces the result of §13.

18. RATIONAL AWARD SETS

In this section, we investigate what happens if

the set of awards is an arbitrary set of rational numbers.
Recall that, on our Earth, which is Earth-1218,

grants are $0, $1, $10, with average grant $1.

Example: In a parallel universe, on Earth-googol-plex,
there are Ny professors applying for grants from its GFA.
By GFA rules, grant amounts are $10, $14.45, $54,
and Congress allocates $13.37 per professor.
Earth-googol-plex has its own GFA.
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That GFA is using the “first system” for awarding grants,
in which every dispensation is equally likely.
Question: For any professor,
what is the approximate probability of receiving $107 $14.457 $547
To simplify this problem, we can imagine that
that GFA makes two rounds of awards.
In the first round, it simply dispenses $10 to each professor.
In the second round, wusing the first system, it dispenses
additional grants of $0, $4.45, $44, with average grant $3.37.
We seek the approximate probability of the additional grant being
each of the numbers $0, $4.45, $44.
To simplify this problem still more, we can
change monetary units so that the grant amounts are all integers:
Additional grants, in pennies, are 0, 445, 4400, with average grant 337,
and we seek the approximate probability of receiving 0, 445, 4400.
Unfortunately, {0,445,4400} < 5Z + 0,
so {0,445, 4400} is not residue-unconstrained,
making it difficult to apply the Discrete Local Limit Theorem.
Since ged{0,445,4400} = 5, we can change monetary units again:
Additional grants, in nickels, are 0, 89, 880, with average grant 337/5,
and we seek the approximate probability of receiving 0, 89, 880.
Let FE :={0,89,830} and let «:=337/5.
Since 0 € E and ged(F) = 1, we get:  E is residue-unconstrained.
The amount of money (in nickels) allocated by Congress is Nya,
to be dispensed among the N, professors.
Unfortunately, a census reveals that: Ny is not divisible by 5.
Recall: a = 337/5. Then Noa ¢ Z, while 0,89,880 € Z.
It is therefore impossible to dispense the grant money.
The bureaucracy seizes up, there is pandemonium in the streets,
and the military steps in to impose order.
The superheroes of Earth-googol-plex are committed to democracy,
and so they reverse time and select a different time-line.
On this new time-line, F and «a are unchanged, but
there is a new number, Nj, of professors,
and Nj is blissfully divisible by 5. Then: N« € Z.
Let ¢y€ F be given.
We want: the approximate probability of receiving ey nickels.
Recall (§2): VteR, |[t]is the floor of t.
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ForallneN, let Q, ={feE™ |fi+ -+ f, =|naf }.
Since Nya € Z, we get:  Qn, ={fe EM|fi+ -+ fn, = Nia }.
We want: an approximation to v, {f € Qn, | fa, = €o}-
Recall: F is residue-unconstrained.
Let 3 := BPE. By Theorem 17.2, we have:

asn — ©, vo, {f€Q |fu =e} — Bf{eo}.
So, assuming V; is large, we get

VQNl{f € QNl |fN1 = 60} ~ Bg{g()}

For each ¢y € {0,89,880}, we want to compute Bg{so}.
We therefore want to compute ( BY{0}, BF{89}, BF {880} ).

Since 8 = BPY = BPég’f/%ggo}, we see that:

to evaluate #, we must solve A£0’89’880}(5) = 337/5 for .
Since, by Theorem 16.5, AL 4o strictly-decreasing,

there are simple iterative methods to do this.
We calculate § = 0.003144, accurate to six decimal places.
We also calculate

(BﬁE{O}, 35{89}, B£{880}) = (0.5498, 0.4156, 0.0345 ),

all accurate to four decimal places.
(Thanks to C. Prouty for this calculation. See §28.)

Recall (§3): N is a large positive integer.
More generally: Imagine a parallel universe with N professors.
Let E, denote the set of grant-awards.
Assume Fy< Q and 2 < #FE) < .
Let ag € (min Fy; max Ej) denote the average award.
Since #Ey > 2, we get: Ey # . Choose ¢g € Ey. Then g5 € Q.
Let E,:=FEy—¢p, aj:=ap—¢ep. Then oy € (min £y; max E).
Also, 0€ Fj.
So, by giving out awards in two rounds (first €y, then the remainder),
we are reduced to a case where 0 is a possible grant-award.
Since F1 =FEy—¢9< Q, choose meN s.t. mk; € Z.
Let FE, :=mFE, ay:= may. Then oy € (min Ey; max Fy).
Also, 0€ E, € Z.
So, by change of monetary unit,
we are reduced to a case where every grant-award is an integer
and where 0 is a possible grant-award.
Let g := gcd(Es), E := Es/g, a := ay/g. Then a € (min £; max E).
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Also, 0e E € Z and ged(F) =1, so Fisresidue-unconstrained.
So, by change of monetary unit, we are reduced to a case where

the set of grant-awards is a residue-unconstrained set of integers.
If Na¢ Z, then, since every grant-award is an integer,

no dispensation is possible, leading to

your typical military dictatorship and superhero intervention.
If Na€Z, then, wusing Theorem 17.2,

we can compute the approximate probability of each award.

19. IRRATIONAL AWARDS

In this section, we briefly discuss what can happen if
NOT every grant award is a rational number.
Here, we only present an example to show that
the award probabilities may NOT follow a Boltzmann distribution.

Example: On Earth-aleph-1, the GFA gives

grants of 0 | V2 , V3, 10— V2 —4/3 dollars,

with an average grant of 1  dollar,
giving equal probability to every possible dispensation.
Let K be the number of professors.  Assume: K is divisible by 10.
Let M := K/10. Then M € N and there are 10M professors.
Moreover, since the average grant is 1 dollar, we conclude:

there are 10M dollars to dispense among the 10 M professors.

Claim: On Earth-aleph-1, every dispensation of awards has

7TM  grants of 0 dollars,
M grants of V2 dollars,
M  grants of V3 dollars,
M grants of 10 — V2 —+/3  dollars.

Proof of Claim:  Given a dispensation,

let w be the number of 0 dollar grants and
let x be the number of V2 dollar grants and
let y be the number of \3 dollar grants and

let z be the number of 10 — /2 —+/3 dollar grants,
want: w=T7M and r=y=2z2=M.
Because the total money dispensed is 10M dollars, we get:
w-04+z-vV2+y-vV3+2- (10 —+2—+/3) =10M.
Then: (102 —10M) -1+ (z —2)-vV2+ (y —2) - /3 =0.
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So, since 1,4/2,4/3 are linearly indpendent over Q, we get:
10z —10M =0 and r—2=0 and y—2z=0.
Then z = M and x = z and y = 2. Then x =y =2 = M.
It remains only to show: w = 7M.
Because there are 10M professors, we get: w +x +y+ 2z = 10M.
Then: w+ M+ M+ M =10M. Then: w = T7M.
End of proof of Claim.

By the Claim, in each dispensation, there are
exactly M grants of 10 — /2 — +/3 dollars.
Of the four grant amounts, the largest is 10 — /2 — /3.
So, if [ am one of the 10M professors, then I would hope to be among
the lucky M receiving 10 — /2 — /3 dollars.
My probability of being so lucky is: M /(10M), i.e., 10%.
That is, we obtain a probabity of:

10% for 10 —v2 —+/3  dollars.
Extending this reasoning, we obtain probabities of:
70%  for 0 dollars,
10%  for V2 dollars,
10%  for V3 dollars,
10% for 10 —v/2 —+/3  dollars.

In a Boltzmann distribution, depending on whether =0 or g # 0,
either the probabilities are all equal
or the probabilities are all distinct from one another.
The numbers 70,10,10,10 are neither all equal nor all distinct.
Thus, the 70-10-10-10 distribution above is NOT Boltzmann.

20. EARTH-MINIMUM-MAHLO-CARDINAL AND THE BUA

Next, we wish to handle thermodynamic systems in which
many states may have a single energy-level.

One says that such an energy-level is “degenerate”.

In this section, we develop a whimsical example.

In §21 and §22,  we will develop a general theory.

Recall that N € N is large.

In a parallel universe, on Earth-minimum-Mahlo-cardinal,
the BUA (Best University Anywhere) employs N professors.

Each professor has a number, from 1 to N.
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Each professor wanders the campus,
carrying two bags:  one red, one blue.
Each bag is closed from view, but has money in it or is empty.
The “state” of a professor is the pair ¢ = (01,02) such that
o1 is the number of dollars in the professor’s red bag,
09 is the number of dollars in the professor’s blue bag;
the professor’s “wealth” is o1 + o9 dollars.
So, if I am one of the professors, and if my state is (3,2),
then I have: $3 in my red bag and $2 in my blue bag,
and my wealth is $5.
By BUA rules, the amount of money in any bag is always
$0 or $1 or $2 or $3 or $4,
and  each professor’s wealth is always < $7.
Therefore, the set of allowable states is
([0..4] x [0..4] )\ { (4,4) }.
Let ¥ := ([0..4] x [0..4])\{(4,4) }.
Since  #([0..4] x [0..4]) =5-5=25, we get: #3 =24
Define € : ¥ — [0..7] by: Vo e, (o) =01+ 09.
For convenience of notation, Vo e X, let ¢, :=¢(0).
If T am one of the professors,
and if my state is 0 = (01,09) € &,
then I have: $o; in my red bag and $o, in my blue bag,
and my wealth is $e,.
Since €32) = 5 = £(1,4), We see that ¢ is not one-to-one,
and we have a so-called “degeneracy” at 5.
This function € has many other degeneracies, as well.

Recall: The professors are numbered, from 1 to V.

At random moments,
random pairs of wandering professors cross paths, and interact.

Each interaction involves three steps:
a game and then
a verbal offer and then
a rejection or a money transfer.

The first step, the game, is played as follows:
one of the two professors flips a fair coin and
if heads, then the lower-numbered professor wins and
if tails, then the higher-numbered professor wins.



Next, without touching any money,
the losing professor verbally offers $1 to the winning professor.
The losing professor then flips a fair coin, and
if heads, then the loser’s red bag is opened and
if tails, then the loser’s blue bag is opened.
If the loser’s open bag is empty, then
then the winner gallantly rejects the $1 offer and
the opened bag is closed, the interaction is over, and
the professors continue their wanderings.
On the other hand, if the loser’s open bag is NOT empty, then,
both of the winner’s bags are opened.
Recall that, by BUA rules, every professor’s wealth must be < $7.
If the winner’s wealth is $7,
then the winner rejects the $1 offer and
the opened bags are closed, the interaction is over, and
the professors continue their wanderings.
On the other hand, if the winner’s wealth is < $6,
then the winner flips a fair coin, and
if heads, then the winner’s red bag is closed and
if tails, then the winner’s blue bag is closed.
At this point, the winner has one open bag, as does the loser.
Moreover, the loser’s open bag is NOT empty.
Recall that no bag may have more than $4.
If the winner’s open bag has $4,
then the winner rejects the $1 offer and
the opened bags are closed, the interaction is over, and
the professors continue their wanderings.
On the other hand, if the winner’s open bag has < $3,
then $1 is transferred
from the losing professor’s open bag
to the winning professor’s open bag;
then the opened bags are closed, the interaction is over, and
the professors continue their wanderings.

Because of these interactions,
the wealth of an individual professor may change over time,
but the sum of the wealths of all of them is constant;
there is “conservation of (total) wealth”.

45
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An audit reveals that, at the BUA, that total wealth is always N.

Recall: X = ([0..4] x [0..4])\{(4,4)} is the set of states.
A “state-dispensation” is a function [1..N] — X,
representing  the states of all N professors.
So, if, at some point in time, the state-dispensation is w : [1..N] — X,
then, for every £ € [1..N],  the state of Professor #¢is  w(/),
and the wealth of Professor #/£is &, ;
therefore, the total wealth of all the professors is Zévzl Ew(l)-
As we mentioned, at the BUA, that total wealth is N.
Let O = { wi[L.N] > | YN e = N}
Then Q* represents the set of all state-dispensations at the BUA.

The random interactions, described above,
induce a discrete Markov-chain on *.
This, in turn, induces a map II: Pgx — Pgs.

Let T := #Q* Fix an ordering of Q*, i.e., a bijection [1..T] < Q*.
The Markov-chain then has a T" x T" transition-matrix @,
with entries in [0;1], whose column-sums are all = 1.
For every ¢, € 2*,  the probability of transitioning from ¢ to v
is equal to
the probability of transitioning from ¢ to ¢.
That is, the transition-matrix ® is symmetric.
So, since the column-sums of ® are all 1,
we get: the row-sums of ® are all 1.
Let v be a T'x 1 column vector whose entries are all 1. Then ®v = v.
Let w :=v/T. Then: all the entries of w are 1/T and Pw = w.
Recall that the probability-distribution vg« € Pgx
assigns equal probability to each state-dispensation in 2*.
That is, VYw e Q*, vos{w}=1/T.
Since the entries of w are equal to these vo«-probabilities,
and since dw = w, we get: (vgs) = vox.

We will say that two state-dispensations ¢, 1) € 0* are “adjacent”,
if there is an interaction that carries ¢ to 1.
For any ¢, € Q*,
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Ja finite sequence of interactions that carries ¢ to .
That is:  Vo¢,¢ e Q* dm e N, dwy, ..., w,, € QF
st. ¢=wy and w, =Y
and s.t.  Vie[l.m], w;_;is adjacent to w;.
That is, any two state-dispensations
are connected by an adjacency-path.
That is, the Markov-chain on Q* is irreducible.
Recall that some interactions result in a rejection;
such interactions do not change the state-dispensation.
So, a state-dispensation is sometimes adjacent to itself.
That is, there are adjacency-cycles of length 1.
It follows that the Markov-chain is aperiodic.
So, since the Markov-chain is irreducible and since I(vgx) = vos,
by the Perron-Frobenius Theorem, we get:
Ve Poe, o, (), TH(IL()) , TL(TI()) . — vos.
That is, for any starting probability-distribution on 2*,
after enough random interactions,
the resulting probability-distribution on 2*
will be approximately equal to  vox,
to any desired level of accuracy.

Problem: Suppose I am Professor #N at the BUA.

Suppose that  the probability-distribution u of state-dispensations
is approximately equal to  vgx.

For each o€ ¥, compute my probability of being in state o.

That is, Vo e X, compute pu{we Q*|w(N)=o}.

Since #> = 24, there will be 24 answers.

Approximate answers are acceptable.

To make a precise mathematical problem,
we, in fact, assume that p is ezactly equal to v,
and we seek the exact “thermodynamic limit”, meaning
we replace N with a variable n € N, and let n — oo.

In the next two sections, we will develop a theory
to solve problems like this one.
We need only adapt our earlier methods to allow for degeneracies.
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Our main theorems are
Theorem 22.1 and Theorem 22.2 and Theorem 22.3,
and the solution to the above “precise mathematical problem’

Y

appears in the example at the end of §22.

21. BOLTZMANN DISTRIBUTIONS ON FINITE SETS WITH
DEGENERACY

In this section, we adapt our earlier work (§16)
on Boltzmann distributions to allow for degeneracies.

Recall (§9): Ycountable set O,
FMG is the set of nonzero finite measures on ©
and Po is the set of probability measures on ©.
Recall (§9): Vnonempty countable set ©, Vue FMG,
N(p) is the normalization of .

DEFINITION 21.1. Let X be a nonempty finite set.
Let ¢: ¥ — R. Let (5 € R.

Then Eg e FMS s defined by: VoeX, Eg{a} = e P E0),
Also, we define: | Bj|:= N(Eg) € Ps.

Then:  Vnonempty finite set ¥, Ve: ¥ - R, VgeR,
B3(X) >0 and VoeX, Bilo} = (Bj{o})/(B;3(2))
and SEEIE:SBZ

Ezample: Let ¥ := {0,1,10} and let § € R.

Definec: ¥ > Rby: VoeX, g(o)=o0.
Then: B3{0} =1, B5{1} =ef, B5{10} = ¢ 1%
Let C:=1/(1+e 7 +e71).
Then: B3{0} = C, B{1} = Ce P, B5{10} = Ce '

Ezample: Let ¥ := {2,4,8,9} and let 5 € R.
Definec: ¥ > Rby: VoeX, ¢(o)=o0.
Then:  B5{2} = e, Bs{4} = e,

B5{8} = e, B3{9} = e
Let C:=1/(e72 + ¢4 4 780 4 7).
Then: B5{2} = Ce™’, Bs{4} = Ce ™,
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By{8} = Ce™®%,  B5{9} = Ce ™.

Ezample: Let ¥ := {1,2,3,4} and let 5 € R.
Define ¢ : ¥ — R by:
e(l) =2, e(2)=4, £3)=8, €(4)=09.

Then:  B3{1} = 6*25, B3{2} = 6*45,
Bi{3} = e, Bi{4} =e .

Let O :=1/(e72 + 748 4+ 780 4 ¢79).

Then: Bi{1} = Ce™®’, B5{2} j Ce 4, ;
B5{3} = Ce™®,  B3{4} = Ce ™.

In the preceding three examples, ¢ is one-to-one.
That is, ¢ has no degeneracies.
In the next, ¢ has one degeneracy, at energy-level 9.

Ezample: Let X := {1,2,3,4} and define ¢ : ¥ — R by:
e(1) =2, e(2)=4, €3)=9, e(4)=09.
Then:  Bj{1} = 6*211, B5{2} = e*4/i,
B3{3} = e, Bi{4} = e
Let O :=1/(e72 + ¢4 4 2¢799).
Then: Bi{1} = Ce™?’, B5{2} = Ce*, ;
B{3} = Ce ™, B3{4} = Ce ™.

In the next example, ¢ has many degeneracies.

Example: Let ¥ := ([0..4] x [0..4] )\ {(4,4) }.

Let e R and define ¢ : ¥ - R by: VoeX, e(o) =0+ 0s.
Then: B5{(3.2)} = e, B5{(1,4)} = e, B5{(0,0)} = 1.
Generally, VoeX, Bilo}= e (o1+02)8

Let C' 1= 1/(X,cx [~ 72 7]).

Then:  B5{(3,2)} = Ce ™, B5{(1,4)} = Ce™, B5{(0,0)} = C.
Generally, VoeX, Bi{o} = Ce(1to)?,

THEOREM 21.2. Let X be a nonempty finite set.
Let ¢:X >R, & B8R, Then: Bj = Bj °.

Proof. For all 0 € 3, let ¢, := ¢(0).
Since, Vo € ¥, Bg{o} =e P = e Pt e P(ea=8) = o=FE. (B;_E{a}),



50

we get: Eg = e Pt Eg_g.
Since e P& > 0, we get: N(e <. §2—§> = /\/’(éz_&)
Then: B = N(B5) = N(e™#¢- B ) = N(B5*) = By *. O
DEFINITION 21.3. Let X be a nonempty finite set, ¢:3% — R.
ForalloeX, let e, = ¢€(o0).

Forall e R, let I’% = > oles 6—6@7];

A% = ZUGE [6_5.80]7
A5 = T3/ A%,

Let X be a nonempty finite set, ¢:> — R.

Since I = Yioes [0 - (BE{UD];\

we get: I'5 is the integral of € wrt Bj.
Since A = Z\:UEZ [B5{o}],

we get: Az = Bi(%).

Ie [P Bilo
- i G TG
8 B5(%)

we get: Az = D oes €0 (Bg{a})]

Then: Aj is the average value of € wrt Bj.

Recall (§2) the notations Iy, f*A. Recall (§9) the notation e,pu.
Recall (Definition 9.5) the notation M,.

THEOREM 21.4. Let X be a nonempty finite set.
Let ¢:¥X—>R, pgelR. Then: Ms*Bg = Aj.

Proof. For all 0 € &, let ¢, :=¢(0).
Because X is the disjoint union, over t €I, of e*{t},

we get: Dier Digeerqyy £ - (Bi{o})] = 2gen [e0 - (Bi{a})]-

Also, A% =D es €0 - (Bg{a})]
Then: Diter. 2iveer iy €0 - (Bi{o})] = Ag.
807 since Zte]le [t ’ ((5*32){t})] = Mg*Bg,

we want: > [0 ((exBEH{tH)] = 2er. Diveer iy [0 - (Bi{o})]-
Want: Viel, ¢ ((EB)E) = S 2o (B3{o})].

Given tel., want: t- ((e.B5){t}) = 2 ccxqy 6o (Bi{o})].
For all o € e*{t}, since ¢, = e(0) € {t}, we get: &, =t.

Want: t- ((e.B5){t}) = Yoeorqy [t - (Bi{o})]:

Because €*{t} is the disjoint union, over o € ¢*{t}, of {o},
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we get: Bi(e*{t}) = 2peeryl  Bilo} |-
Also, (e«BY{t} =  Bj(e*{t}).
Then: ¢- (2.B5){t}) = t- (B5(*{1)) = Soerey [t - BifoD]. O
THEOREM 21.5. Let X be a nonempty finite set.

Let ¢:X >R, B,(eR. Then: A5 * = A5 -¢.
Proof. ~ We have: B5(X) = X,ex [ Balo}].
Since Bj € Py, we get: B3(X) = 1.
By Theorem 21.2, we have: B; = Bf{g.
Forall o € 3, let e, :=¢(0).
Then: A3 ‘ =Yen[ (60 =€) - (BF H{o))]
= 2pex [ (€0 =€) - (Bj{o}) ]
= (Lpex [eo- (B3{o})]) — (ZJGE (£ (B3{o})])
= (20 2[6 (BE{U})]) (2052[32{0}])
= A5 -¢-(B3(X) = —&l = A5-¢6 O
THEOREM 21.6. Let X be a nonempty ﬁnite set, e:% —>R.
Then: as f — o, A — min L
and as f — —o, Az — maxl..

The proof is a matter of bookkeeping, best explained by example:
Let ¥ :={1,2,3,4} and definec:X — R by:
e(1)=2, e(2)=4, £3)=9, <4)=9.
Then I, = {2,4,9}, so minl. =2 and maxI. =9.
272 + 4e™8 + 99 4 9=

Since VGeR, A = 628 4 o—4B 4 =98 1 ¢—98
2e7% + 4e™10 + 18e79
I
we get as f — o, A — 2/1
and as f — -, Aj — 18/2,
and so as f— o, A — minl,
and as f — —o0, Aj — maxl..

For any nonempty finite set >, for any e: ¥ — R,
define [AJ|: R—>R by: VAeR, A (B) = A5

Recall (§2):  “C*” means “real-analytic”.

THEOREM 21.7. Let X be a finite set.
Let ¢:Y¥ —R. Assume: #I, =2
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Then: A% is a strictly-decreasing C¥-diffeomorphism
from R onto (minl;;max.).

Proof. For allc € &, let g, := (o).

. 75'50
We have: VG e R, A(B) = 2o [0 _65‘ ] Then A% : R — Ris C¥.
Drex e

So, by Theorem 21.6 and the C*-Inverse Function Theorem and
the Mean Value Theorem, it suffices to show: (A5) <0 on R.
Given € R, want: (A)(B) <0.
Let  Pi=Y,ple, -] P, [(-2)-c ).
Let Q = ZTGE [675-67- ]7 Ql = ZTGE [(_57) ’ 676-57 ]
Then @ > 0. Also, by the Quotient Rule, (AS)'(8) = [QP' — PQ']/Q*.
Want: QP — PQ' <0.
Wehave: QP =Y, Y p[(—e2  )-e Bt
We have: PQ =Y. s> [ —epe,) e Platen]
Then: QP — PQ' = Yooy Doy [ (62 4 £02,) - e et ],
Interchanging o and 7, we get:
QP/ - PQI = ZTEE ZUGE [(_672' + 8760) ce Plerteo) ]
By commutativity of addition and multiplication,

adding the last two equations gives:
2 (QP' = PQ') = Yoex rex [ (25 — 2+ 2658,) - e P =) ],
Then: 2- (QP, - PQ’) = ZJGE ZTEZ [ _(50 - 57’)2 e (Eoter) ]
Then: 2. (QP' — PQ') <0. Then: QP — PQ' <0. [

DEFINITION 21.8. Let ¥ be a finite set. Let ¢: ¥ — R.
Assume: #I, = 2. Let o € (minI; maxI,).
The ’a—Boltzmann—parameter on 5‘ is: |BP = (49) 7).

So the a-Boltzmann-parameter on ¢ is the unique g € R s.t. A3 = a.

Ezample: Let ¥ := {0,1,10} and define ¢: 3 — R by:
VoeX, e(o) =o0.
Computation shows: A, g 1o = 1. Then: BP{ = (In9)/10.

Ezample: Let ¥ := {2,4,8,9} and define ¢: % — R by:
VoeX, e(o) =o0.
To evaluate BPZ,  we must solve AS(5) =5 for 3,
and, since, by Theorem 21.7, A is strictly-decreasing,
there are simple iterative methods to do this.
We compute:  BP; ~ 0.0918, accurate to four decimal places.



(Thanks to C. Prouty for this calculation. See §28.)
Next, let ¥ :={1,2,3,4} and definez:% — R by:
g(1)=2, g(2) =4, £3)=8, E4)=9.
Then A% = A, so BP; = BP:.
Then BP; ~ 0.0918, accurate to four decimal places.

Ezample: Let ¥ :={1,2,3,4} and define ¢: % — R by:
e(1)=2, e(2)=4, £(3)=9, e4)=9.
To evaluate BPZ, we must solve AS(5) = 5 for 3,
and, since, by Theorem 21.7, AfZ is strictly-decreasing,
there are simple iterative methods to do this.
We compute:  BP: ~ 0.1060, accurate to four decimal places.
(Thanks to C. Prouty for this calculation. See §28.)

Ezample: Let ¥ := ([0..4] x [0..4] )\ {(4,4) }.
Definec: ¥ - Rby: VoeX, e(o) =0+ 0o
To evaluate BP], we must solve A(5) =1 for 3,
and, since, by Theorem 21.7, Af is strictly-decreasing,
there are simple iterative methods to do this.
We compute:  BP] ~ 1.0670, accurate to four decimal places.
(Thanks to C. Prouty for this calculation. See §28.)

THEOREM 21.9. Let X be a finite set.

Let ¢ : X - R. Assume: #I. > 2.

Let a € (minl.;maxI.). Let ¢eR. Then: BP;_§ = BP:,.
Proof. Let 3 := BP<. Want: BP.§ = 5.
Since 8 = BP%, = (A3) Y (), we get: (AS)(B) = q.

By Theorem 21.5, AE{E = A5 - ¢.

Since  (AT7)(B) = A5 S = A5 — & = ((A9)(B) —E=a ¢,

we get: B= (A7) Ha =)
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So, since BPZ:% = (A7) a—¢), we get: BPS S =4 O

22. DEGENERATE ENERGY LEVELS

Recall (§2): the notations Iy and f*A.
Recall (§9): the notation vg.

THEOREM 22.1. Let X be a finite set.
Let ¢: X > Z.  Assume I, is residue-unconstrained.
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Let a € (minl,; max1.). Let 5 := BP%,.

Let t1,ts,... € Z. Assume: {t, —na|n e N} is bounded.

For alln e N, let Q, :={feX™|(c(fr))+ -+ ((fn)) =t}
Let op e . Then: asn— o, vg, {f€ Q,|f. =00} — Bi{oo}.

Recall (§9): vgy(g) = -1

So, since Bj{op} >0, part of the content of Theorem 22.1 is:
Vsufficiently large n € N, Q, # J;

see Claim 1 in the proof below.

Proof. Since I, is residue-unconstrained, we get: I # .
So, since €: X — Z, we conclude: X # .
By hypothesis, X is finite. Then: X is a nonempty finite set.
Since 8 = BP:, = (49) " !(a), we get: A3 (B) = a.
By Theorem 21.4, we have: M, Bs = Aj.
So, since AZ = A{(B) =, we get: M, g = a.
Let p:= Bj. Then: pePs, and M., =a.
Let E:=1., fi:=c,p. Then: pePrp and M; =a.
By hypothesis, F is residue-unconstrained.

Since € : ¥ — Z, we get: EcCZ.

Since X is finite, we get: E is finite.

So, since fie Pp <€ FMpg,  we get: \f)1 <o and |fi|s < oo.

Forall c € ¥, let ¢, :=£(0).
Then: VneN, Q,={feX" e+ - +e5, =t}
For all ne N, define ¢":¥" — E" by:

Vfl,...,anE, €n(f17...,fn>:(ﬁfl,...,éfn>.
Then, since e, =1, we get:  VYne N, (e"),(p") = ™.

Forallne N, let QU = {feB"|fi+ +fo=ta}:
then )*Q = Q.
Then: Vne N, 1 ((E)*Q) = ().
Then: VYneN, ((e")uu™) () = pu™().
Then: Vne N, () = ().
For allne N, define vy, :Z —- R by:
VteZ, o(t) = {feE"|fi+ -+ fo=t}

LR

Then: Vne N, ,(t,) = 1" ().
Since F is finite and residue-unconstrained, we get: 2 < #F < 0.

Since € : ¥ — Z, we get: SBE DI
So, since u = B, we get: S, =X
So, sincee: X — Z, we get: Sep = I
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So, since e,u =pand I, = E, we get: Sy = L.
Since F is finite, we get: FE is countable.
Let v :=V;. By Theorem 10.6, we get: 0 <v < o0.
Let 7 := 1/4/27v. Then: 0<7 < .
By Theorem 10.6, we get:
asn — 00, Jn-(W{feE"|fit+- 4 fu=1ta}) = 1/ 2.
Then: asn — w0, /n-( Un(ty) )—> T
So, since 7 >0, choose nge [2..00) such that:

Vn € [ng..o0), Vo (W, (t,)) > 0

Claim 1:  Let n € [ng..o0). Then: p™(€2,) > 0.
Proof of Claim 1: Recall: 7™(€,) = p"(€,) and Un(tn) = ")
By the choice of ng, we get: /n- (¢¥n(t,)) > Then: ¢y (t,) >0
Then:  u"(Q) = i*(Qn) = taltn) >0

End of proof of Claim 1.
Recall: Y # @ and e:¥ — Z. Then ég(E) > 0.
Let C := 1/(B5(2)). Then N(B5)=C- Bj
By definition of f?g, we have: Vo e X, Eg{a} = e Peo,
So, since p=DB;= N(Eg) =C- ég,

we get: Voe¥, puf{o}=_Ce P,
Since p € Px, we get: Vne N, u" € Psn, so p(82,) < 1.
So, by Claim 1, Vn € [ng..c0), 0 < p"(82,) <1.
Also, we have: Vn e N, (1™2) () = p™(82,).
Then: Vn € [ng..o0), 0 < (u"€2,)(2,) < 1.
Then: Vn € [ng..00), p |, € FMg .
Then: Vn € [ng..0), N[ Q,) €  Pq,.
Also, VYneN,VScQ,, (L") (S ) = u"(S)
Then: Vne N, (1™2) () = pu™(2).
For all mneN, let Zp o= 1" ().
Then: Vn € [ng..0), (L") () = 2z, and 0 < 2z, < 1.
For all € [ng..c0), let A o= N (1"€2,).
Then: Vn € [np..0), An = (")) 20
Then: Vn € [ng..0), VS < Q,, An(S) = (1"(S))/zn.
Claim 2: Let n € [ng..o0). Then: A\, =vq,.

Proof of Claim 2: Let F :=,. Want: )\, = vp.
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Since A, = N (u"Q,) = N(u"|F), we get: A\, € Pp.
By Theorem 9.9, given f,ge F, want: A\, {f} = \.{g}.
Want: (4{f})/ 20 = ("{g})/2n- Want: " {f} = u"{g).
Forallie[l.n], let fi:=c; and g :=¢g,.
Recall: Voe¥, pufo} = Ce P,
Then: Vie[l.n], p{fi}= Ce=PJ: and p{gi} = Ce P,
Since fe F'=1Q,, weget: ¢ep +- - +e5, =1y
Since g€ ' =Q,,, weget: g4 +--+e, =ty
Since ﬁ+~~-+ﬁ=€fl+---+5fn =ty
=¢€q, +~'"+€gn :§1+...+§n’

we get:  Cne PUittf) = One=BGittgn)
Then: (Ce #h)... (Ce PPy = (CePir)... (Ce=Fin).
Then: ( p{fi}) - (p{fut )= rfor} ) - Cufgnt )
Then: pr{f ) = n{g}-
End of proof of Claim 2.

Claim 3: Let o€ e*{e,,}. Then: pf{o} = uf{oo}.
Proof of Claim 3: Since o € €*{e,,}, we get: (o) € {&,,}-
Since e, =¢(0) € {e5,}, weget: &, = Esp-

Then: p{o} = Ce Pee = Ce P = pfog}.

End of proof of Claim 3.

Since €(0g) = €44 € {0y}, We get: 0 € £%{e4, }.
Then &*{e,} # &, so #(e¥{eg}) = 1.
Let k := #(¢*{e,,}). Then: k > 1.

Claim - j(e*(en}) = k- (uloo}).
Proof of Claim 4:  Since e*{e,,} is equal to
the disjoint union, over o € e*{e,,}, of {0},
{o

we gt e {en)) = Yoeonre, ) {0 1.
So, by Claim 3, we get:  u(e*{e,,}) = Zaeg*{%o} [11{o0}].
So, since k = #(e"{en}), we get: p(e*{en}) = k- (1lo0}).
End of proof of Claim 4.

Claim 5: Let ne[2.0). Let oe€e*{e,,}.

Then:  p"{feQ,|fo=0}=pu"{fe Q| fn=00}
Proof of Claim 5:
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Let X:={feX" ' ep+ - +esp , =t,—¢s}

Recall: Q, = {feX" | ef+---+ep_, +ep, =1ta}

Since {feQ, | fo=0}
:{fezn |[5f1+"'+5fn71+5fn:tn]&[fnza]}
:{fezn |[€f1+.”+€fn71+€0' :tn]&[fnzg]}
—{fex lep+ - tepy =ta—co & [fu=ol},

it follows that, under the standard bijection X" <> "1 x ¥, we have:

{feQu|fo=0t < X"

corresponds to X x {o} < YlxX

Then:  p{f € Qulfu =0 } = (0" 1(X)) - (ufo}).
Want: "{f € Q| fu = 0o} = ("1 (X)) - (ulo}).

By Claim 3, we have: w{o} = p{oo}.

Want: " {f € Q| fo = 00} = ("1 (X) - (u{oo}).

Since 0 € €*{e,,}, we get: (o) € {e4,}-

Since g =¢c(0) €{eyy}, Weget: e, =¢cq.

Then X={feX" Y ep+-+ep  =ty—Ex}

Since {feQ, | fon=00}
= {f ex” | [5f1 "t Ep T Ef = tn] & [fn = UO]}
={fex" |[en '+€fn71+€0'0 = tn] & [fn = 00}
= {f ex” ’ [gfl A Ef = ln— 600] & [fn = 00]}7

it follows that, under the standard bijection Y ¥ x ¥ we have:

{feQu|fa=00} < X"
corresponds to X x {oo} = XvlxX,

Then:  (*{f € | fo = 00} = (4" (X) - (ulo}).
End of proof of Claim 5.

Claim 6: Let n e [2..00).

Then: i fe Q| fo = ot = k- (W{f €Qulfn=00}).
Proof of Claim 6: RecaNH: N(e”)*Qn =Q,.
Then ( " {fEQ |fn_500} {f69n|fn€8*{800}}7

)"
and so p"((e")* {f € Q |fn = o)) = W f € | fn € e¥{e0y }}-
Then:  ((")«(p ”)){fe Qu | fo = oo} = 1"{f € Q| fu € *{en}}.
Recall: ("), (u") =
Then: N”{f € Q | fo =00} = 1"{f €Dl fn € {en )}
Want: j"{f € O fu € e}t = k- ({f € Q| fu = 00}).
Since {f e | fneec*{es}}

is the disjoint union, over o € e*{e,,},

{f eQu| fn=0},
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we get: u"{f € Q| fn € e*{eq}} = Zaea*{ago} [ f € Qnl fu =0}
Then, by Claim 5, we conclude:

#n{f € Qn | fn € 5*{500}} = ZUEE*{€UO} [lun{f € Qn | fn = JO}]~
So, since k = #(e*{e,,}), we get:

wf € Q| fneeent} = koo (M{f € Qul fu = 00})
End of proof of Claim 6.

Recall: VneN, W (2,) = 1™ ().
Recall: Vn € [ng..0), 0 < u(,) < 1.
Then: Vn € [ng..0), 0 < i"() < 1.
Also, V¥neN,VScQ,, () (S ) = an( S).
Then: Vne N, (7"[2,) (2,) = ().
By dividing the last two equations, we get:

Vn € [ng..0), VS < O, (N(B"|Q0))(S) = (7"(S))/ (7" (2))-
For all  ne€[ng..0), let A\, :=N("|,).

Then:  Vn € [no..0), VS < Mn(S) = (7™(9))/ (™ (2)).
So, since Vn e N, z, = u"(£2,) = ﬁ”(ﬁn), we get:

Vn € [ng..c0), VS < Q,, An(S) = (7(5)) /2.
Recall:  Vn € [ng..0), A = N(u"Qy).
Recall:  Vn € [ng..0), VS < Q,, A (S) = (1™(S))/zn
Claim 7: Let n € [ng..0).

Then:  M{f€Qn|fo=¢0} = k- u{f €Ul fn=00}).
Proof of Claim 7: By choice of ng, we have: ng € [2..0).

Then [ng..00) < [2..0), so, since n € [ng..00), we get:  n € [2..00).
Then, by Claim 6, F"{f € Qu|fo =cost =k (W {f € | fn = 00}).
Dividing this last equation be Zn yields

Adf € Qulfo=eo} = k- (Ml f € Q| fr = 00}).
End of proof of Claim 7.

Let P :=pu{oo} and P := fi{e,,}. Recall: k£ > 1.
By Claim 4, we have: pu(e*{es}) = k- (n{oo}).
Recall: 1 = E4fl

Since P = fi{eqe} = (ett){eay} = ple*{eas}) = k- (ufoo}) = k- P,
we get:  P/k = P.
Recall: My =a and fiePp and S;=FE.

Recall:  E is residue-unconstrained and |fi|s < .
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Since e,, = €(0g) €. = E, weget: ¢, €FE.

Let &y := ¢,,. Then: 50 €eF and P= p{Eo}-
Recall: VneN, Q, = {feE"|fi+ -+ fn =ty

By hypothesis, tj,ts,...€Z and {t —nalne N} is bounded.
By Theorem 12.2, as n — o, N(N”]Q Wfe | fn=2) — P.

Recall:  Vn € [ng..0), X = (u 2, n)-

Then: asn—o,  M{feQ|fi=5} - P
Then: as n — oo, Mlf e fu=¢s) — P.
So, by Claim 7, asn — o0, k- (M\{f€Qn|fo =00 }) — P.
Then: asn— 0,  AffeQ|fu=00} — PJk.
So, by Claim 2, asn — o0, vao{fe|fn=00} — JB/k
Recall: 1 = Bj.

Then, since P/k = P = p{og} = Bi{oo}, we get:
as n — O, vo if € Q| fu :UO}—’BE{UU}' O

The possibility of degeneracy at £y (i.e., the possibility that k # 1)
causes a number of complications in the preceding proof.

Here is another approach to proving Theorem 22.1:

By density of the set of injective functions ¥ — R
in the topological space of all  functions ¥ — R,
we reduce to the case where ¢ is injective.
Then the proof can follow the proof of Theorem 17.1, avoiding
the degeneracy complications in the preceding proof.

Recall (§2): VteR, |[t]is the floor of t.
Next, we record the t,, = |na| version of the preceding theorem:

THEOREM 22.2. Let X be a finite set.
Let ¢ : X — 7Z. Assume L. is residue-unconstrained.
Let a € (minl,; max1.). Let 5 := BP%,.

For alln e N, let Q, :={feX"|(c(fr))+ -+ (e(fn)) = [nal}.
Let oo e . Then: asn— o, vg, {f€ Q,|f. =00} — Bi{oo}.

We record the a € Z special case of the preceding theorem:

THEOREM 22.3. Let X be a finite set.

Let ¢: X —> 7Z. Assume I, is residue-unconstrained.

Let a € (minl,; max1,). Assume o € Z. Let 3 := BP%,.
For alln e N, let Q, :={feX"|(c(fi))+ -+ (e(fn)) = nal.
Let opeX.  Then: asn — o, vo,{f€ Q| fu =00} — Bi{oo}.
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Ezample: Suppose ¥ ={0,1,10} and « = 1.
Suppose, also, VoeX, e(o) =o.
Then €y represents

the set of all GFA dispensations to the N professors.
Since g, gives equal probability to each dispensation,

Vg, represents the GFA’s first system for awarding grants.
Since [ = BP:, = BPj, we calculate: 5 = (In9)/10.
(1’ 9—1/107 9—1)

More calculation gives: (B3{0}, B5{1}, B5{10}) = [+ 9 /0591

Since N is large, by Theorem 22.3, we get:
vay{f € Qn | fv =00} ~ Bj{oo}.
So, if I am the Nth professor, then, under the first system,
my probability of receiving oy dollars
is approximately equal to Bi{oo}.
Thus Theorem 22.3 reproduces the result of §13.

Ezample: Suppose X = ([0..4] x [0..4] )\ {(4,4) }.
Suppose, also, a=1 and VoeX, e(o) =01+ 0o
Then €y represents
the set of all state-distributions at the BUA.  (See §20.)
Since = BP;, = BP{, we calculate:
£ ~ 1.0670, accurate to four decimal places.
Let M € R%*5 be the matrix defined by: Mss =0 and
V(i,j) € ([1..5] x [L.5])\{(5,5) }, M = Bg{(e — 1,7 —1)}.
0.4345 0.1495 0.0514 0.0177 0.0061
0.1495 0.0514 0.0177 0.0061 0.0021
Then M ~ [ 0.0514 0.0177 0.0061 0.0021 0.0007
0.0177 0.0061 0.0021 0.0007 0.0002

0.0061 0.0021 0.0007 0.0002 0
all accurate to four decimal places.

(Thanks to C. Prouty for these calculations. See §28.)
According to Theorem 22.3,  this answers
the “precise mathematical problem” formulated near the end of §20.
Since B3{(0,0)} = My ~ 0.4345, it is possible (cf. §15) to prove:
If N is sufficiently large, then, more than 99% of the time,
over 43% of the BUA professors have $0 wealth.
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23. 00-PROPERNESS AND (—00)-PROPERNESS
Recall (§2): the notations Iy and f*A.
DEFINITION 23.1. Let Y be a set. Let ¢: Y — R.

By € is|oo-proper |, we mean: Vi€ R, #{oe€X[e(o) <t} <o

That is, VteR, #( &*(—ow;t] )< 0.

Note that, for any finite set X, for any €: ¥ — R,
we have: € is oo-proper.

THEOREM 23.2. Let X be a set.
If de:¥ — R s.t. € is wo-proper, then X is countable.

The next result asserts that, for a nonempty set X2,
if € : 2 — R is co-proper,
then its image, [, has a minimal element, <¢.e., minl. exists.

THEOREM 23.3. Let X be a set. Let ¢: Y — R be co-proper.
Assume: X # (. Then: dtgel, s.t., Vtel,, t=t.

THEOREM 23.4. Let Y be a set. Let € : X — R be co-proper.
Then: I, is bounded below and Vtel., &e*{t} is finite.

The preceding three theorems are basic; we omit proofs.
When ¢ is Z-valued, the converse of Theorem 23.4 is also true:

THEOREM 23.5. Let X be a set. Let ¢: X — Z.
Then: [ € is co-proper |
< [ ( L is bounded below ) & ( Vte 1., e*{t} is finite ) ].

The preceding is basic; we omit proof.
The following two results are corollaries of Theorem 23.5:

THEOREM 23.6. Let X be a set. Let € : X — Z be injective.
Then: [ € co-proper | < [ L. is bounded below |.

THEOREM 23.7. Let X < Z.
Define ¢:X >R by: VoeX, e(o)=o0.
Then: [ € co-proper | < [ X is bounded below ].

DEFINITION 23.8. Let ¥ be a set. Lete:¥ — R.
Bye is|(—o)-proper |, we mean: VteR, #{oceX|e(o) =1t} < 0.
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Let X beaset, ¢:3—R.

Then: (eis (—o0)-proper ) <« ( —e is co-proper ).
THEOREM 23.9. Let X be a finite set.

Then: Ve: ¥ —> R, e is both co-proper and (—o0)-proper.

THEOREM 23.10. Let ¥ be a set.
Assume:  Je: X —>R st ¢ is both co-proper and (—0)-proper.
Then: > is finite.

The preceding two theorems are basic; we omit proofs.

24. BOLTZMANN DISTRIBUTIONS ON COUNTABLE SETS

In the next few sections,
we generalize our earlier work on Boltzmann distributions (§21)
to allow for  a countably infinite set of states.

DEFINITION 24.1. Let Y be a set, ¢:3—>R, pfeR.
Then: AG| = Yoo [e7PEE@ ] e [0;00].

We have: Vnonempty set X, Ve:X — R, VBeR, Aj>0.

DEFINITION 24.2. Let X be a set, ¢: %X — R.
Then, the | Delta-finite-set | of & is: m = {BeR|A; < oo}.

We have:  Vfinite set 3, Ve : ¥ — R, VBeR, Aj <.
Then: Vfinite set 3, Ve:X — R, DF. = R.

Let X beaset, ¢: 3 —R.
Since V3 e R, A:; = Aj, we get: DF_. = —DF..

Let Y beaset, ¢:X—>R, £eR.
Since VB eR, A?E = e B¢ Ag,  weget: DF.¢ = DF..
Recall (§9) the notations: Mg, FMG, Po, N(u).

DEFINITION 24.3. Let X be a countable set, €:% —> R, pfeR.
Then 1/3\2 € My, is defined by: Yo € X, lg’g{a} — ¢ P,

Let X be a countable set, ¢: ¥ —> R, [feR.
Since Aj =Y, . [B3io}], we get: A5 = B3(%).
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For any countable set 3, for any ¢ : ¥ — R, for any g € R,
(¥ # Jand feDF,) <
(0<A3<w) e (0<B3(X)<x) & (Bye FMg).

DEFINITION 24.4. Let X be a countable set, ¢:% — R, pfeR.
Assume: 0 < A < . Then: |Bj|:= N(Bj3) € Ps.

Let X be a countable set, ¢: Y% — R.

If DF. =, then, VBeR, since  B5(3) = A§ = o,

we see that EE cannot be normalized, i.e., there is no Bj.

So, if DF. = &, then we have no Boltzmann distributions to study.
So, going forward, we often focus on cases where DF. # (7.
If ¥=¢, ¢isthe empty function, and there is nothing to say.
If 3 is nonempty and finite,

we already developed a satisfactory Boltzmann theory, in §21.
So, going forward, we often focus on cases where X is infinite.

Recall (§2): the notations Iy and f*A.

Let X be an infinite set, ¢:¥ — R. Then: ¢*R = X,
We have: (—0;0] U [0; 20) = R
Since (e*(—=0;0] ) U (€*[0;00) ) = R = X,

we get:  either e*(—oo;0] is infinite or  €*[0; c0) is infinite.
Assuming Y is countable,
the Boltzmann theory splits into these two cases;
replacing ¢ with —e interchanges the two cases,
so the theory in one case parallels the theory in the other.
Also, by Theorem 24.7 below, if DF. # ¢,
then only one of the two cases can happen.

THEOREM 24.5. Let X be a set, ¢:X — R.

Assume: €*[0;00) is infinite. Then: DF. < (0;00).

Proof. Given ( € DF,, want: (e (0;00).

Since DF. € R, we get: [ eR.

Want: § > 0. Assume: § < 0. Want: Contradiction.
For all 0 € X, let &, :=¢(0).

For all o € £*[0;0), since ¢, = (o) € [0;0), we get: &, = 0.
So, since 8 <0, we get: Vo ee*[0;0), —f-g, = 0.
Then: Vo € €*[0; ), e P > 1.
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So, since £*[0; 0) is infinite, we get: 3 ujguy [677%] = 0.
Since A% = ZUEE [e—ﬁ’éa] = ZUEE*[O;OO)] [e—ﬁ-ag] = OO?
we get: [ ¢ DF.. Contradiction. [

THEOREM 24.6. Let X be a set, ¢:%X — R.
Assume: e*(—o0;0] is infinite. Then: DF. < (—x;0).

Proof. Since (—¢&)*[0;00) = £*(—0; 0], we get:  (—¢)*[0; 00) is infinite.
Then, by Theorem 24.5, we get: DF_. < (0;00).
Then: DF. = —=DF_. € —(0; %) = (—x;0). O

THEOREM 24.7. Let X be a set, ¢: 3 — R.
Assume: €*(—0;0] and €*[0;00) are both infinite. ~ Then: DF. = .

Proof. By Theorem 24.5, we get:  DF. < (0; ).
By Theorem 24.6, we get:  DF. € (—0o0;0).
Since DF. € (—0;0)()(0;0) = &, we get: DF. = . O

THEOREM 24.8. Let X be a set, ¢:X — R.
Assume: DF. [[0;00) # &. Then: ¢ is co-proper.

Proof. Given t e R, let Xy := {c € ¥|e(0) <t}, want: #%, < .
Since DF. ([0;0) # &, choose [ € DF. [)[0;0).
Then pgeDF. and fe[0;00).

Since € DF., weget: A§< . Then: e/'-A§ < .
For all o € ¥, let ¢, := (o). Then: A% =3 o5 [e=F-a].
By definition of ¥y, we have: Yo € ¥y, ¢(o) < t.
Since [ € [0;00) and since Vo € X, t>= e(o) = €01
we get: Voel, —0-t< —pB - &,.
Then: VoeX, ePt < o—Beo

Then:  #5 = Ty, [1] = €70 Somy 7] < 07 5,y o)
<eft. D ves [e=Fer] = Pt Aj < . O

THEOREM 24.9. Let X be a set, ¢:%X — R.

Assume: DF. [ (—o0;0] # &. Then: ¢ is (—o0)-proper.
Proof. Since —(DF. (N (—;0]) # &,
we get: DF_. () [0;0) # .

Then, by Theorem 24.8, —¢ is co-proper, and so ¢ is (—o0)-proper. [

THEOREM 24.10. Let X be a set, ¢: % — R.
Assume: DF,. # (. Then: > is countable.
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Proof. Since (DF.((—90;0])) |J (DF.([0; %)) = DF. # &,
it follows that: either DF.[)(—o0;0] # & or DF.[)[0;0) # &.

Then, by Theorem 24.9 or  Theorem 24.8,

we get: either e is (—oo)-proper or € is oco-proper.
Then: either —¢ is co-proper or € is oco-proper.
In either case, by Theorem 23.2, we get: X is countable. U

THEOREM 24.11. Let X be a set, ¢: Y — R.
Assume: DF.((—0;0] # & # DF.()[0;0).  Then: X is finite.

Proof. By Theorem 24.8, we get: ¢ is CO-proper.

By Theorem 24.9, we get: ¢ is (—o0)-proper.
Then, by Theorem 23.10, we get: X is finite. U

THEOREM 24.12. Let X be a set, : Y% — R.

Assume: €*[0;00) is infinite and DF. # f.  Then: ¢ is co-proper.
Proof. By Theorem 24.5, we have:  DF. < (0; ).

Since DF. < (0;0) < [0;0), we get: DF.[)[0;0) = DF..
Since DF.([0;0) = DF. # &, by Theorem 24.8,

we get: € is co-proper. [

THEOREM 24.13. Let X be a set, ¢: % — R.
Assume: €*(—o0; 0] is infinite and DF. # &. Then: ¢ is (—o0)-proper.
Proof. Since (—¢&)*[0;00) = £*(—0; 0], we get:  (—¢)*[0; 00) is infinite.
Since DF_, = —DF,, we get: DF_. # (.

Then, by Theorem 24.12, —¢ is co-proper, so ¢ is (—oo)-proper. [
DEFINITION 24.14. Let Y beasel, ¢:% >R, BeR.
ForalloeX, lete,:=¢(0).
Then, Vpe[0;0), the |p-exponent (53,¢c)-absolute-sum| is:
55| = Soeslleol e Peo|] € [000]).
Also, Vpe[0.m), if X'S5< oo,

then the |p-exponent (f3,¢)-sum| is:
Xps% = ZO’EE [Eg ) 675.60] € R

Let X beaset, ¢: X >R, feR, pel0.0).
If XpS% < oo, then, by subadditivity of absolute value,
we get:  [XPSG| < KPS%.
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Let X beaset, ¢: X >R, fgekR

Recall our convention (§2): 0°=1.  Then: KOS% = Aj.
Also, ifX'S5<oo, then X085 = A,
THEOREM 24.15. Let X be a set, ¢: Y — R.

Assume: DF. # & and 1. is bounded below. Let p =0 be real.
Let SeDF. and let ~ > bereal. Then: XPS§ < 0.

We cannot replace “y > 7 with “y > §7; see Theorem 24.17 below.

Proof. Since L. is bounded below, choose ty € R s.t., Vo € 3, e(0) = to.

For all o € ¥, let ¢, := ¢(0). Then: Voed, e, =to.
Let 6 :=~v— 3. Then 0 >0, so, ast — oo, [t]f-e™t 0.
So, since  t — [t]P-e™t : [tg;0) — R is continuous,
by the Extreme Value Theorem, choose M € R s.t.,
Vreal t > t, [t]P et <M
Recall: Vo e, we have: €, = 1.
Then: VoeX, leo|P - e 0% < M.

By definition of XPS,EW we get: XPSEY =3 sl leslP e .
So, since —y = — — 3, we get: XPS§ =3 o[ (lesr-e705) - (eP=e)].

Since 8 € DF., we get: Aj < . Then: M- A < .
Then: X'OS§ = > sl (e e=0e) . (e7Peo) ]
< 2oexl M (e ]

= M- (Xpes[e7?*])

THEOREM 24.16. Let X be a set, ¢: X —> R, [,peR.
Assume: p =0, e is co-proper, XPS% < 0. Then: 8 € DF,.

M-A% < o0. O

The proof below shows that we can weaken the hypothesis
“e is co-proper” to “oeX|e(o) <1} is finite”.
However, it cannot be dropped altogether; see Theorem 24.18 below.

Proof. Want: Aj < .
Let F':= {0 e X|e(0) <1}. Since ¢ is co-proper, we get: F' is finite.
For all o € ¥, let ¢, := (o). Then: F ={oceX|e, <1}.
Since F is finite, we get: > __.[e7%7] < oo
So, since A = Qperle?]) + Qpesp [e=7=]),
it suffices to show: Dpemp le77%] < o

Since F={oceX|e, <1},

we get: Vo e X\F, gs > 1.
Then: Vo e X\F, since e >1>0,
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we get: o les |
Since Vo e X\F, 1 < & =&l
we get: Vo e X\ F, 17 < les|P.
Then: Vo e ¥\F, 17 e P < leg|P - e e

Then: Y ,enp (€777 ] = Xoenp [17 - €775 < Xpenip [leo|” - e775]
< ZJGZ [|50|p ’ 675.50] = XPS% < Q0. ]

THEOREM 24.17. Let ¥ :=[3..00).
Define ¢: X >R by: VkeX, e(k)=(Ink)+2-(In(lnk)).
Let f:=1, v:=1, p:=1. Then: pfeDF. and XPS§ = 0.

Proof. For all k € X, let &, = e(k).
Then: Vk € [3..00), e, = (nk)+2-(In(Ink)).
Since A = A = Dikes 67+ = ZZO:?, [e™=
o[ 1 C 1 C- 1
-3 | - & [rwnen | - 2 e <

we get: € DF.. It remains only to show: XPS§ = 0.
We have: Vke[3.00), k>e, so Ink>1, so In(lnk)> 0.
For all k € [3..0), since ¢ = (Ink)+2-(In(lnk)) >1+2-0=1> 0,

we get: lex| = ex.

Since XSE = XS5 = Yoy [lew] -]

_ i 2] - i (Ink) +2- (In(n k))

- Pl - = e(nk)+2(In(In k))

_ i [(lnk) +2- (ln(lnk:))]
| k-(nk)
[ Ink }

> _mi
; k- (Ink)?2

_y ;] .

_ k=3 k- (Ink) ’
we get: XPS§ — -, -

THEOREM 24.18. Let X :=N.
Define ¢: X >R by: VkeX, e(k)=1/k%
Let 8:=1, p:=1. Then: XS <o and S ¢DF..

Proof. For all k € &, let ¢, := (k). Then: VkeX, & = 1/k%
We have: VkeN, both |g|=1/k* and —e, =—1/k%
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; XPqe Y Qe
Since X'S; = X'S{ = >,

[ el -e™™ ]

[ lew] e ]

i [(1/R) - e

[(1/k%)- 1]

- 220 1 [ 1/k2 ] < 9,
it remains only to show: (¢ DF. Want: Aj = .
We have: ask — oo, e /% 1. Then: 37 [e"V¥] = .

Then: A=A =Y, sle] =37 [e] = [e V] =. O

THEOREM 24.19. Let X be a set, ¢:% — R.
Assume: DF. # & and 1. is bounded below. Let p =0 be real.
Let [y :=infDF. and let ~e (6p;0). Then: XPS§ < 0.

Proof. Since v > 5y = inf DF., choose € DF, s.t. v > .
Then, by Theorem 24.15, we get: Xp82 <oo. [

THEOREM 24.20. Let X be a set, ¢:% —R.
Assume: DF, # & and 1. is bounded below.
Let [y :=infDF. and let ~ e (By;0). Then: v € DF,.

Proof. By Theorem 24.19, we have: YOS§ < 0.
Since AS = XOS§ <, weget: yeDF,.. O

THEOREM 24.21. Let X be a set, ¢:» — R.
Assume: €*[0;00) is infinite and DF. # . Let f:= inf DF..
Then: 0<fy<oo and (By;0)< DF..

Proof. By Theorem 24.5, DF. < (0;0). Then: infDF. > inf(0;00).
Since DF. # ¥, we get: inf DF. < oo.
Since [y = inf DF. = inf(0;00) = 0 and since fy = inf DF, < o0,
we get: 0 < By < o0.

It remains to show:  (fy; ) c DF..
Given v € (p; 0), want: v € DF..
By Theorem 24.12, we have: ¢ is co-proper.
Then, by Theorem 23.4,  we have: I is bounded below.
Then, by Theorem 24.20, we have: e DF.. 0

THEOREM 24.22. Let X be a set, ¢:% — R.
Assume: €*[0;00) is infinite and DF. # . Let B := inf DF..
Then  either  ( DF. = [Bo;0) and 0 < o < 0 )

or ( DF. = (Bo;0) and 0< fy <0 ).
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Proof. By Theorem 24.21, we get: 0 < fy < o0 and (fy; 0) < DF..
Since fy = inf DF,, we get: DF. < [fBo; ).
By Theorem 24.5, we get: DF. < (0;0).

Case 1: [y € DF.. Want: DF. = [§y;0) and 0 < [y < .
Recall: (Bo;0) € DF. and DF. < [By;0) and DF. < (0;0).
Since [y e DF. and (fy; ) < DF,,

we get: {60} J(Bo; 0) < DF..

Since [5o; 0) = {Bo} U(So; 0) < DF. and since DF. < [fy; 0),
we get: DF. = [fy; ).

It remains only to show: 0 < By < 0.
Recall: 0 < fy < 0. Then: By < 0.
It remains only to show: 0 < Po.
Since f3y € [By; 0) = DF. < (0; ), we get: 0 < fBo.
End of Case 1.
Case 2: [y ¢ DF.. Want: DF. = (fy;0) and 0 < [y < 0.
Recall: 0 < By < 0.
It remains only to show: DF. = (fo; ).
Recall: DF. < [Bo; ),
Since [y ¢ DF. and DF. < [fy; o),
we get: DF. < [Bo; 0)\{fo}- Recall: (fy; 0) < DF..
Since DF. < [Bo; 0)\{Bo} = (Bo;0) and (py;0) < DF,,
we get: DF. = (Bo; ).
End of Case 2. O

THEOREM 24.23. Let X be a set, ¢: Y — R.
Assume: €*(—0;0] is infinite and DF. # . Let fy := —sup DF..
Then one of the following holds:
Fither ( DF. = (—o00;—6y] and 0< fy <0 )
or ( DF. = (—o0; =) and 0< [y <0).

Proof. Since (—&)*[0;00) is infinite and DF_, # ¥ and fy = inf DF_,
by Theorem 24. 22 we get:
either (D = [Bp;0) and 0 < By <)
or ( DF, = (Bp;0) and 0 < fy < 0 ).
Then: either ( DF. = (—o0; -] and 0 < fy < o)
or (D = (—00;—fy) and 0< fy<0). O
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THEOREM 24.24. Let X be a set, € : ¥ — R. Assume: DF, # (.
Then one of the following holds:
(i) DF. =R
or (11) Ireal By = 0 s.t. DF. = (By; )
or (i7°) Areal By > 0 s.t. DF. = [Bo; 0)
or (i11) Ireal By = 0 s.t. DF. = (—
or (11i°) Ireal Sy >0 s.t. DF. = (

Below, in each of
Theorem 24.28, Theorem 24.30, Theorem 24.32,
we give examples of  oo-proper € : ¥ — Z  such that
DF. = &, DF. = (fp;0), DF. = [fy;0), respectively;
it follows that —¢ is (—o0)-proper and that
DF_. =@, DF_. = (—o0; —f), DF_. = (—0; =], respectively.

Proof. Since € : ¥ — R, we get: "R = X.

Since (—o0; 0] |J[0;0) = R, we get: £*(—c0; 0] Je*[0;0) = £*R.
In case #3 < o0, we get: (i) holds. We therefore assume #3% = o0.
Want: (ii) or (ii’) or (iii) or (iii’) holds.

Because &*(—o0; 0] Je*[0;0) = e*R = X,

and  because X is infinite, we get:
either £*(—o00;0] is infinite ~ or  €*[0;0) is infinite.
Then, by  Theorem 24.23 or Theorem 24.22, we get:
either  (iii) or (iii’) holds or (ii) or (ii’) holds.
Then: (i) or (ii’) or (iii) or (iii’) holds. O

THEOREM 24.25. Let n1,ns, . .. € [0..0).

Let ¥ := {(k,7) e Nx N|j < ng}.

Define ¢ : ¥ — [0..0) by:  V(k,j)e X, e(k,j)=k—1.
Then: Vk e N, #(e*k —1;k)) = ny.

Proof. Given k € N, want: #(&*[k — 1;k) ) = ny.
Since e*[k —1;k) = {(EJ)EZ\ e(l,j) e[k —1;k)}
NeX| -1 e[k—1;k)}
eX| (-1 =k—1}
) e X ¢ =k}
)
)
1

m
Z
X
Z
[
Il
=~
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THEOREM 24.26. Let X be a set, ¢: X — [0;0).
For all ke N, let ng:=#(e*[k —1;k)).
Let B€[0;0). Then: (BeDF.) < (> [me P ] <w).

Proof. For all 0 € 3, let ¢, := ¢(0).
Proof of =: Assume: B e DF.. Want: >,,” | [nge ?*] < o0.

Since 8 € DF., we get: Aj < 0.
Because X is the disjoint union, over k =1 to oo, of &*[k— 1;k),

we get: Deex 7] = 20, Docet[k—1:k) L€ P,
For all k € N, for all o € *[k — 1; k), since ¢, = ¢(0) € [k — 1;k),
we have: k > €.

Since 3 € [0;0), we get: —fF <0.

For all ke N, for all o € ¢*[k — 1; k), we have: —3 -k < —f - ¢,.

For all ke N, for all o € *[k — 1,k , we have: e Pk < e e,

Then: Vk €N, ZO’EE*[k Lik) [e7*] Zaes*[k—l;k) [e=7=].

Also, VkeN, 3 apyp [e77F] = nge ",

Then: Vk e N, npe Pk ZUEE*[k 1:k) [e=F=].

Then: Zkoo:l [nkeiﬁhk] ZZO: Zaea* k—1;k) [675'60]
=Y s le 550] AG < .

NN //\\'/

End of proof of =.

Proof of <=:  Assume: > [nge ?*] <. Want: S e DF..
Because X is the disjoint union, over k =1to oo, of &*[k— 1;k),

we get: Dpen [P =307, Dlvest[k-1k) [emPleat ],

For all k e N, for all o € *[k — 1; k), smceeg—a( ) e[k —1;k),
we have: € > k-1

For all k € N, for all o € e*[k — 1; k), we have: o +1 =k

Since € [0;0), we get: —F <0

For all keN, for all o € e*[k — 1; k), we have: —f- (e, +1) < =0 - k.
For all ke N, for all o € ¢*[k — 1; k), we have: e B eatl) Lo Bk,
Then: Vk € N, Doect k1) [P (et < Doeet [k—1:k) [e™P*].

Also, VkeN, nge Pk = Zaea*[k’—l;k) [eiﬁhk]'

Then: Vk e N, Doect [k—1:k) [e=AEa+D] < nre 7k,

Then: I Dioect k1) [e=Pletl] < Doy e,

By assumption, >~ [nke F¥] < oo. Then €’ -3, [nre P*] < 0.
Since Aj = Does | e Bea

= ZO’GZ [ 6’3 . 676'(€U+1)]
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= 7 Yoesl e et ]

= 66 e Dlrest [h—13k) [eP(etD]

< e 3l [we” ﬂk] < o, we get: 3 e DF..
End of proof of =. U

THEOREM 24.27. Let X be a set, ¢:%X — [0;0).
For all k € N, let ny:=#(e*[k—1;k)).
Assume: VkeN, n, > e, Then: DF, = (.

Proof. Since VkeN, ny=ef >1, we get: S ng = 0.
Since  #(e*[050)) = Y, [#(E [k — LR)] = Y, m — o0,

it follows, from Theorem 24.5, that: DF. < (0;0).
It therefore suffices to show: V3 € (0; w0), 8 ¢ DF..

Given f[e (0;00), want: [ ¢ DF..

Since, ask — 0, e FF & oo weget: 27 [eFFHF] = oo,
Since X7, [nge™7F] = X7, [€k2675'k] = Yiet [ekk’gk] = 0,

and since 3 € (0;0) < [0; 00),

by Theorem 24.26, we get: (¢ DF.. [

Recall (§2): VteR, |[t] denotes the floor of ¢.

THEOREM 24.28. For all k€ N, let ny, := [** + 1].
Let ¥ := {(k,j) e Nx N|j < ng}.

Define ¢ : ¥ — [0..0) by:  V(k,j)e X, e(k,j)=k—1.
Then: DF, = &.

Proof. We have: VkeN, ny > et
By Theorem 24.25, we get: Vke N, #(e*[k—1;k)) =
Then, by Theorem 24.27, we get: DF. = . U

THEOREM 24.29. Let X be a set, ¢:% — [0;00).
For allkeN, let ng:=#(c*[k—1;k)). Let 5y e [0;00).
Assume: as k — 00, nge Pk 1. Then: DF. = (By;0).

Proof. Since as k — o, npe F -1, we get:

#{k e N|npe Po* = 0} < o0.
Then: #{k € N|ny =0} < .
Then #{keN|n, >1} =00, andso Y, , ny = 0.
Since #(e*[0;00)) = 3L, [#(e* [k — LK) = XL, i = o,

it follows, from Theorem 24.5, that: DF. < (0;0).

Since DF. < (0;00) < [0;00),  we get: DF. (1[0; ) = DF..
Since By € [0;00), we get:  (Bo; 0) < (0;0).
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Since (Bp; 0) < (0;0) < [0;0), we get:  (Bo;0) [][0;0) = (Bo; ).
We have: V3 € R, Vk € N, [ne= k] ) [e= (P~ 50) Fl = nke —Bok,
By hypothesis, as k — oo, npe Pk 1.

Then: VBeR, ask — oo, [nge k] /[e =)+ - 1.
Then: VBe R, (XL, [me*] <) = (X, [e”P7)*] < o0).
Also, VBeR, (B€ (Bos0)) = (X, [e" PP < o).

Then: VS5 e R, (Zk ke PPl <) = (B e (50, o) ).
Then, by Theorem 24.26,

Vi € [0;00), (BeDF.) < (B € (By;0)).
Then: DF. ([0;0) = (Bo;0) () [0; o0).
Then: DF. = DF. [)[0;0) = (Bo;0) [[0;0) = (Bo; ). O

THEOREM 24.30. Let 3 € [0;0). Forallk € N, let ny, := |e™¥].
Let ¥ := {(k,j) e Nx N|j < ng}.

Define € : ¥ — [0..0) by:  V(k,5) e X, e(k,j)=k—1.

Then: DF. = (Bo; ).

Proof. We have: as k — o0, nze %0k 1.
By Theorem 24.25, we get: VkeN, #(e*[k—1;k)) =
Then, by Theorem 24.29, we get: DF. = (fy; 0). O

THEOREM 24.31. Let X be a set, ¢:% — [0;0).

For all ke N, let ng:=#(c*[k— 1;k)).

Let pe (1;0), pBoe (0;0).

Assume: as k — o0, kPnpe ™% 1. Then: DF. = [By;0).

Proof. Since, as k — o0, kPnze % -1,  we get:
#{k e N | kPnge Po* = 0} < c0.
Then #{keN| ng =0} < .
Then #{keN|ny>1} =00, andso >, , n, = .
Since #(*[0;0)) = 2L, [#(E [k - LK)] = XL, me = o0,
it follows, from Theorem 24.5, that: DF. < (0;0).
Since DF. < (0;0) < [0;0), we get:  DF. [[0;0) = DF..
Since fy € (0;0), we get:  [Bo; 0) < (0; 0).
Since [Bo; 0) < (0;00) < [0;00), we get:  [Bo;00) [)[0;00) = [Bo; 20).
We have: V3 e R, Vk € N, [nge™ %] /[k~Pe=B=Fo)*] = kP e=fok,
By hypothesis, as k — oo, kPnge=Pok — 1.
Then: VB eR, as k — o0, [nge #*]/[kPe~(B=F)+F] - 1,
Then: VBeR, (X, [ne P*] <o) e (3, [k Pe B-P)k] < o).
Also, since p € (1;00), we get:
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Vi eR, (B €[Bo;0)) = (X, [kPe”P-H)*] < o).
Then: Ve R, (X, [nke ] <) < (Be[Bo;o)).
Then, by Theorem 24.26,
Vg € [0;0), (6 € DF.) < (5 € [fo; ) ).
Then: DF. ([0;00) = [Bo;90) ([0;%0).
Then: DF. = DF. [)[0;0) = [Bo;0) [)[0;00) =

THEOREM 24.32. Let f € (0; ).

For all ke N, let ny:= |k 2ek|.

Let ¥ := {(k,j) e Nx N|j < ng}.

Define ¢ : ¥ — [0..0) by:  V(k,j)e X, e(k,j)=k—1.
Then: DF. = [fy; ).

[o; 00). O

Proof. We have: as k — o0, k?nze %ok — 1.
By Theorem 24.25, we get: Vke N, #(e*[k—1;k)) =

Then, by Theorem 24.31, we get: DF. = [[; ). O
Let X be an infinite set. Let ¢:%X — [0;0).

For all ke N, let ny := #(e*[k — 1;k)).

In many applications, the sequence ny,ns,... is subexponential.

By the next theorem, whenever that happens, we get: DF. = (0;20).

THEOREM 24.33. Let X be an infinite set, ¢:% — [0;00).
For all ke N, let n,:=#(e*[k — 1;k)).
Assume: VB e (0;00), ask — o, nge™* — 0.  Then: DF. = (0; w0).

Proof. Since € : ¥ — [0; ), we get:  £*[0;00) = X.

So,  since X is infinite, we get:  £*[0;00) is infinite.
It follows, from Theorem 24.5, that: DF. < (0; ).
Want: (0; 00) c DF..

Given (e (0;00), want: e DF..
Since € (0;00) < [0;90), by Theorem 24.26,
it suffices to show: > ;" | [nge ?*] < o0,
Let 5 := /2. Since f € (0;00), we get: ' € (0;00).
Then, by hypothesis, we have: as k — o0, ne Pt 0.
It follows that:  {nze™®"* |k € N} is bounded.
Choose M eR  st., VkeN, nge?* <M.

Since f’' € (0;00), it follows that 1—e >0
and that e % +e 20 138 4... = efﬁ’/(l _ 67,8’)'
Then: e B L e L3 L. < oo,

Then: M-(e# 42 13 4..) < o
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Then: 7, [mee™] = S, [ge]
=N (e e ] < X [Meo# 4] = MUTE [
—M-(eP +e? 1+ 4..) <. -

The next theorem is a corollary of Theorem 24.33.

THEOREM 24.34. Let X be an infinite set, ¢:% — [0..00).
Assume: ¢ is injective.  Then: DF. = (0; ).

Ezxample: Let ¥ :=[0..00). Define c: ¥ — R by: Yo e X, ¢(0) = 0.
Then, VkeN, e*[k—1;k)={k—1}, andso #(*[k—1;k)) = 1.
Then, by Theorem 24.34, we get: DF, = (0; ).

DEFINITION 24.35. Let X be a set, ¢: X — R.
Then: denotes the interior in R of DF..

THEOREM 24.36. Let X be a set, ¢ : ¥ — R. Assume: DF. # (.
Then one of the following holds:
(i) IDF, =R
or (i1) 3By € [0;00) s.t. IDF. = (By; o0)
or  (iii) 36y € [0;0) s.t. IDF. = (—o0;—[y).

The preceding theorem is a corollary of Theorem 24.24.

THEOREM 24.37. Let X be a set, € : ¥ — R.
Then: (DF.=¢g ) < (IDF.=¢).

Proof. Since IDF. < DF,, we get:
(DFeZQ) = (IDFs:@)'
Want: (DF. #¢ ) = (IDF.# ).
Assume DF, # (7. Want: IDF, # (7.
By Theorem 24.36, one of the following is true:
(i) IDF, =R
or (i) 36p € [0;00) s.t. IDF. = (By; o0)
or (iii) 36y € [0;00) s.t. IDF. = (—o0; o).
Then: IDF. # . O

THEOREM 24.38. Let X be a set, ¢:% — R.
Then: (IDF.=R )< (DF. =R ) < ( X is finite ).

Proof. Since IDF, < DF. < R, we get:
(IDF. =R )= (DF. =R).
By Theorem 24.11, (DF. =R ) = ( X is finite ).
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It remains to show: ( X is finite ) = (IDF. =R).
Assume: X is finite. Want: IDF, = R.
Since the interior in R of R is equal to R,
it suffices to show: DF, = R.
Since DF. € R, want: R < DF..
Given f e R, want: [ € DF..
Since X is finite, we get: >, [eF @] < o0,
Since A§ =3 [e#E@)] <o, weget: eDF.. O
THEOREM 24.39. Let X be a set, ¢:3 — R.
Assume: 35y € [0;0) s.t. IDF. = (By;0).  Then: € is co-proper.

Proof. We have:  IDF, [[0;0) # &.
So, since DF. 2 IDF., we get: DF. ([0;0) # .
Then, by Theorem 24.8, we get: & is co-proper. O
THEOREM 24.40. Let X be a set, ¢:Y% — R. Then:

(36 € [0;00) s.t. IDF, = (—o0; =) ) = (€ is (—o0)-proper ).
Proof. We have: IDF. () (—0;0] # .
So, since DF. 2 IDF., we get: DF, [ (—o0;0] # &.
Then, by Theorem 24.9, we get: & is (—o0)-proper. O
THEOREM 24.41. Let X be a set, ¢: Y — R.

Assume: DF. # .  Then:
(e is co-proper ) or (€ is (—)-proper).

Proof. MORE LATER. U

THEOREM 24.42. Let X be a set, ¢ : ¥ — R, g e IDF,,
p € [0;0). Assume € is proper.  Then: XpSEB < 0.

We can remove the properness hypothesis from Theorem 24.42:

THEOREM 24.43. Let X be a set, ¢:% — R, f§ e IDF.,
p € [0;0). Then: XPSZ) < 0.

Proof. By Theorem 24.41, we have:
(€ is oco-proper ) or (¢ is (—o)-proper ). USE Theo-
rem 24.19. MORE LATER. U

25. CONVERGENCE, COMPLEX-DIFFERENTIATION, C* RESULTS

Recall (§2): the notations Iy and f*A.
Recall (§8): for f: S — C, the notation ), o [f(z)].
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THEOREM 25.1. Let X be an infinite set, ¢:3% — R.
Assume: & # DF. < (0;0). Let v e IDF..

For allneN, let X, :=&c*(—oo;n] and let g, :=¢|%,.
Then: (XpSE <o) and (asn— oo, XIS — XPSE ).

Proof. Since DF. < (0;0) < [0;00), we get: DF.[)[0; ) = DF..
Since DF.([0;0) = DF. # &, by Theorem 24.8,
we get: € is co-proper.

Let fj := inf DF.. By Theorem 24.22, we get: IDF, = (fy; o).
Since 7y € (fp; 0), by Theorem 24.19, we get: X'DSEY < 0.
It remains to show: as n — o0, XPSr — XPS7.
For all 0 € 3, let ¢, := ¢(0).
Define f: ¥ - R by: VoeX, f(o)=¢l e 7.
By Theorem 8.4, as n — o0, dezn [f(o)] = Deslf(0)].
So, since VneN, > . [f(0)] =XPS

and since Y .« [f(0)] = XPSE,

we get: as n — o0, XPStr — XPSE. U
Recall (§2): the notations $(z) and J(z).
Note: VzeC, [e*] = %),
Also, VSc R, R*S = {x+yy/—1|zeS}
THEOREM 25.2. Let U be an open subset of C, g,h:U — C.
Let f1, fo,...: U — C all be complex-differentiable on U.
Assume, as n — o, we have:

both f, — g pointwise on U and [ — h uniformly on U.
Then: g is complex-differentiable on U and ¢ =h on U.

Theorem 25.2 is a standard result about
commuting of limit and differentiation. We omit proof.

It will be helpful to extend Definition 24.14 to C:
DEFINITION 25.3. Let X beaset, ¢:3%—>C, 2ze€C.
For allo e, let g, :=¢(0).
Then, Yp e [0; oo) the |p-exponent (z,c)-absolute-sum| is:
— sl -l ] € [0
Also, Ype[0..00), zf X’s: < o,
then the |p-exponent (z,¢)-sum| is:
XPSE| = D sl -e7] e C.
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We continue to focus on the case where I, < R.

We have: Vset X, Ve: X >R, VzeC, Vp € [0; 0),
X5z = XS5,

Recall: Theorem 24.43.

Then: Vset X, Ve: ¥ > R, Vze R*IDF., Vpe|[0;0),
X’se < o, and so X*S{ is defined.

DEFINITION 25.4. Let X be a set, ¢:3 — R, pe[0..00).
Foralloe¥, lete,:=¢(0).
Then . IDF. — R is defined by:
Vg e IDF,, (XPS7)(B) = XPS5.
Also, | XPSyc | R*IDF, — C is defined by:
Vze RAIDF.,  (XS9)(z) = XPSE.

THEOREM 25.5. Let X be a set, ¢:%X — R.

Assume: & # DF. < (0;00). Let ~€IDF..

For allneN, let X, :=c*(—oo;n] and let g, :=¢|%,.
Then: asn — o, XPSTE — XPS.  uniformly on R*(y; ).

Proof. Given § > 0, want: dng € N s.t., Vn € [ng..0),

|XPS5e — XPSE| <6 on R*(y; 00).

Let fy := inf DF..  Then IDF, = (fy; ).
On W' (3:00), [XPS5 — XPSia| < XPs — Xrsir.

MORE LATER

THEOREM 25.6. Let X be a set, ¢:YX — R.
Assume: X is finite. Let p € [0..0).

Then: XS5 is complex-differentiable on C.

and (XPSep) = —XPT1Se. on C.

Proof. For all o € 3, let ¢, := ¢(0).
We have: Vze C,  (XPS50) (2) = D ex [€7 - €77
Since X is finite, we may differentiate term-by-term, yielding:

Vz e C, (XPS50) (2) = Dlpes €8 - €775 - (—£4) ]
Thus XS5 is complex-differentiable on C.
It remains to show: (X*S:.) = —X*"'S5. on C.

Since Vz € C, we have: (XPS50)"(2) = X o5 [€0 - €775 - (—&4)]

= _Zaez [5<pr+1'€7z.80] - _<XSE>(Z)a

we conclude:  (XPS5q) = —XP*H1Ss. on C.

O
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In Theorem 25.6, we assumed ¥ was finite.
We next investigate what happens without that assumption:

THEOREM 25.7. Let X be a set, ¢:% — R.

Assume:  J # DF. < (0;00). Let p € [0..00).

Then: XS5 is complex-differentiable on R*IDF..
and (XPSip) = —XPHSe. on R*IDF..

Proof. Let 3y :=inf DF..  Then IDF, = (f3y; ).
For all n e N, let ¥, := ¢*(—o0o;n] and let ¢, := ¢[%,,.
Given z € R*(fp; ), want: XS is complex-differentiable at z
and  (X’S3c)'(2) = —(XP71S5c)(2).
Let 5 := R(z). Let v := (o + 5)/2. Then py <y < f.
It suffices to show: X’S5; is complex-differentiable on $*(~; )
and  (XPSSe) = —XPHISE. on R*(v; 0).
By Theorem 25.5, as n — o0, we have both
XPSit  — XPSi:  uniformly on #*(v; o0)
and XPHISsn — XPHISE L uniformly on R*(y; o0).
For all n € N, since ¥, is finite, by Theorem 25.6, we see that
X?S.¢ is complex-differentiable at z
and  (XPS7n) = —XPHISIn on R*(Sy; o0).
Then, as n — o0, we have both
XPSiE — XPS5¢ pointwise on J*(y; 00)
and  (XPS%) — —XPHSE. uniformly on 3*(vy; o0).
Then, by Theorem 25.2, we get:
XPS:c is complex-differentiable on R*(v; )
and  (XPSgp) = —XPHSEL on R*(v; 0). O

We can remove the hypothesis “0f # DF. < (0;00)”
from the preceding theorem:

THEOREM 25.8. Let X be a set, ¢:3X —R. Let pe[0..0).
Then: XPS5¢ is complex-differentiable  on R*IDF..
and (XFSep) = —XPHSe. on R*IDF..

Recall (§2):  “C*” means “real-analytic”.

THEOREM 25.9. Let V be an open subset of C, U :=V[R.
Let g:V —-C. Assumeg,U<R. Let f:=g|U.

Assume: g :V — C is complez-differentiable on V.

Then: f:U—->Ris cv on U.

Also, ((¢)«Uc<R) and  ( f'=4U).
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THEOREM 25.10. Let X be a set, ¢: X —> R, pe[0..0).
Then: XrSs is C% on IDF.
and  (XPSZ) = —XPT1SE on IDF..

Proof. Let 5y :=inf DF..  Then IDF. = (fy; ).

Use Theorem 25.9.
MORE LATER O

26. BOLTZMANN AVERAGES ON COUNTABLE SETS

DEFINITION 26.1. Let ¥ be a set, ¢:% —R, [eR.
For allo e X, let e, :=¢(0).
Assume: Xlsg < . Then: |T'5|:= X'S5.

Let X be a countable set, ¢:3¥ —> R, feR.
Ylqe € De
and so I'; is the integral of ¢ wrt Bj.

In the next definition, in order that I'3/Aj is defined,
we need:  both I'j is defined and 0 < A% < 0.

We therefore assume Xlsg < o0, to ensure that I'j is defined.
We also assume X is nonempty, to ensure that Aj > 0.
Finally, we  assume € DF,, to ensure that Aj < oo.

DEFINITION 26.2. Let X be a nonempty set, ¢: % —- R, feR.
Assume: Xls; <o and f€DF.. Then: |Aj|:= I'3/A%.

Note that, by Theorem 24.16, if ¢ is co-proper, then
(X'S5 <®) = (BeDF.).
Without co-properness, this fails, by Theorem 24.18,
(X'Ss <o) 4 (1eDF.).
By Theorem 24.17, even with co-properness,
(1eDF.) 4 (XS <)

THEOREM 26.3. Let X be a nonempty countable set, ¢ :% — R.
Let 3 € DF.. Assume X S5 < 0. Then |e, B3|y < o0 and A5 = M., s .

Proof. BY Theorem 8.5,

SHOW: X ey, [t ((exB3){t})] = 2oes llo] - (Bi{o})]-
IDEA: BY Theorem 8.5,

D, 2ioeer iy LIt (Ba{o})] = 2oex lleo| - (Bi{o})].
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THEN: |2, B5|: = (X S5)/A%.
THEN: [e.Bj|1 < .
THEN: M., g = Yoy [t - (€. B5) )]
Since X # ¢, we get:  AZ > 0.
Since 3 € DF,, we get: Aj < o0.
Then 0 < Aj < o, so, since Aj = ég(E),
we get: 0 < BE(Z) < 0.
For all o € ¥, let ¢, := (o).
Since Ve e (B3N] = Ly [lea] - 077 ] = X85 < o0,
dividing by B5(X), we get: 3 s |e, - (B5{o})| < 0.
Then, by Theorem 8.6,
we get:  Viel., X cuples (Bslo}) | < o and
Zte]lg | Zaea*{t} [es - (Bs{o})]| < and
2iel.  2oeeriyy (€0 - (B3lo})] = 2oex 60 - (B3{o})].
Also, A = Dpes L€a - (Bg{a})]

oeEX

Then: Zte]lg Zaea*{t} €5 - (BE’{U})] = A%‘
So, since the]l5 [t ) ((5*B[€3){t} ] = M8*Bf37

)
we want: Yooy [t (EaBIH] = Soar. Soecery 120 (B3]
Want: Vt € L, t- ((e«B3){t}) Diveerppy [e0 - (Bi{o})]-
Given tel., want: t- ((c.B5){t}) Yiveeriny €0+ (Bi{a})].
For all o € e*{t}, since ¢, = ¢(0) € {t}, we get: t=¢,.
Want: ¢+ (. B){t]) = Shpeegy [¢ - (B3{o]) .

Because ¢*{t} is the disjoint union, over o € £*{t}, of {c},

we ge; BY(EHH) = Spewigl Bilo} |
Also, (e«B3){t}) = Bi(e*{t}).
Then: ¢- (B3} = - (BY(E{H) = Sy [t - (Bfoh)]. O

THEOREM 26.4. Let X be a set, ¢:X — R.
Assume: €*[0;0) is infinite and DF. # . Let f:= inf DF..
Then: Nreal v > By, Vreal p> 0, XpSfy < 0.

Proof. Given a real v > 3, and areal p >0, want: XPS?Y < o0.

By Theorem 24.12, ¢ is co-proper.

Then, by Theorem 23.4, I is bounded below.

By Theorem 24.19, we have: KpSfY < 0. U

DEFINITION 26.5. Let ¥ be a set, ¢ : & — R.
Then :IDF. — R is defined by: VB e IDF., A35(8) = As.
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THEOREM 26.6. Let X be a set.
Let ¢:YX—R. Assume:  #l. = 2.
Then: A% is a strictly-decreasing C*-diffeomorphism
from IDF. onto (inflas;suplac).

Proof. For all 0 € 3, let ¢, := £(0).
€ ZUGE [60 ) 6_6.60]
We have: Y( € IDF,, A(B) = -
I L
HER
We have: V(5 € IDF., AS(B) = AL(B)
We have: V(5 € IDF., A(B) = gﬁ;g—ggg;.

By Theorem 25.7, X!'S¢ and X°S¢ are both C¥.
So, since XSS # 0 on IDF,, we conclude: AS is C¥.
By Theorem 25.10, we have:
vB € IDF., (X'S5)/(8) = —(X*S5)(8),
and  ¥f e IDF., (X9S5)(8) = —(X'S5)(5).
Then:  Vf e IDE., (X'S3)(5) = Yep [(—£2) - 7%,
and VB e IDF., (X°S) () = X s [(—&,) -],
So, by the C¥-Inverse Function Theorem and
the Mean Value Theorem, it suffices to show: (A%)" < 0 on IDF..
Given 3 € IDF., want: (A3)(8) < 0.
Let P = ZUEE [50 e e ]7 P= Zo—ez [(_53) cemPo ]
Let Q= ZTGE [6_5.& ]7 Q/ = ZTGE [(_67') e P ]
Then @Q > 0. Also, by the Quotient Rule, (AS)'(8) = [QP' — PQ']/Q>.
Want: QP — PQ’ < 0.
CITE NEW THEOREM THAT SAYS
(2 Lf@)]) - (2, lsw)]) = 2 2, [(f(@) - (9(y)]-
We have: QP/ = ZUEE ZTEE[ (—8(27) cem P (Eter) ]
We have: PQ’ Y oew D o [(—epe,) - e FlEaten) ]
Then: QP —PQ = o> [(—€2+¢c,e,) e Pt
Interchanging o and 7, we get:
QP — PQ =3, 5 Dpes [ (—€2 +578,) e Pt ],
By commutativity of addition and multiplication,

adding the last two equations gives:
2 (QP/ - PQ/) = ZO’EE ZTEE [(_53 - 53 + 25057) ’ eiﬁ'(scﬁ&) ]
Then: 2-(QP' — PQ') =3 cx 2es | —(e6—&7)* - e B (eater) ],
Then: 2. (QP' — PQ') <0. Then: QP — PQ’' <0. [O



83

Recall (Theorem 23.3):
If € is co-proper, then [ has a minimum element, i.e., min I, exists.

THEOREM 26.7. Let X be a set, ¢: 3 — R.
Assume: €*[0;00) is infinite and DF. # (.
Then: ¢ is w-proper and as 3 — o0, Az — minl..

Proof. By Theorem 24.12, ¢ is co-proper.
It remains to show: as § — 0, Aj — minl.
Let to := minl.,. Want: A% — 1.
Let X' := X\ (e*{to}). Let ng := #(e*{to}).
Since {to} S (—o0;tp], we get e*{to} S e*(—0; to].
Since ¢ is co-proper, we get: £*(—o0;tg] is finite.
Then e*{to} is finite. ~ That is, ny < .
Since tg € I, we get e*{to} # &, and so ng > 0. Then 0 < ny < 0.
For all § € (By; ), we have:
PRI ED W Pl
ng - e 00 + 3 s [e77e]
no-to-e P+ e, e Per] efto
ng-e o 3 efee]  efto

oty Dgesy [0 - 7P ]

T 0 D e )
Let 61 = 60 + 1.
Then, for all 5 € [f;; ), for all o € ¥, we have

ey - e P Eamt0)| < g, | - e Pr(Ea—0)

and ’e—ﬁ'(éa—to)’ < e—ﬁr(aa—to)_
We have: > [le,| - e Price—to)] = K;S%l.
Also, Y s [ePr(Eamto)] = XS5,

By Theorem 26.4, we have: XIS%l <o and XOS%l < 0.
So, by the Dominated Convergence Theorem, as f — o0,

Zan" [50 . e*ﬁ'(softo)] — 0

and p— [e=5(eo—t0)] - 0.
Nno - t() +0
Then: — 0 A, > ——.
en as [ , 5 P
Then: as [ — oo, AG — o O

Let X beaset and let e: X — [0;00) be co-proper.

Assume: €*[0;00) is infinite and supl. = o and DF. # ¢J.
Let 5y :=inf DF.. By Theorem 24.21, (fy; ) < DF..

Even though sup I, = oo,
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it does NOT necessarily follow that: as 8 — (f)", Aj — 0.
Here is an example:

THEOREM 26.8. For all k e N, let ny := |e*/k?|.

Let ¥ := {(k,j) e Nx N|keN,je [1l.ng]}.

Define € : ¥ — [0..0) by: VkeN, Vje[l.ng], ek, j)=Fk—1.
Then I < is bounded.

Proof. We have DF. = [1;00), so infDF, = 1.

Also, T'f <o and 0<Aj <0, soAj <ow.

Also, by the Dominated Convergence Theorem, we have:
as f — 1%, bothI'; - Tf and Aj— A?.

Then, asfg— 1%, A3 — Af <oo.

Then 4 is bounded.

Theorem 26.8 leads to an open problem, as follows:
For all k € N, let ny := |eF/k?].
Let ¥ := {(k,7) e Nx N|keN,je [l.ng]}.
Define ¢ : ¥ > Nby: VkeN, Vje[l.ng], ek, j)=k.
By Theorem 26.6, A is strictly-decreasing, and so
and since as f — 1%, A5 — Ajf, we get:
I4¢ is bounded above by Af.
Let o e N.  Assume: o > Af.  Then: o ¢ I4.
Suppose N professors, numbered 1 to N, have states in X.
Suppose each state o € ¥ has wealth (o).
Suppose the total wealth of all professors is Na.
Give equal probability to every dispensation of states.
For each oy € ¥, we seek a method to approximate
the probability that Professor# N is in state oy.
More precisely: For all n € N,
let Q,:={w:[l.n] = %] > [e(w())] = na}.
Then €y represents the set of all state-dispensations.
Open Problem: For each oy € X,
determine whether
the limit, as n — o0, of v, {w € Q, |w(n) = ¢} exists,
and, if it does, compute it.
This is a well-defined mathematical problem.
However, since o ¢ [z, we cannot solve Az = « for f3,
so our earlier techniques do not immediately apply.
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THEOREM 26.9. Let SyeR, [:=(fy;0), g:1—R.
Assume: g is differentiable on I and ¢ is semi-decreasing on I.
Assume: as — (Bo)", g(B) > —o.

Then:  as B — (f)", g'(8)— .

Proof. Since g : I — R and g is differentiable on I, we get: ¢ : I — R.
Since I = (Bp;0) # & and ¢’ : [ — R, we get: 1, # .
Since J # Iy € R, we get: suply # —oo.
Let M :=supl, € (—o0; o).
Since ¢’ is strictly-decreasing, we get: as 8 — (6o)", ¢'(8) — M.
Want: M = o. Assume M < o. Want: Contradiction.
Let 5, := [y + 1.
Since, as 8 — (fo)*, ¢(8) — —o,
choose 7 € (8o; 1) st. 9(+) < (9(B1) — M.
By the Mean Value Theorem, choose & € (v; By + 1) s.t.

(9(B1) = (9())

— = ¢(§).
Since M = suply, we get: ¢'(&) < M.
Since v € (8o; 51), we get: B —>0.
Then (9"(€) - (Br—v) < M- (81— ).
Since  (g(B1) = (9(7)) = (¢'(§)) - (Br —7) < M - (b1 — ),

we get: 9(7) > (9(B1)) = M - (b1 — 7).
By the choice of v, we get v € (fy; £1), and so v — 5y > 0.
By the choice of v, we get:

(9(B1)) = M > g(7).
Since (g(B1)) =M > g(v) = (9(B1)) = M - (B1 — ),

we get: M < M- (81 —7).
Then: M-(y+1-p5) <0.
Since [ = [y + 1, we get: 1— 051 = —Po.
Then: M- (y—pB) <0.
So, since v — By >0, weget: M <0.

Recall: I = (Bp;0) and g is differentiable on I and suply, = M.
So, since M < 0, we get: ¢ <0 on [.
Then, by the Mean Value Theorem, g¢ is strictly-decreasing on I.

We conclude: V5 € (Bo; 1), 9(B) > g(B1).
This contradicts the hypothesis that, as 8 — (8y)*, ¢(8) > —o0. O

Next, we prove that the pathology observed in Theorem 26.8
does not happen when DF., is open in R and bounded below.
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By Theorem 24.33, in typical Boltzmann applications,
DF. = (0;0), and so DF. is open in R and bounded below.

THEOREM 26.10. Let X be a set, €: X —> R, [yeR.
Assume: DF. = (Bp;00).  Then: as 8 — (5y)", A — 0.

Proof. By Theorem 24.39, ¢ is co-proper.
Then, by Theorem 23.4, 1. is bounded below.
Choose { e Rs.t. £ + 1. < (0;00). Let &:=¢+&.
Then Aj = e’ A%. Want: as 5 — (6o)7, A% — 0.
Otherwise, since § — Aj is strictly-decreasing,
we get {AS] 3 € DF:} is bounded above.
Let M be an upper bound.
Since Sy ¢ (Bo; 0) = DFz, we get: A% = 0.
That is, Y. s [e 7] = 0.
Choose a finite subsum that is > M.
Perturb Sy to a slightly larger .
If the perturbation is small enough,
then the finite subsum stays > M.
Then A% > the perturbed finite subsum > M,
contradicting that M is an upper bound.

THEOREM 26.11. Let X be a set, €: X —> R, [yeR.
Assume: DF. = (fBo;0).  Then: as B — (Bo)*, Aj — 0.

Proof. Let I := (y;0). Define f: I — R by: Vi e I, f(B) = Aj.
Then f = X°S¢, so, by Theorem 25.7, we get: f/ = —X1St.
We have: vVBel, X'S;=T%
Then: veel, f(B)=-T%.
Define g: I —» R by: Ve I, g(8) = —(In(f(5))).
Then: g is differentiable on I and,

by the Chain Rule, VB eI, ¢'(3)=—(f(8))/(f(B))
Then: VBel, ¢(B)=T53/A5.
Then: VBel, ¢(8)=Aj.
Want: as §— (6p)*, ¢(8) — .
By Theorem 26.6, we get: ¢ is strictly-decreasing on 1.
By Theorem 26.10, we get: as 8 — (5y)", A — oo
Then: as 8 — (o)™, f(B) — .
Then: as 5 — (Bo)*, In(f(B)) — 0.



Then: as f— (Bo)*, g(B) — —o0.
Then, by Theorem 26.9, we get: as 8 — (5o)", ¢'(8) — .

27. COUNTABLY INFINITE SETS OF STATES

MORE LATER

87
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28. APPENDIX: PYTHON CODE

Thanks once again to C. Prouty, for writing the Python code to do
the Boltzmann computations in this paper:

First code: The GFA and 0, 2, 20 dollar awards, with average 3 dollars.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
def F(beta):

z = np.zeros(3)

z[0] =1

z[1] = np.exp(-2 * beta)

z[2] = np.exp(-20 * beta)
return z

def G(beta):

z = np.zeros(3)

z[0] =0

z[1] = 2 * np.exp(-2 * beta)
z[2] = 20 * np.exp(-20 * beta)
return z

def f(beta):

return np.sum(F(beta))

def g(beta):

return np.sum(G(beta))

def bisection(minval, maxval, y, fn):
mid = (maxval + minval) / 2
while((fn(mid) - y) ** 2 > 0.0000001):
if(fn(mid) < y):

maxval = mid

else:

minval = mid

mid = (maxval 4+ minval) / 2
return mid

fn = lambda x: g(x) / f(x)
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target = bisection(-25, 25, 3, fn)

b = 0.07410049 # hard-coded result of bisection
r = F(b) / (b)

df = pd.DataFrame(r)
df.to_excel(“results2.xlsx”, index=False)
betas = np.linspace(-25,25,100000)

z = np.zeros(len(betas))

for i in range(len(betas)):

zli| = fn(betas|i])

plt.plot(betas,z)

plt.show()

Second code: The BUA and red bags and blue bags

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt
def F(beta):

z = np.zeros(25).reshape(5,5)
for i in range(5):

for j in range(5):

z[1,j] = np.exp(-(i+j)*beta)
z[4,4] =0

return z

def G(beta):

z = np.zeros(25).reshape(5,5)
for i in range(5):

for j in range(5):

afif] = (i) * np.exp(-(i-+)*beta)
2[4.4] = 0

return z

def f(beta):

return np.sum(F(beta))

def g(beta):

return np.sum(G(beta))

def bisection(minval, maxval, y, fn):
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mid = (maxval + minval) / 2
while((fn(mid) - y) ** 2 > 0.0000001):
if(fn(mid) < y):

maxval = mid

else:

minval = mid

mid = (maxval + minval) / 2

return mid

fn = lambda x: g(x) / f(x)

target = bisection(-25, 25, 1, fn)

b = 1.06697083 # hard-coded result of bisection
t = F(b) / f(b)

df = pd.DataFrame(r)
df.to_excel("results5.xlsx”, index=False)
betas = np.linspace(-25,25,100000)

z = np.zeros(len(betas))

for i in range(len(betas)):

zli] = fn(betas|i])

plt.plot(betas, z)

plt.show()
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