
Professors and Grants

1. Introduction

This note is intended as a compliment and complement to

B. Zhang’s very enjoyable “Coconuts and Islanders”,

which motivates the Boltzmann distribution in the case where

every nonnegative integer is a possible energy-level.

Here, our initial focus is, instead, on Boltzmann distributions where

0 and 1 and 10 are the only possible energy-levels.

Taking our cue from “Coconuts and Islanders”, we motivate by story.

From §3 to §13, we analyze three systems for

dispensing grant money to N professors.

Congress allocates N dollars to award to the N professors.

The grant rules stipulate: each professor receives $0 or $1 or $10.

Each professor is identified by a number, from 1 to N .

By a dispensation, we mean a full complement of awards,

with a specific amount ($0 or $1 or $10) to Professor#1,

a specific amount ($0 or $1 or $10) to Professor#2,

etc., up to and including Professor#N ,

such that the total of the awards is the $N allocated by Congress.

The first system (see §3) for awarding grants is very simple:

There are many possible dispensations, and, among all of them,

one is selected randomly,

giving equal probability to each possible dispensation.

The main problem is to figure out:

Using this first system, for a given professor,

what is the probability of being awarded $0? $1? $10?

Later (see §5), we describe

second and third probabilistic award systems.

Each of these systems depends on three parameters p, q, r

satisfying p, q, r ą 0 and p` q ` r “ 1 “ q ` 10r.

The second system uses

an iid system of random-variables, X1, . . . , XN

such that, @`, PrrX` “ 0s “ p,

PrrX` “ 1s “ q,
1
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PrrX` “ 10s “ r.

For all `, the second system awards X` dollars to Professor#`.

The total dollar payout X1 ` ¨ ¨ ¨ `XN is then random;

if X1 “ ¨ ¨ ¨ “ XN “ 0, it could be as small as 0 dollars,

and if X1 “ ¨ ¨ ¨ “ XN “ 10, it could be as large as 10N dollars.

The third system is obtained from the second

by conditioning on the event X1 ` ¨ ¨ ¨ `XN “ N ,

so that the total payout is exactly the $N allocated by Congress.

KEY POINT: With exactly the right choice of p, q, r,

the first and third systems are shown to be equivalent.

In §6 and §7, we show that this parameter choice is Boltzmann,

meaning: pp, q, rq is, for some real number β,

a scalar multiple of p e´0¨β , e´1¨β , e´10¨β q.

That is, Dβ, C P R s.t. pp, q, rq “ p C , Ce´β , Ce´10β q.

The second and third systems are

accessible by basic tools of probability theory,

while the above “main problem” involves the first system.

However, once we know the first and third systems are equivalent,

we can bring these probabilistic tools to bear on the main problem.

Thanks to J. Steif, for pointing out to me that

the Discrete Local Limit Theorem, which is described in §10,

is the right tool for the main problem, which is solved in §13.

Boltzmann distributions are often motivated by entropy, but,

from our perspective,

what’s special about pp, q, rq “ pC,Ce´β, Ce´10βq is:

For any i, j, k ě 0, we have

piqjrk “ Ci`j`k ¨ e´β¨pj`10kq,

so piqjrk depends only on: i` j ` k and j ` 10k.

In the third system of grant awards,

there exists a normalizing constant S ą 0 s.t.,

for any dispensation in which

i professors receive $ 0,

j professors receive $ 1,

k professors receive $10,

the probability of that dispensation is piqjrk{S,
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which is equal to Ci`j`k ¨ e´β¨pj`10kq{S.

That proabability, then, depends only on

i` j ` k, which is the number of professors,

and j ` 10k, which is the total dollar payout.

So, since the number of professors is “ N

and the total dollar payout is also “ N ,

we conclude: each award-dispensation has probability CN ¨e´β¨N{S,

so they are all equally likely, which exactly describes the first system.

Therefore, under the Boltzmann assumption,

the first and third systems are equivalent.

In §15, we expose the inequitablity of the first system.

In fact, assuming N is sufficiently large, we show, in §15, that:

with probability ą 99%, over half of the professors receive $0.

Thanks to V. Reiner for suggesting

applying Chebyshev’s inequality to a sum of indicator variables,

to transition from individual statistics to population statistics.

In §16 and §17 and §18, we extend the theory to handle cases where

the award-sets are arbitrary finite sets of rational numbers,

not necessarily equal to t0, 1, 10u.

In §19, we show that

irrational award amounts can lead to non-Boltzmann statistics.

In §20 and §21 and §22, we extend our earlier results to include

degenerate energy-levels, with a finite set of states.

In §23 through §27, we extend these results further to include

cases that involve a countably infinite set of states.

Thanks to C. Prouty for help with many calculations.

For some of his Python code, see §28.

2. Some notation

A box around an expression indicates that it is global,

meaning that it is fixed (or “bound”) to the end of these notes.

Unboxed variables are freed at the end of each section, if not earlier.

Let R˚ :“ t´8u
Ť

R
Ť

t8u, Z˚ :“ t´8u
Ť

Z
Ť

t8u.

For any s, t P R˚, let
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ps; tq :“ tx P R˚ | s ă x ă tu, rs; tq :“ tx P R˚ | s ď x ă tu,

ps; ts :“ tx P R˚ | s ă x ď tu, rs; ts :“ tx P R˚ | s ď x ď tu.

For any s, t P R˚, let ps..tq :“ ps; tq
Ş

Z˚, rs..tq :“ rs; tq
Ş

Z˚,
ps..ts :“ ps; ts

Ş

Z˚, rs..ts :“ rs; ts
Ş

Z˚.
Let N :“ r1..8q be the set of positive integers.

For any finite set F , let #F be the number of elements in F .

For any infinite set F , let #F :“ 8. Then #Z “ 8 “ #R.

For any set F , we have: #F P r0..8s.

For all t P R, let ttu :“ maxtn P N |n ď tu be the floor of t .

For any sets S, T , for any function f : S Ñ T ,

the image of f is: If :“ t fpxq |x P S u Ď T .

For any sets S, T , for any function f : S Ñ T ,

for any set A, we define: f˚A :“ tx P S | fpxq P Au.

By convention, in these notes, we define 00 :“ 1.

By “Cω” we mean: “real-analytic”.

Fix an element of tz P C | z2 “ ´1u and denote it by
?
´1 .

Define < : CÑ R and = : CÑ R by:

@x, y P R, <px` y
?
´1q “ x and =px` y

?
´1q “ y.

3. First system of grant awards

Let N P N. Think of N as large.

Whenever we need to

formulate and prove precise mathematical statements,

we will “pass to the thermodynamic limit”, which means:

we replace N by a variable n P N, and let nÑ 8.

((Alternatively, within nonstandard analysis,

N could be defined as an infinite integer,

and the various approximations involving N ,

could be defined as equality-modulo-infinitesimals.))

Suppose there are N professors, numbered 1 to N ,

who apply, once per year, to the GFA (Grant Funding Agency),

seeking funding for the very important work they are doing.

Each year, Congress authorizes $N for the GFA to dispense

to the N professors.

The GFA has the rule: every award is 0 or 1 or 10 dollars.
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The set of grant-dispensations is represented by:

Ω :“
!

ω : r1..N s Ñ t0, 1, 10u
ˇ

ˇ

řN
`“1 rωp`qs “ N

)

.

The GFA has set aside #Ω pieces of paper,

and has written down all possible dispensations,

one on each piece of paper.

So, for example, there is a piece of paper that says:

Professors 1 to N each get $1.

Another piece of paper says:

Professors 1 to N ´ 10 each get $1 and

Professors N ´ 9 to N ´ 1 each get $0 and

Professor N gets $10.

Since N is large, it follows that #Ω is large, and so

there are many, many, many other pieces of paper.

Each year, a GFA bureaucrat

places all the pieces of paper in a big bin,

then selects one at random and

makes the awards as indicated on that piece of paper.

Under this first system of awarding grants, we have:

@ω P Ω, the probability that

the selected grant-dispensation is ω

is equal to 1 { p#Ωq.

Suppose I am one of the professors. Here is our main problem:

Calculate my probability of getting $0.

Then calculate my probability of getting $1.

Then calculate my probability of getting $10.

Approximate answers are acceptable.

In §5 to §13 of this note,

we reformulate and then solve this problem.

Spoiler: It’s a Boltzmann distribution, approximately.

4. Particles and energy

Recall that N P N. Think of N as large.

Suppose there are N particles, numbered 1 to N ,

each of which has a certain amount of energy.

Suppose the total energy is N , dispensed among the N particles.

Suppose physicists have somehow determined that, for any particle,

its possible energy-levels are: 0 or 1 or 10.
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Recall: Ω “

!

ω : r1..N s Ñ t0, 1, 10u
ˇ

ˇ

řN
`“1 rωp`qs “ N

)

.

Then Ω represents the set of energy-dispensations.

Assume that physicists have somehow determined

that this system of particles has a random energy-dispensation

and that all energy-dispensations in Ω are equally probable.

That is, physicists tell us:

@ω P Ω, the probability that

the energy-dispensation is ω

is equal to 1 { p#Ωq.

The equal probability of all energy-dispensations

is a recurring theme in microcanonical-ensemble thermodynamics,

and can often be motivated through

rules of random energy transfer between random pairs of particles.

For examples of this, either see §20 below or

search for “Coconuts and Islanders” by B. Zhang,

and, in particular, see the work leading up to

the last paragraph of §3.2 therein.

In §20 below,

instead of particles exchanging energy,

there are professors exchanging dollars,

but the principle is exactly the same.

In Zhang’s exposition,

instead of particles exchanging energy,

there are islanders exchanging coconuts,

but the principle is exactly the same.

Returing to our N particles, pick any one of them.

Problem: Calculate its probability of having energy-level 0.

Then calculate its probability of having energy-level 1.

Then calculate its probability of having energy-level 10.

Approximate answers are acceptable.

Spoiler: It’s a Boltzmann distribution, approximately.

Except for terminology, this problem is the same as

the main problem (end of §3) about professors and grants.

We will go back to professors and grants.

Mathematically it makes no difference, but it’s more fun.
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5. Second and third systems of grant awards

In an effort to go paperless, the GFA changes to a new system:

In this second system, instead of all those pieces of paper,

the GFA chooses p, q, r ą 0 s.t. p` q ` r “ 1,

and then, for each of the N professors,

awards $ 0 with probability p,

$ 1 with probability q,

$10 with probability r.

No professor’s award depends in any way on any other professor’s;

the awards are independent.

The expected payout, for any professor, is p ¨ 0` q ¨ 1` r ¨ 10 dollars.

Under this second system,

there is no guarantee that the total payout will be $N ,

which is a difficulty that we will discuss later.

However, recognizing that the average award is intended to be $1,

the GFA chooses the numbers p, q, r subject to the constraint that

p ¨ 0` q ¨ 1` r ¨ 10 “ 1, i.e., q ` 10r “ 1.

For each function ω : r1..N s Ñ t0, 1, 10u, let

iω :“ #t ` P r1..N s | ωp`q “ 0 u,

jω :“ #t ` P r1..N s | ωp`q “ 1 u,

kω :“ #t ` P r1..N s | ωp`q “ 10 u;

that is, iω is the number of professors awarded $ 0 and

jω is the number of professors awarded $ 1 and

kω is the number of professors awarded $10.

Then, @ω : r1..N s Ñ t0, 1, 10u, we have:

the total number of awards is iω ` jω ` kω
and the total dollar payout is iω ¨ 0` jω ¨ 1` kω ¨ 10,

i.e., jω ` 10kω.

Then, @ω : r1..N s Ñ t0, 1, 10u, we have:

iω ` jω ` kω “ N and jω ` 10kω “
řN
`“1 rωp`qs.

Recall: Ω “

!

ω : r1..N s Ñ t0, 1, 10u
ˇ

ˇ

řN
`“1 rωp`qs “ N

)

.

That is, Ω is the set of all payout functions

ω : r1..N s Ñ t0, 1, 10u

s.t. the total dollar payout is N .

Then: @ω : r1..N s Ñ t0, 1, 10u, we have:

ω P Ω ô jω ` 10kω “ N .

For every i, j, k P r0..N s,



8

if i` j ` k “ N and j ` 10k “ N ,

then Dω P Ω s.t. pi, j, kq “ piω, jω, kωq;

indeed, one such ω : r1..N s Ñ t0, 1, 10u is described by:

ω “ 0 on r1..is, ω “ 1 on pi..i` js, ω “ 10 on pi` j..N s.

Let A :“ tpiω, jω, kωq |ω P Ωu.

Then A is the set of all pi, j, kq s.t. i, j, k P r0..N s and

i` j ` k “ N and j ` 10k “ N .

Under the second system,

each $ 0 award happens with probability p and

each $ 1 award happens with probability q and

each $10 award happens with probability r.

So, @ω : r1..N s Ñ t0, 1, 10u, under the second system,

the probability that the grant-dispensation is equal to ω

is piωqjωrkω .

Let S :“
ř

ωPΩ piωqjωrkω .

Then S is the probability (using the second system) that ω P Ω,

i.e., the probability that the total payout is exactly N dollars.

Assuming N is large, it turns out that S is close to zero.

So, under this second system,

the probability of paying out exactly N dollars

is very small.

Congress only allocates $N per year for the N professors.

So, using this second system, each year,

with probability 1´S « 1, the GFA will run a surplus or a deficit.

On the other hand, since q ` 10r “ 1, we see that,

each year, the expected payout is $1 per professor,

so, each year, the expected total payout is $N .

So these surpluses and deficits should, over time, cancel one another.

Unfortunately, Congress is a paragon of fiscal responsibility, and,

as soon as it finds out about the GFA’s second system,

it insists that the GFA never again underspend or overspend.

So the GFA changes its system one more time, as follows.

Under its third system, each year,

before announcing any of the awards publicly,

the GFA writes out, in an internal memo,

a tentative proposal of awards that,

independently, for each of the N professors,

awards $ 0 with probability p,
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$ 1 with probability q,

$10 with probability r.

If the memo’s total award payout is NOT equal to $N ,

the GFA deems the memo as unacceptable,

deletes it, and starts over, making memo after memo,

until an acceptable one (meaning payout exactly $N) appears.

Each memo has a probability S of being acceptable, so, each year,

the GFA will likely need to repeat the memo process many times

to get to a memo with total payout exactly equal to $N .

However, as soon as that happens,

the GFA uses that first acceptable memo,

and publicizes its dispensation of awards.

Mathematically, we are conditioning on the event ω P Ω.

So, using the third system, the probability that ω R Ω is 0.

Also, for this third system, @ω P Ω, the probability of ω is piωqjωrkω {S.

The sum of these probabilities is 1:
ÿ

ωPΩ

piωqjωrkω

S
“

1

S
¨
ÿ

ωPΩ

piωqjωrkω “
1

S
¨ S “ 1.

This third system is not necessarily equivalent to the first, because

in the first system, all the probabilities were 1 { p#Ωq,

whereas, in the third system, they are piωqjωrkω {S.

So a new question arises:

Is it possible to choose p, q, r ą 0 in such a way that

p` q ` r “ 1 and q ` 10r “ 1 and

@ω P Ω, piωqjωrkω {S “ 1 { p#Ωq ?

If yes, then, using that pp, q, rq,

the first and third systems are equivalent.

We will see that the answer to this new question, in fact, is yes.

In the next two sections, assuming N ě 10,

we will show how to compute the only pp, q, rq that works.

Spoiler: It’s a Boltzmann distribution, exactly.

6. Computing p, q, r à la Boltzmann

Recall (§3): Ω “

!

ω : r1..N s Ñ t0, 1, 10u
ˇ

ˇ

řN
`“1 rωp`qs “ N

)

.

As in the preceding section, let p, q, r ą 0, S :“
ř

ωPΩ piωqjωrkω .

We assume: p` q ` r “ 1 and q ` 10r “ 1.

We also assume: @ω P Ω, piωqjωrkω {S “ 1 { p#Ωq.
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We will prove that, if N ě 10, then

there is at most one pp, q, rq that satisfies these conditions,

specifically, pp, q, rq “
p1, 9´1{10, 9´1q

1` 9´1{10 ` 9´1
.

Define the dot product, d, on R3, by:

@x, y, z,X, Y, Z P R, px, y, zq d pX, Y, Zq “ xX ` yY ` zZ.

For all u P R3, let uK :“ t v P R3 | ud v “ 0 u;

then uK is a vector subspace of R3.

Also, @u P R3, u P uKK.

For all U Ď R3, let UK :“ t v P R3 | @u P U, ud v “ 0 u;

then UK is a vector subspace of R3.

Also, @t P R3, @U Ď R3, p t P U q ñ p tK Ě UK q.

Also, @T, U Ď R3, pT Ď U q ñ pTK Ě UK q.

For all u, v P R3, let xu, vyspan denote the R-span of tu, vu, i.e.,

let xu, vyspan :“ t su` tv | s, t P R u;
then xu, vyspan is a vector subspace of R3.

Recall (§5): A “ tpiω, jω, kωq |ω P Ωu.

Recall (§5): A is the set of all pi, j, kq s.t. i, j, k P r0..N s and

i` j ` k “ N and j ` 10k “ N .

Then: A is the set of all pi, j, kq s.t. i, j, k P r0..N s and

p1, 1, 1qdpi, j, kq “ N and p0, 1, 10qdpi, j, kq “ N .

For all a, b P A, we have

p1, 1, 1q d a “ N “ p1, 1, 1q d b and

p0, 1, 10q d a “ N “ p0, 1, 10q d b,

so we get

p1, 1, 1q d pa´ bq “ 0 and p0, 1, 10q d pa´ bq “ 0,

so a´ b P p1, 1, 1qK
Ş

p0, 1, 10qK.

Let V :“ p1, 1, 1qK
Ş

p0, 1, 10qK.

Then: @a, b P A, a´ b P V .

Let D :“ ta´ b | a, b P Au. Then D Ď V .

Also, we have: V Ď p1, 1, 1qK and V Ď p0, 1, 10qK.

Then: V K Ě p1, 1, 1qKK and V K Ě p0, 1, 10qKK.

Since p1, 1, 1q P p1, 1, 1qKK Ď V K and p0, 1, 10q P p0, 1, 10qKK Ď V K,

we get: x p1, 1, 1q , p0, 1, 10q yspan Ď V K.

Let W :“ x p1, 1, 1q , p0, 1, 10q yspan. Then: W Ď V K.

Assume N ě 10. Let a1 :“ p0, N, 0q, a2 :“ p9, N ´ 10, 1q.

Then a1, a2 P A. Let d1 :“ a2 ´ a1. Then d1 P D.
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Since d1 ‰ p0, 0, 0q, we get: dim dK1 “ 2.

Since W “ xp1, 1, 1q, p0, 1, 10qyspan, we get: dimW “ 2.

Since d1 P D Ď V and W Ď V K, we get: dK1 Ě DK Ě V K Ě W .

So, since dim dK1 “ 2 “ dimW , we get: dK1 “ DK “ V K “ W .

Then DK “ W . Recall: @ω P Ω, piωqjωrkω{S “ 1{p#Ωq.

So, since A “ tpiω, jω, kωq |ω P Ωu, we get:

@pi, j, kq P A, piqjrk {S “ 1{p#Ωq.

Equivalently, @pi, j, kq P A,

i ¨ pln pq ` j ¨ pln qq ` k ¨ pln rq ´ plnSq “ ´plnp#Ωqq.

Equivalently, @pi, j, kq P A,

pi, j, kq d p ln p , ln q , ln r q “ plnSq ´ plnp#Ωqq.

Then: @a, b P A,

ad p ln p , ln q , ln r q “ plnSq ´ plnp#Ωqq “ bd p ln p , ln q , ln r q,

so we get: pa´ bq d p ln p , ln q , ln r q “ 0.

Then: @d P D, d d p ln p , ln q , ln r q “ 0.

Then: p ln p , ln q , ln r q P DK.

Since p ln p , ln q , ln r q P DK “ W “ xp1, 1, 1q, p0, 1, 10qyspan,

choose a real number C ą 0 and β P R s.t.

p ln p , ln q , ln r q “ plnCq ¨ p1, 1, 1q ´ β ¨ p0, 1, 10q.

Then p ln p , ln q , ln r q “ p lnC , plnCq ´ β , plnCq ´ 10β q.

Then pp, q, rq “ pC,Ce´β, Ce´10βq.

Then pp, q, rq “ C ¨ p1, e´β, e´10βq.

So, since p` q ` r “ 1, we get: C ¨ p1` e´β ` e´10βq “ 1.

Then C “
1

1` e´β ` e´10β
. Then pp, q, rq “

p1, e´β, e´10βq

1` e´β ` e´10β
.

So, since q ` 10r “ 1, we get:
e´β ` 10e´10β

1` e´β ` e´10β
“ 1.

Then e´β ` 10e´10β “ 1` e´β ` e´10β. Then 9e´10β “ 1.

Then e´10β “ 9´1. Then e´β “ 9´1{10. Then pp, q, rq “
p 1 , 9´1{10 , 9´1q

1 ` 9´1{10 ` 9´1
.

So this is the only pp, q, rq that can possibly work.

In the next section, we show that it does work.

7. Showing the Boltzmann p, q, r work

In this section, we prove

the converse of the result from the preceding section.

That is, we let pp, q, rq :“
p1, 9´1{10, 9´1q

1` 9´1{10 ` 9´1
and S :“

ř

ωPΩ piωqjωrkω ,
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and we wish to show: p` q ` r “ 1 and q ` 10r “ 1 and

@ω P Ω, piωqjωrkω {S “ 1 { p#Ωq.

Let β :“ pln 9q{10. Then e´β “ 9´1{10. Then e´10β “ 9´1.

Then pp, q, rq “
p1, e´β, e´10βq

1` e´β ` e´10β
. Let C :“

1

1` e´β ` e´10β
.

Then pp, q, rq “ C ¨ p1, e´β, e´10β
q. Then pp, q, rq “ pC,Ce´β, Ce´10βq.

Let K :“ CN ¨ e´β¨N .

Recall (§3): Ω “

!

ω : r1..N s Ñ t0, 1, 10u
ˇ

ˇ

řN
`“1 rωp`qs “ N

)

.

Claim: @ω P Ω, piωqjωrkω “ K.

Proof of Claim: Given ω P Ω, want: piωqjωrkω “ K.

Recall (§5): iω ` jω ` kω “ N and jω ` 10kω “
řN
`“1 rωp`qs.

By definition of Ω, since ω P Ω, we get:
řN
`“1 rωp`qs “ N .

Then: jω`10kω “ N . Recall: pp, q, rq “ pC,Ce´β, Ce´10βq.

Then: piωqjωrkω “ Ciω ¨ pCe´βqjω ¨ pCe´10βqkω

“ Ciω`jω`kω ¨ e´β¨pjω`10kωq “ CN ¨ e´β¨N “ K.

End of proof of Claim.

By definition of S, we have: S “
ř

ωPΩ piωqjωrkω .

So, by the Claim, we get: S “ p#Ωq ¨K. Then K{S “ 1{p#Ωq.

We have 10{9 “ 1` p1{9q. That is, 10 ¨ 9´1 “ 1` 9´1.

So, since e´10β “ 9´1, we get: 10e´10β “ 1` e´10β.

Then: e´β ` 10e´10β “ 1` e´β ` e´10β.

Recall: pp, q, rq “ C ¨ p1, e´β, e´10βq.

By definition of C, we get: C ¨ p1` e´β ` e´10βq “ 1.

Since p` q ` r “ C ¨ p1` e´β ` e´10βq “ 1

and since q ` 10r “ C ¨ pe´β ` 10e´10βq

“ C ¨ p1` e´β ` e´10βq “ 1,

it remains only to show: @ω P Ω, piωqjωrkω {S “ 1 { p#Ωq.

Given ω P Ω, want: piωqjωrkω {S “ 1 { p#Ωq.

By the Claim, we get: piωqjωrkω “ K.

Recall: K{S “ 1{p#Ωq.

Then: piωqjωrkω{S “ K{S “ 1{p#Ωq.
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8. Infinite summation

DEFINITION 8.1. Let S be a set, and let f : S Ñ r0;8s.

Let F :“ tA Ď S |#A ă 8u.

Then:
ÿ

xPS

rfpxqs :“ sup
APF

ÿ

xPA

rfpxqs P r0;8s.

DEFINITION 8.2. Let S be a set, and let f : S Ñ R.

Assume:
ř

xPS |fpxq| ă 8.

Then:
ÿ

xPS

rfpxqs :“

˜

ÿ

xPS

|fpxq|

¸

´

˜

ÿ

xPS

r |fpxq| ´ pfpxqq s

¸

P R.

Recall (§2): the notations <pzq and =pzq.

DEFINITION 8.3. Let S be a set, and let f : S Ñ C.

Assume:
ř

xPS |fpxq| ă 8.

Then:
ÿ

xPS

rfpxqs :“

˜

ÿ

xPS

r<pfpxqqs

¸

´

˜

ÿ

xPS

r=pfpxqqs

¸

¨
?
´1 P C.

NOTE: For any set S, for any f : S Ñ C, we have:

p
ř

xPS |fpxq| ă 8 q ñ tx P S | fpxq ‰ 0u is countable

and, by subadditivity of absolute value, we get:

|
ř

xPS rfpxqs | ď
ř

xPS | fpxq |.

THEOREM 8.4. Let S be a set. Let S1, S2, . . . Ď S.

Assume: S1 Ď S2 Ď ¨ ¨ ¨ and S1

Ť

S2

Ť

¨ ¨ ¨ “ S.

Let f : S Ñ C. Assume:
ř

xPS |fpxq| ă 8.

Then: as nÑ 8,
ř

xPSn
rfpxqs Ñ

ř

xPS rfpxqs.

The preceding is basic. We omit proof.

THEOREM 8.5. Let S and T be sets, f : S Ñ R, g : S Ñ T .

Then:
ř

yPT

ř

xPg˚tyu |fpxq| “
ř

xPS |fpxq|.

THEOREM 8.6. Let S and T be sets, f : S Ñ R, g : S Ñ T .

Assume:
ř

xPS |fpxq| ă 8.

Then: @y P T ,
ř

xPg˚tyu |fpxq| ă 8

and
ř

yPT |
ř

xPg˚tyu rfpxqs | ă 8

and
ř

yPT

ř

xPg˚tyu rfpxqs “
ř

xPS rfpxqs.

The preceding two theorems are

elementary versions of Fubini’s Theorem. We omit proofs.
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9. Countable measure theory

By convention, in this note,

any countable set is given its discrete Borel structure.

Let Θ be a countable set. Let B be the set of subsets of Θ.

A measure on Θ is a function µ : B Ñ r0;8s

such that, @pairwise-disjoint Θ1,Θ2, . . . Ď Θ, we have:

µpΘ1

Ť

Θ2

Ť

¨ ¨ ¨ q “ pµpΘ1qq ` pµpΘ2qq ` ¨ ¨ ¨ .

A measure µ on a countable set Θ

is completely determined by

the function t ÞÑ µttu : Θ Ñ r0;8s,

because: @Θ0 Ď Θ, we have µpΘ0q “
ř

tPΘ0
rµttu s.

DEFINITION 9.1. Let Θ be a countable set.

Then MΘ denotes the set of measures on Θ,

and FMΘ :“ tµ PMΘ |µpΘq ă 8u,

and FMˆ
Θ :“ tµ PMΘ | 0 ă µpΘq ă 8u,

and PΘ :“ tµ PMΘ |µpΘq “ 1u.

Then MΘ is the set of measures on Θ

and FMΘ is the set of finite measures on Θ

and FMˆ
Θ is the set of nonzero finite measures on Θ

and PΘ is the set of probability measures on Θ.

The only measure on H is the zero measure.

Therefore: FMˆ
H “ H “ PH.

DEFINITION 9.2. Let Θ be a countable set, µ P FMΘ.

Let n P N. Then µn P FMΘn is defined by:

@x P Θn, µntxu “ pµtx1uq ¨ ¨ ¨ pµtxnuq.

The following is a basic fact, whose proof we omit:

Let Θ be a countable set, µ P FMΘ, n P r2..8q.

Let Z Ď Θn, X Ď Θn´1, Y Ď Θ. Assume that:

under the standard bijection Θn ÐÑ Θn´1 ˆ Θ,

we have: Z ÐÑ X ˆ Y .

Then: µnpZq “ pµn´1pXqq ¨ pµpY qq.

It is common to identify Z with X ˆ Y , in which case we have:

µnpX ˆ Y q “ pµn´1pXqq ¨ pµpY qq.
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We also omit proof of:

Let Θ be a countable set, µ P FMΘ, n P N.

Then: µnpΘnq “ pµpΘqqn.

In particular, pµ P PΘ q ñ pµn P PΘn q.

The countable sets that are of interest in this note

all carry the discrete topology. We therefore define:

DEFINITION 9.3. Let Θ be a countable set, µ PMΘ.

Then the support of µ is: Sµ :“ t t P Θ | µttu ‰ 0 u.

DEFINITION 9.4. Let Θ Ď R be countable, µ PMΘ.

Let ρ ě 1 be real. Then: |µ|ρ :“ p
ř

tPΘ r|t|
ρ ¨ pµttuqs q1{ρ.

Note: @countable Θ Ď R, @µ P FMΘ,

if #Sµ ă 8, then: @real ρ ě 1, |µ|ρ ă 8.

DEFINITION 9.5. Let Θ Ď R be countable.

Let µ P PΘ. Assume: |µ|1 ă 8.

Then the mean of µ is: Mµ :“
ř

tPΘ r t ¨ pµttuqs.

Also, the variance of µ is: Vµ :“
ř

tPΘ rpt´Mµq
2 ¨ pµttuqs.

Let Θ Ď R be countable, µ P PΘ. Assume: |µ|1 ă 8.

Then, by subadditivity of absolute value, we get |Mµ| ď |µ|1.

In particular, |Mµ| ă 8, i.e., ´8 ăMµ ă 8.

Also, by expanding the square in the formula for Vµ,

we get Vµ “ |µ|
2
2 ´M

2
µ.

In particular, pVµ ă 8q ô p |µ|2 ă 8q.

Let Θ Ď R be countable and let X be a Θ-valued random-variable.

Let µ denote the distribution on Θ of X,

i.e., define µ P PΘ by: @t P Θ, µttu “ PrrX “ ts.

Then, @real ρ ě 1, we have: |µ|ρ is the Lρ-norm of X.

Then, @real ρ ě 1, we have: p |µ|ρ ă 8 q ô p X is Lρ q.

In particular, p |µ|1 ă 8 q ô p X is L1 q.

Also, if X is L1, then Mµ “ ErXs and Vµ “ VarrXs.

That is, if X is L1, then

Mµ is the mean (aka expected value, aka average value) of X

and Vµ is the variance of X.
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THEOREM 9.6. Let Θ Ď R be countable, µ P PΘ.

Assume: |µ|1 ă 8. Then: p#Sµ ě 2 q ô pVµ ą 0 q.

The preceding result is a measure-theoretic analogue of the statement:

An L1 random-variable is not deterministic iff its variance is ą 0.

We omit proof.

Because @t P Z, |t| ď t2, we conclude:

for any Z-valued random-variable X, Er |X| s ď ErX2 s.

It follows that for any Z-valued L2 random-variable X, we have:

X is L1, and so ErXs is defined and finite.

Because @t P Z, |t| ď t2, we conclude:

@Θ Ď Z, @µ PMΘ, |µ|1 ď |µ|
2
2 ;

it follows that if |µ|2 ă 8, then

|µ|1 ă 8, and so Mµ is defined and finite.

DEFINITION 9.7. Let Θ be a countable set.

Let µ1, µ2, . . . P PΘ and let λ P PΘ.

By µ1, µ2, . . .Ñ λ , we mean: @Θ0 Ď Θ, µ1pΘ0q, µ2pΘ0q, . . .Ñ λpΘ0q.

Recall (§2): @function f , the notation: If .
Recall (§2): @function f , @set A, the notation: f˚A.

For any countable set S, for any set T ,

for any function f : S Ñ T , for any µ PMS,

we define f˚µ PMIf by: @A Ď If , pf˚µqpAq “ µpf˚Aq.

Let S be a countable set, T a set, f : S Ñ T . Let n P N.

Define fn : Sn Ñ T n by: @x P Sn, fnpxq “ p fpx1q , . . . , fpxnq q.

Then: pfnq˚pµ
nq “ pf˚µq

n.

For any nonempty countable set Θ, for any µ P FMˆ
Θ,

let N pµq :“
µ

µpΘq
P PΘ; then @Θ0 Ď Θ, pN pµqqpΘ0q “

µpΘ0q

µpΘq
,

and N pµq is called the normalization of µ .

Let pΘ be a countable set. Let µ PM
pΘ. Let Θ Ď pΘ.

Then the restriction of µ to Θ , denoted µ|Θ P MΘ,

is defined by: @Θ0 Ď Θ, pµ|ΘqpΘ0q “ µpΘ0q.
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NOTE: We have pµ|ΘqpΘq “ µpΘq. So, if 0 ă µpΘq ă 8, then:

µ|Θ P FMˆ
Θ and N pµ|Θq “ µ|Θ

µpΘq

and @Θ0 Ď Θ, pN pµ|ΘqqpΘ0q “
µpΘ0q

µpΘq
.

DEFINITION 9.8. Let F be a nonempty finite set.

Then we define νF P PF by: @f P F , νF tfu “ 1{p#F q.

Also, we define νH : tHu Ñ t´1u by: νHpHq “ ´1.

THEOREM 9.9. Let F be a nonempty finite set. Let θ P PF .

Assume: @f, g P F , θtfu “ θtgu. Then: θ “ νF .

Proof. Since F is nonempty, choose g0 P F . Let b :“ θtg0u.

Then: @f P F , θtfu “ b. Then:
ř

fPF pθtfuq “ p#F q ¨ b.

Since θ P PF , we get: θpF q “ 1.

Since p#F q ¨ b “
ř

fPF pθtfuq “ θpF q “ 1, we get: b “ 1{p#F q.

Since @f P F , θtfu “ b “ 1{p#F q “ νF tfu, we get: θ “ νF . �

10. The Discrete Local Limit Theorem

DEFINITION 10.1. Let E Ď Z.

By E is residue-constrained , we mean:

Dm P r2..8q, Dn P Z s.t. E Ď mZ` n.

By E is residue-unconstrained , we mean:

E is not residue-constrained.

Since H Ď 2 ¨ Z` 1, we get: H is residue-constrained.

For all b P Z, since tbu Ď 2 ¨ Z` b, we get: tbu is residue-constrained.

Then: @residue-unconstrained E Ď Z, #E ě 2.

We have: t0, 3, 9u Ď 3Z` 0 and t2, 5, 11u Ď 3Z` 2,

so t0, 3, 9u and t2, 5, 11u are both residue-constrained.

Here is a test for residue-unconstrainedness:

Let E Ď Z. Assume #E ě 2. Let ε0 P E.

Then: p E is residue-unconstrained q iff p gcdpE ´ ε0q “ 1 q.

By this test, we see that:

t0, 1, 10u and t2, 4, 8, 9u and t3, 9, 13, 18u are all residue-unconstrained.

DEFINITION 10.2. For all α P R, for all real v ą 0,

define Φv
α : RÑ p0;8q by: @t P R, Φv

αptq “
expp ´pt´ αq2 { p2vq q

?
2πv

.
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Note: Φv
α is a PDF of a normal variable with mean α and variance v.

The next result is a version of the Discrete Local Limit Theorem;

this version is stated in probability-theoretic terms:

THEOREM 10.3. Let E Ď Z be residue-unconstrained.

Let X1, X2, . . . be an iid sequence of Z-valued L2 random-variables.

Assume: @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

Let α P R, v P r0;8s. Assume: @n P N, ErXns “ α and VarrXns “ v.

Then: 0 ă v ă 8, and, @t1, t2, . . . P Z,

as nÑ 8,
?
n ¨ r pPrrX1 ` ¨ ¨ ¨ `Xn “ tnsq ´ pΦnv

nαptnqq s Ñ 0.

For a good exposition of this theorem and its proof,

search on “Terence Tao Local Limit Theorem”.

Visit the website, and then expand “read the rest of this entry”,

and then scroll down to “– 2. Local limit theorems –”.

In Theorem 10.3, since E Ď Z, we have, for each n P N,

|Xn| ď X2
n a.s., so Er|Xn|s ď ErX2

ns,

so, since Xn is L2, we get Xn is L1,

and so ErXns and VarrXns are both defined.

Moreover, in Theorem 10.3, @n P N,

since |ErXns| ď Er|Xn|s ď ErX2
ns ă 8, we get: ErXns is finite.

In Theorem 10.3, the proof that v ą 0 is relatively simple:

Since E is residue-unconstrained, we get: #E ě 2.

Then, @n P N, #tt P Z |PrrXn “ ts ą 0u ě 2,

so Xn is not deterministic,

which implies that VarrXns ą 0,

and so v ą 0.

In Theorem 10.3, the proof that v ă 8 is relatively simple:

@n P N, VarrXns “ ErX2
ns ´ pErXnsq

2 ď ErX2
ns ă 8,

and so v ă 8.

Next is another version of the Discrete Local Limit Theorem;

this version is stated in measure-theoretic terms:

THEOREM 10.4. Let E Ď Z be residue-unconstrained.

Let µ P PE. Assume: Sµ “ E. Assume: |µ|2 ă 8.

Let α :“Mµ, v :“ Vµ. Then: 0 ă v ă 8, and, @t1, t2, . . . P Z,

as nÑ 8,
?
n ¨ r pµntf P En | f1`¨ ¨ ¨`fn “ tnuq ´ pΦ

nv
nαptnqq s Ñ 0.
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In Theorem 10.4, since Sµ “ E Ď Z we get: |µ|1 ď |µ|
2
2.

Since |µ|1 ď |µ|
2
2 ă 8, we get: Mµ and Vµ are both defined.

Moreover, since |Mµ| ď |µ|1 ď |µ|
2
2 ă 8, we get: Mµ is finite.

In Theorem 10.4, the proof that v ą 0 is relatively simple:

Since E is residue-unconstrained, we get: #E ě 2.

Since #Sµ “ #E ě 2, by Theorem 9.6, we get: v ą 0.

In Theorem 10.4, the proof that v ă 8 is relatively simple:

v “ Vµ “ |µ|22 ´ M2
µ ď |µ|22 ă 8.

Here is an application of Theorem 10.3:

THEOREM 10.5. Let E Ď Z be residue-unconstrained.

Let X1, X2, . . . be an iid sequence of Z-valued L2 random-variables.

Assume: @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

Let α P R, v P r0;8s. Assume: @n P N, ErXns “ α and VarrXns “ v.

Then: 0 ă v ă 8. Also, @t1, t2, . . . P Z,

if ttn ´ nα |n P Nu is bounded,

then, as nÑ 8,
?
n ¨ pPrrX1 ` ¨ ¨ ¨ `Xn “ tns q Ñ 1{

?
2πv.

Proof. By Theorem 10.3, we get 0 ă v ă 8.

Given t1, t2, . . . P Z, assume ttn ´ nα |n P Nu is bounded,

want: as nÑ 8,
?
n ¨ pPrrX1 ` ¨ ¨ ¨ `Xn “ tns q Ñ 1{

?
2πv.

By Theorem 10.3, it suffices to show:

as nÑ 8,
?
n ¨ pΦnv

nαptnq q Ñ 1{
?

2πv.

We have: @n P N, Φnv
nαptnq “

expp ´ptn ´ nαq
2 { p2nvq q

?
2πnv

.

Since ttn ´ nα |n P Nu is bounded and since 0 ă v ă 8, we get:

as nÑ 8, ´ptn ´ nαq
2 { p2nvq Ñ 0.

Then: as nÑ 8, expp´ptn ´ nαq
2 { p2nvq q Ñ 1.

Then: as nÑ 8,
?
n ¨ pΦnv

nαptnq q Ñ 1{
?

2πv. �

We record a measure-theoretic version of Theorem 10.5:

THEOREM 10.6. Let E Ď Z be residue-unconstrained.

Let µ P PE. Assume: Sµ “ E and |µ|2 ă 8.

Let α :“Mµ, v :“ Vµ. Then: 0 ă v ă 8.

Also, @t1, t2, . . . P Z,

if ttn ´ nα |n P Nu is bounded,

then, as nÑ 8,
?
n¨pµntf P En | f1`¨ ¨ ¨`fn “ tnu q Ñ 1{

?
2πv.

We also record the tn “ t0 ` nα special case of the past two theorems:
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THEOREM 10.7. Let E Ď Z be residue-unconstrained.

Let X1, X2, . . . be an iid sequence of Z-valued L2 random-variables.

Assume: @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

Let t0, αPZ, vPr0;8s. Assume: @n P N, ErXns “ α and VarrXns “ v.

Then: 0 ă v ă 8, and,

as nÑ 8,
?
n ¨ pPrrX1 ` ¨ ¨ ¨ `Xn “ t0 ` nαs q Ñ 1{

?
2πv.

THEOREM 10.8. Let E Ď Z be residue-unconstrained.

Let µ P PE. Assume: Sµ “ E. Assume: |µ|2 ă 8.

Let α :“Mµ, v :“ Vµ. Assume: α P Z. Let t0 P Z.

Then: 0 ă v ă 8, and,

as nÑ 8,
?
n ¨ pµntf P En | f1 ` ¨ ¨ ¨ ` fn “ t0 ` nαu q Ñ 1{

?
2πv.

We also record the t0 “ 0 special case of the past two theorems:

THEOREM 10.9. Let E Ď Z be residue-unconstrained.

Let X1, X2, . . . be an iid sequence of Z-valued L2 random-variables.

Assume: @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

Let α P Z, v P r0;8s. Assume: @n P N, ErXns “ α and VarrXns “ v.

Then: 0 ă v ă 8, and,

as nÑ 8,
?
n ¨ pPrrX1 ` ¨ ¨ ¨ `Xn “ nαs q Ñ 1{

?
2πv.

THEOREM 10.10. Let E Ď Z be residue-unconstrained.

Let µ P PE. Assume: Sµ “ E. Assume: |µ|2 ă 8.

Let α :“Mµ, v :“ Vµ. Assume: α P Z.

Then: 0 ă v ă 8, and,

as nÑ 8,
?
n ¨ pµntf P En | f1 ` ¨ ¨ ¨ ` fn “ nαu q Ñ 1{

?
2πv.

11. Average events have low information, particular case

Suppose, in secret, I flip a coin 1000 times,

then reveal to you that

the total number of heads was 1000,

and then ask you to guess the last flip.

The answer is that, since all the coin flips were heads,

the last flip must have been a head.

Similarly, if I had told you that

the total number of heads was 0,

then you would have known that the last flip was a tail.

By contrast, if I had told you that

the total number of heads was 500,
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it seems intuitively clear that

you’d have had very little information about the last flip.

We wish to generalize and formalize that intuition,

and then provide rigorous proof of the resulting formal statement.

Our main theorem is Theorem 12.3, in the next section.

In this section, we go carefully through a special case:

Let X1, X2 . . . be Z-valued iid random-variables s.t.,

@n P N, PrrXn “ ´1 s “ 1{2,

PrrXn “ 0 s “ 1{3,

PrrXn “ 3 s “ 1{6.

Then, @n P N, Xn is L1 and Xn is L2.

Also, @n P N, ErXns “ 0 and VarrXns “ 2.

Also, @n P N, ´1 ď Xn ď 3 a.s.

For all n P N, let Tn :“ X1 ` ¨ ¨ ¨ `Xn.

Then: @n P N, ´n ď Tn ď 3n a.s.

Then: ´1000 ď T1000 ď 3000 a.s.

Also, rT1000 “ ´1000 s ñ rX1 “ ¨ ¨ ¨ “ X1000 “ ´1 s,

and so PrrX1000 “ ´1 |T1000 “ ´1000s “ 1.

Similarly, PrrX1000 “ 3 |T1000 “ 3000s “ 1.

By contrast, the event T1000 “ 0

would seem to give very little information about X1000.

It therefore seems reasonable to expect that

PrrX1000 “ ´1 |T1000 “ 0s « 1{2 and

PrrX1000 “ 0 |T1000 “ 0s « 1{3 and

PrrX1000 “ 3 |T1000 “ 0s « 1{6.

To make this precise, we will work “in the thermodynamic limit”,

which means: we replace 1000 by a variable n P N, and let nÑ 8.

That is, more precisely, we expect that, as nÑ 8,

PrrXn “ ´1 |Tn “ 0s Ñ 1{2 and

PrrXn “ 0 |Tn “ 0s Ñ 1{3 and

PrrXn “ 3 |Tn “ 0s Ñ 1{6.

We will focus on proving the third of these limits;

proofs of the other two are similar.

By definition of conditional probability,

we wish to prove: As nÑ 8,
PrrpXn “ 3q&pTn “ 0qs

PrrTn “ 0s
Ñ 1{6.
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Claim: Let n P r2..8q.

Then: PrrpXn “ 3q&pTn “ 0qs “ p1{6q ¨ pPrrTn´1 “ ´3sq.

Proof of Claim: We have: Tn “ X1 ` ¨ ¨ ¨ `Xn´1 `Xn.

Since PrrpXn “ 3q&pTn “ 0qs

“ PrrpXn “ 3q&pX1 ` ¨ ¨ ¨ `Xn´1 ` Xn “ 0qs

“ PrrpXn “ 3q&pX1 ` ¨ ¨ ¨ `Xn´1 ` 3 “ 0qs

“ PrrpXn “ 3q&pX1 ` ¨ ¨ ¨ `Xn´1 “ ´3qs,

it follows, from independence of X1, . . . , Xn, that

PrrpXn “ 3q&pTn “ 0qs

“ p PrrXn “ 3s q ¨ p PrrX1 ` ¨ ¨ ¨ `Xn´1 “ ´3s q.

So, since PrrXn “ 3s “ 1{6 and X1 ` ¨ ¨ ¨ `Xn´1 “ Tn´1,

we get: PrrpXn “ 3q&pTn “ 0qs “ p1{6q ¨ pPrrTn´1 “ ´3sq.

End of proof of Claim.

By the claim, we wish to prove:

As nÑ 8,
p1{6q ¨ pPrrTn´1 “ ´3sq

PrrTn “ 0s
Ñ 1{6.

We wish to prove: As nÑ 8,
PrrTn´1 “ ´3s

PrrTn “ 0s
Ñ 1.

That is, we wish to prove:

As nÑ 8, PrrTn´1 “ ´3s is asymptotic to PrrTn “ 0s.

So the question becomes:

How do we get a handle on the asymptotics, as nÑ 8, of

both PrrTn´1 “ ´3s and PrrTn “ 0s ?

The Discrete Local Limit Theorem turns out to be just what we need.

Recall: @n P N, ErXns “ 0 and VarrXns “ 2.

Let α :“ 0 and v :“ 2. Then: p @n P N, nα “ 0 q and p 2πv “ 4π q.

Also, @n P N, ErXns “ α and VarrXns “ v.

Let E :“ t´1, 0, 3u. Then E is residue-unconstrained.

Also, we have: @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

By Theorem 10.9, as nÑ 8,
?
n ¨ pPrrX1 ` ¨ ¨ ¨ `Xn “ nαsq Ñ 1{

?
2πv,

Then: as nÑ 8,
?
n ¨ pPrrTn “ 0sq Ñ 1{

?
4π,

so, as nÑ 8, PrrTn “ 0s is asymptotic to 1{
?

4πn.

Want: as nÑ 8, PrrTn´1 “ ´3s is asymptotic to 1{
?

4πn.

Let t0 :“ ´3. Then, @n P N, t0 ` nα “ ´3.

By Theorem 10.7, as nÑ 8,
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?
n ¨ pPrrX1 ` ¨ ¨ ¨ `Xn “ t0 ` nαsq Ñ 1{

?
2πv.

Recall: @n P N, Tn “ X1 ` ¨ ¨ ¨ `Xn.

Then: as nÑ 8,
?
n ¨ pPrrTn “ ´3sq Ñ 1{

?
4π.

Then, as nÑ 8,
?
n´ 1 ¨ pPrrTn´1 “ ´3sq Ñ 1{

?
4π.

Then, as nÑ 8, PrrTn´1 “ ´3s is asymptotic to 1{
a

4πpn´ 1q,

which is asymptotic to 1{
?

4πn.

12. Average events have low information, general result

We now seek to generalize our work in §11;

in the example at the end of this section, we show that

Theorem 12.3 reproduces the result of §11.

THEOREM 12.1. Let E Ď Z be residue-unconstrained.

Let X1, X2, . . . be an iid sequence of Z-valued L2 random-variables.

Assume: @n P N, tt P Z |PrrXn “ ts ą 0u “ E. Let α, P P R.

Assume: @n P N, ErXns “ α and PrrXn “ ε0s “ P . Let ε0 P E.

Let t1, t2, . . . P Z. Assume: ttn ´ nα |n P Nu is bounded.

Then: as nÑ 8, Pr rXn “ ε0 |X1 ` ¨ ¨ ¨ `Xn “ tn s Ñ P .

I don’t know whether “L2” can be replaced by “L1”.

Part of the content of Theorem 12.1 is:

@sufficiently large n P N, PrrX1 ` ¨ ¨ ¨ `Xn “ tn s ą 0

since, otherwise, Pr rXn “ ε0 |X1`¨ ¨ ¨`Xn “ tn s would not be defined.

Proof. Since X1, X2, . . . are all Z-valued and L2,

and since @t P Z, |t| ď t2 we get: X1, X2, . . . are all L1.

So, since X1, X2, . . . is an identically distributed sequence,

choose v P r0;8s s.t., @n P N, VarrXns “ v.

By Theorem 10.5, we have: 0 ă v ă 8 and

as nÑ 8,
?
n ¨ pPrrX1 ` ¨ ¨ ¨ `Xn “ tns q Ñ 1{

?
2πv.

For all n P N, let Tn :“ X1 ` ¨ ¨ ¨ `Xn.

Then: as nÑ 8,
?
n ¨ pPrr Tn “ tns q Ñ 1{

?
2πv.

Want: as nÑ 8, Pr rXn “ ε0 |Tn “ tn s Ñ P .

Let D1 :“ ttn´ nα |n P Nu. By hypothesis, D1 is bounded.

Let D2 :“ ttn ´ nα |n P r2..8qu. Then D2 Ď D1.

Let D3 :“ ttn`1 ´ pn` 1q ¨ α |n P Nu. Then D3 “ D2.

For all n P N, let rtn :“ tn`1 ´ ε0.

Let D4 :“ t rtn ´ nα |n P Nu.
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Since D4 ´ α ` ε “ t rtn ´ nα ´ α ` ε |n P Nu
“ ttn`1 ´ ε0 ´ pn` 1q ¨ α ` ε |n P Nu
“ ttn`1 ´ pn` 1q ¨ α |n P Nu
“ D3 “ D2 Ď D1,

and since D1 is bounded,

we get D4 ´ α ` ε is bounded.

Then: D4 ´ α ` ε` pα ´ εq is bounded.

Then: D4 is bounded.

Then, by Theorem 10.5, we have:

as nÑ 8,
?
n ¨ pPrrTn “ rtn s q Ñ 1{

?
2πv.

Then, as nÑ 8,
?
n´ 1 ¨ pPrrTn´1 “ rtn´1 s q Ñ 1{

?
2πv.

We have: @n P r2..8q, rtn´1 “ tn ´ ε0.

Then, as nÑ 8,
?
n´ 1 ¨ pPrrTn´1 “ tn ´ ε0s q Ñ 1{

?
2πv.

Recall: as nÑ 8,
?
n ¨ pPrrTn “ tns q Ñ 1{

?
2πv.

Dividing the last two limits, we get:

as nÑ 8,

?
n´ 1 ¨ pPrrTn´1 “ tn ´ ε0s q
?
n ¨ pPrrTn “ tns q

Ñ 1.

Also, as nÑ 8,

?
n

?
n´ 1

Ñ 1.

Multiplying the last two limits together, we get:

as nÑ 8,
PrrTn´1 “ tn ´ ε0s

PrrTn “ tns
Ñ 1.

Since, @n P r2..8q,

Pr rXn “ ε0 |Tn “ tn s “
PrrpXn “ ε0q&pTn “ tnqs

PrrTn “ tns

“
PrrpXn “ ε0q&pTn´1 `Xn “ tnqs

PrrTn “ tns

“
PrrpXn “ ε0q&pTn´1 ` ε0 “ tnqs

PrrTn “ tns

“
PrrpXn “ ε0q&pTn´1 “ tn ´ ε0qs

PrrTn “ tns

“
pPrrXn “ ε0sq ¨ pPrrTn´1 “ tn ´ ε0sq

PrrTn “ tns

“ P ¨
PrrTn´1 “ tn ´ ε0s

PrrTn “ tns
,

and since, as nÑ 8,
PrrTn´1 “ tn ´ ε0s

PrrTn “ tns
Ñ 1,

we get: as nÑ 8,

Pr rXn “ ε0 |Tn “ tn s Ñ P . �
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Recall (§9): @countable set Θ,

FMˆ
Θ is the set of nonzero finite measures on Θ

and PΘ is the set of probability measures on Θ.

Recall (§9): @nonempty countable set Θ, @µ P FMˆ
Θ,

N pµq is the normalization of µ.

Here is a measure-theoretic version of the preceding theorem:

THEOREM 12.2. Let E Ď Z be residue-unconstrained.

Let µ P PE. Assume: Sµ “ E. Assume: |µ|2 ă 8.

Let α :“Mµ. Let ε0 P E, P :“ µtε0u.

Let t1, t2, . . . P Z. Assume: ttn ´ nα |n P Nu is bounded.

For all n P N, let Ωn :“ tf P En | f1 ` ¨ ¨ ¨ ` fn “ tnu.

Then: as nÑ 8, pN pµn|Ωnqqtf P Ωn | fn “ ε0u Ñ P .

I don’t know whether “|µ|2 ă 8” can be replaced by “|µ|1 ă 8”.

Part of the content of Theorem 12.2 is:

@sufficiently large n P N, µnpΩnq ą 0,

since, otherwise, µn|Ωn would be the zero measure on Ωn,

and so N pµn|Ωnq would not be defined.

We record the tn “ nα special case of the past two theorems:

THEOREM 12.3. Let E Ď Z be residue-unconstrained.

Let X1, X2, . . . be an iid sequence of Z-valued L2 random-variables.

Assume: @n P N, tt P Z |PrrXn “ ts ą 0u “ E. Let α P Z, P P R.

Let ε0 P E. Assume: @n P N, ErXns “ α and PrrXn “ ε0s “ P .

Then: as nÑ 8, Pr rXn “ ε0 |X1 ` ¨ ¨ ¨ `Xn “ nα s Ñ P .

THEOREM 12.4. Let E Ď Z be residue-unconstrained.

Let µ P PE. Let α :“Mµ. Assume: α P Z and Sµ “ E and |µ|2 ă 8.

For all n P N, let Ωn :“ tf P En | f1 ` ¨ ¨ ¨ ` fn “ nαu.

Let ε0 P E. Let P :“ µtε0u.

Then: as nÑ 8, pN pµn|Ωnqqtf P Ωn | fn “ ε0u Ñ P .

Example: Let E :“ t´1, 0, 3u.

Then: E Ď Z and E is residue-unconstrained.

Let X1, X2 . . . be Z-valued iid random-variables s.t.,

@n P N, PrrXn “ ´1 s “ 1{2,

PrrXn “ 0 s “ 1{3,
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PrrXn “ 3 s “ 1{6.

Then: @n P N, t t P Z | PrrXn “ t s ą 0 u “ E.

Let ε0 “ 3, P :“ 1{6.

Then: @n P N, PrrXn “ ε0s “ P .

We have: @n P N, ErXns “ 0. Let α :“ 0.

Then, @n P N, ErXns “ α.

Then, by Theorem 12.3, we have:

as nÑ 8, Pr rXn “ ε0 |X1 ` ¨ ¨ ¨ `Xn “ nα s Ñ P .

Then: as nÑ 8, Pr rXn “ 3 |X1 ` ¨ ¨ ¨ `Xn “ 0 s Ñ 1{6.

For all n P N, let Tn :“ X1 ` ¨ ¨ ¨ `Xn.

Then: as nÑ 8, Pr rXn “ 3 | Tn “ 0 s Ñ 1{6.

Thus Theorem 12.3 reproduces the result of §11.

13. Solving the main problem

We finally have all we need to solve the main problem (end of §3).

Let pp, q, rq :“
p1, 9´1{10, 9´1q

1` 9´1{10 ` 9´1
.

We compute pp, q, rq « p 0.5225 , 0.4194 , 0.0581 q,

all accurate to four decimal places.

Again, let’s say I am one of the professors applying to the GFA.

We will show: Under the GFA’s first system (§3),

my probability of getting $ 0 is p, approximately and

my probability of getting $ 1 is q, approximately and

my probability of getting $10 is r, approximately.

Recall: Ω “

!

ω : r1..N s Ñ t0, 1, 10u
ˇ

ˇ

řN
`“1 rωp`qs “ N

)

.

Recall (§5): the notations iω, jω, kω.

Let S :“
ř

ωPΩ piωqjωrkω .

By the work in §7, p` q ` r “ 1 and q ` 10r “ 1 and

@ω P Ω, piωqjωrkω {S “ 1 { p#Ωq.

Let X1, X2, . . . be Z-valued iid random-variables s.t., @n P N,

PrrXn “ 0 s “ p,

PrrXn “ 1 s “ q,

PrrXn “ 10 s “ r.

Then X1, X2, . . . is a sequence of L2 random-variables.

Also, @n P N, ErXns “ q ` 10r.

So, since q ` 10r “ 1, we get:
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@n P N, ErXns “ 1.

We model the GFA’s second system (§5) by: @` P r1..N s,

Professor#` receives X` dollars.

For all n P N, let Tn :“ X1 ` ¨ ¨ ¨ `Xn.

We model the GFA’s third system (§5) by: @` P r1..N s,

Professor#` receives X` dollars, conditioned on TN “ N .

Since @ω P Ω, piωqjωrkω {S “ 1 { p#Ωq,

it follows that: the third system is equivalent to the first.

For definiteness, let’s assume that I am Professor#N .

Then, assuming N is large, we wish to show:

PrrXN “ 0 |TN “ N s « p and

PrrXN “ 1 |TN “ N s « q and

PrrXN “ 10 |TN “ N s « r.

To be more precise, we wish to show: as nÑ 8,

PrrXn “ 0 |Tn “ n s Ñ p and

PrrXn “ 1 |Tn “ n s Ñ q and

PrrXn “ 10 |Tn “ n s Ñ r.

Let E :“ t0, 1, 10u. Then: E is residue-unconstrained.

Given ε0 P E, let P :“

$

’

’

&

’

’

%

p, if ε0 “ 0

q, if ε0 “ 1

r, if ε0 “ 10,

want: as nÑ 8, PrrXn “ ε0|Tn “ ns Ñ P .

By definition of X1, X2, . . ., we get: @n P N, PrrXn “ ε0s “ P .

Let α :“ 1. Then: α P Z and @n P N, ErXns “ α.

Also, @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

Then, by Theorem 12.3, we have:

as nÑ 8, PrrXn “ ε0|X1 ` ¨ ¨ ¨ `Xn “ nαs Ñ P .

Then: as nÑ 8, PrrXn “ ε0| Tn “ n s Ñ P .

14. Probability of two professors getting zero

Under the GFA’s first system, since N is large, one would expect:

the award amounts of two different professors

are almost independent.

Then, for example, one would expect:

the probability that two professors both receive zero dollars

should be very close to the square of

the probability that one professor receives zero dollars.
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We will formalize this statement and prove it, below.

For definiteness, we will assume that

the two professors are Professor #pN ´ 1q and Professor #N .

Let pp, q, rq :“
p1, 9´1{10, 9´1q

1` 9´1{10 ` 9´1
. Then (§7): p` q ` r “ 1.

Let X1, X2, . . . be Z-valued iid random-variables s.t., @n P N,

PrrXn “ 0 s “ p,

PrrXn “ 1 s “ q,

PrrXn “ 10 s “ r.

Then X1, X2, . . . is a sequence of L2 random-variables.

For all n P N, let Tn :“ X1 ` ¨ ¨ ¨ `Xn.

Assuming N is large, our goal is to prove:

Pr r XN´1 “ 0 “ XN | TN “ N s « p2.

To be more precise, we will prove:

as nÑ 8, Pr r Xn´1 “ 0 “ Xn | Tn “ n s Ñ p2.

For all n P N, define ψn : ZÑ R by:

@t P Z, ψnptq “ PrrTn “ ts.

For all n P N, let an :“ ψnpn` 2q, zn :“ ψnpnq.

Since, @n P N, we have ψnpnq “ PrrTn “ ns “ PrrX1 ` ¨ ¨ ¨ `Xn “ ns

ě PrrX1 “ ¨ ¨ ¨ “ Xn “ 1s “ qn ą 0,

we conclude: @n P N, zn ą 0.

Claim: Let n P r3..8q. Then PrrXn´1 “ 0 “ Xn |Tn “ ns “ p2
¨
an´2

zn
.

Proof of Claim: We have Tn “ X1 ` ¨ ¨ ¨ `Xn´2 `Xn´1 `Xn.

Since PrrpXn´1 “ 0 “ Xnq&pTn “ nqs

“ PrrpXn´1 “ 0 “ Xnq&pX1 ` ¨ ¨ ¨ `Xn´2 `Xn´1 `Xn “ nqs

“ PrrpXn´1 “ 0 “ Xnq&pX1 ` ¨ ¨ ¨ `Xn´2 ` 0 ` 0 “ nqs

“ PrrpXn´1 “ 0 “ Xnq&pX1 ` ¨ ¨ ¨ `Xn´2 “ nqs,

it follows, from independence of X1, . . . , Xn, that

PrrpXn´1 “ 0 “ Xnq&pTn “ nqs

“ pPrrXn´1 “ 0s q ¨ pPrrXn “ 0s q ¨ pPrrX1 ` ¨ ¨ ¨ `Xn´2 “ ns q.

So, since PrrXn´1 “ 0s “ p “ PrrXn “ 0s

and since X1 ` ¨ ¨ ¨ `Xn´2 “ Tn´2,

we get: PrrpXn´1 “ 0 “ Xnq&pTn “ nqs “ p2 ¨ pPrrTn´2 “ nsq.

Then PrrXn´1 “ 0 “ Xn |Tn “ ns “
PrrpXn´1 “ 0 “ Xnq&pTn “ nqs

PrrTn “ ns
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“
p2 ¨ pPrrTn´2 “ nsq

PrrTn “ ns
“ p2

¨
ψn´2pnq

ψnpnq
“ p2

¨
an´2

zn
.

End of proof of Claim.

Because of the Claim, we want to show: as nÑ 8, p2
¨
an´2

zn
Ñ p2.

Want: as nÑ 8,
an´2

zn
Ñ 1.

We compute: @n P N, ErXns “ q ` 10r.

Recall (§7): q ` 10r “ 1. Then: @n P N, ErXns “ 1.

We compute: @n P N, VarrXns “ q` 100r´ 1.

Let v :“ q ` 100r ´ 1. Then: @n P N, VarrXns “ v.

Since v “ pq ` 10r ´ 1q ` 90r “ 0` 90r “ 90r, and since 0 ă r ă 8,

we get: 0 ă v ă 8.

Let τ :“ 1{
?

2πv. Then: 0 ă τ ă 8.

Let α :“ 1. Then: p α P Z q and p @n P N, ErXns “ α q.

Let E :“ t0, 1, 10u. Then, @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

Also, E is residue-unconstrained.

By Theorem 10.9, as nÑ 8,
?
n ¨ pPrrTn “ nαsq Ñ 1{

?
2πv.

Then: as nÑ 8,
?
n ¨ pPrrTn “ n sq Ñ τ .

Then: as nÑ 8,
?
n ¨ pψnpnqq Ñ τ .

Then: as nÑ 8,
?
n ¨ zn Ñ τ .

Let t0 :“ 2. Then t0 P Z and @n P N, t0 ` nα “ n` 2.

By Theorem 10.7, as nÑ 8,
?
n ¨ pPrrTn “ t0 ` nαsq Ñ 1{

?
2πv.

Then: as nÑ 8,
?
n ¨ pPrrTn “ n` 2 sq Ñ τ .

Then: as nÑ 8,
?
n ¨ pψnpn` 2qq Ñ τ .

Then: as nÑ 8,
?
n ¨ an Ñ τ .

Then: as nÑ 8,
?
n´ 2 ¨ an´2 Ñ τ .

Recall: as nÑ 8,
?
n ¨ zn Ñ τ .

Dividing the last two limits, we get:

as nÑ 8,

?
n´ 2 ¨ an´2
?
n ¨ zn

Ñ 1.

Also, as nÑ 8,

?
n

?
n´ 2

Ñ 1.

Multiplying these last two limits, we get:

as nÑ 8,
an´2

zn
Ñ 1.
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15. Fraction of professors getting a zero award

Let pp, q, rq :“
p1, 9´1{10, 9´1q

1` 9´1{10 ` 9´1
.

We compute pp, q, rq « p 0.5225 , 0.4194 , 0.0581 q,

all accurate to four decimal places.

Let X1, X2, . . . be Z-valued iid random-variables s.t., @n P N,

PrrXn “ 0 s “ p,

PrrXn “ 1 s “ q,

PrrXn “ 10 s “ r.

For all n P N, let Tn :“ X1 ` ¨ ¨ ¨ `Xn.

For all n P N, let In be the indicator variable of the event: Xn “ 0.

For all n P N, let Jn :“ pI1 ` ¨ ¨ ¨ ` Inq{n.

Using the GFA’s first (or third) awards system, the random-variable

JN conditioned on TN “ N

represents the fraction of professors receiving a $0 award.

In this section, we will prove the following:

Claim: @δ ą 0, as nÑ 8, Pr r p´ δ ă Jn ă p` δ |Tn “ ns Ñ 1.

Assume, for a moment, that this Claim is true.

Then: as nÑ 8, Pr r p´0.02 ă Jn ă p`0.02 |Tn “ ns Ñ 1.

From this, it follows that, if N is sufficiently large, then

Pr r p´ 0.02 ă JN ă p` 0.02 | TN “ N s ą 0.99,

so Pr r p´ 0.02 ă JN | TN “ N s ą 0.99,

so Pr r JN ą p´ 0.02 | TN “ N s ą 0.99.

Since p « 0.5225, accurate to four decimal places, we get

p´ 0.02 ą 0.5,

so r JN ą p´ 0.02 s ñ r Jn ą 0.5 s,

so Pr r JN ą p´ 0.02 | TN “ N s

ď Pr r JN ą 0.5 | TN “ N s.

Therefore, if N is sufficiently large, then, since

Pr r JN ą 0.5 | TN “ N s

ě Pr r JN ą p´ 0.02 | TN “ N s ą 0.99,

we conclude: under the GFA’s first system, with probability ą 99%,

over 50% of the professors receive $0.

Proof of Claim:

Given δ ą 0, want: as nÑ 8, Pr r p´ δ ă Jn ă p` δ |Tn “ n s Ñ 1.
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Let E :“ t0, 1, 10u. Then E is residue-unconstrained.

Also, @n P N, tt P Z |PrrXn “ ts ą 0u “ E.

Let α :“ 1. Then: α P Z and @n P N, ErXns “ α.

For all n P N, let κn :“ E r In | Tn “ n s.

Then: @n P N, κn “ Pr r Xn “ 0 | Tn “ n s.

By Theorem 12.3, we get:

as nÑ 8, PrrXn “ 0 |X1 ` ¨ ¨ ¨ `Xn “ nαs Ñ p.

That is, as nÑ 8, PrrXn “ 0 | Tn “ n s Ñ p.

Then: as nÑ 8, κn Ñ p.

So, Dn0 P N s.t., @n P rn0..8q,

we have p´ pδ{2q ă κn ă p` pδ{2q,

and so both p´ δ ă κn ´ pδ{2q and κn ` pδ{2q ă p` δ,

and so rκn´pδ{2q ă Jn ă κn`pδ{2q s ñ r p´ δ ă Jn ă p` δ s,

and so Prrκn ´ pδ{2q ă Jn ă κn ` pδ{2q |Tn “ n s

ď Prr p´ δ ă Jn ă p` δ |Tn “ n s.

It therefore suffices to show:

as nÑ 8, Pr rκn´pδ{2q ă Jn ă κn`pδ{2q |Tn “ n s Ñ 1.

We have: @n P N, Tn is invariant under permutation of X1, . . . , Xn,

as is the joint-distribution of X1, . . . , Xn.

Then: @n P N, @i P r1..ns, E r Ii | Tn “ n s “ E r In | Tn “ n s.

Then: @n P N, @i P r1..ns, E r Ii | Tn “ n s “ κn.

Since, @n P N, Jn “ pI1 ` ¨ ¨ ¨ ` Inq{n, we get:

@n P N, E r Jn | Tn “ n s “ p
řn
i“1 E r Ii | Tn “ n s q { n.

Then: @n P N, E r Jn | Tn “ n s “ p
řn
i“1 κn q { n.

Then: @n P N, E r Jn | Tn “ n s “ p nκn q { n.

Then: @n P N, E r Jn | Tn “ n s “ κn.

For all n P N, let vn :“ Var r Jn |Tn “ n s.

Then, by Chebyshev’s inequality, we have: @n P N,

Pr rκn ´ pδ{2q ă Jn ă κn ` pδ{2q |Tn “ n s ě 1´ pvn{pδ{2q
2q.

It therefore suffices to show: as nÑ 8, vn Ñ 0.

Recall: as nÑ 8, κn Ñ p.

Since @n P N, vn “ Var r Jn |Tn “ n s

“ pE r J2
n |Tn “ n s q ´ pE r Jn |Tn “ n s q2

“ pE r J2
n |Tn “ n s q ´ κ2

n.

and since, as nÑ 8, κ2
n Ñ p2,

we want: as nÑ 8, E r J2
n |Tn “ n s Ñ p2.

For all n P r2..8q, let λn :“ E r In´1 ¨ In | Tn “ n s.

Then: @n P r2..8q, λn “ Pr r Xn´1 “ 0 “ Xn | Tn “ n s.
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So, by the result of §14, we get: as nÑ 8, λn Ñ p2.

For all n P N, since In is an indicator variable, we get: In P t0, 1u a.s.

Then: @n P N, In “ I2
n a.s.

Then: @n P N, E r In | Tn “ n s “ E r I2
n | Tn “ n s.

Recall: @n P N, E r In | Tn “ n s “ κn.

Then: @n P N, κn “ E r I2
n | Tn “ n s.

For all n P N, for all i, j P r1..ns, let cijn :“ E r Ii ¨ Ij | Tn “ n s.

We have: @n P N, Tn is invariant under permutation of X1, . . . , Xn,

as is the joint-distribution of X1, . . . , Xn.

Then @n P N, @i P r1..ns, E r I2
i | Tn “ n s “ E r I2

n, | Tn “ n s,

so, @n P N, @i P r1..ns, E r I2
i | Tn “ n s “ κn,

so, @n P N, @i P r1..ns, ciin “ κn.

Similarly, @n P r2..8q, @i, j P r1..ns, if i ‰ j, then

E r Ii ¨ Ij | Tn “ n s “ E r In´1 ¨ In | Tn “ n s,

so, @n P r2..8q, @i, j P r1..ns, if i ‰ j, then

E r Ii ¨ Ij | Tn “ n s “ λn.

so, @n P r2..8q, @i, j P r1..ns, if i ‰ j, then

cijn “ λn.

Then: @n P N, @i, j P r1..ns, cijn “

#

κn, if i “ j

λn, if i ‰ j.

Then: @n P N,
řn
i“1

řn
j“1 cijn “ n ¨ κn ` pn

2 ´ nq ¨ λn.

Recall: as nÑ 8, κn Ñ p and λn Ñ p2.

Since @n P N, Jn “ pI1 ` ¨ ¨ ¨ ` Inq{n,

we get: @n P N, J2
n “ p

řn
i“1

řn
j“1 r Ii ¨ Ij s q { n

2.

Then: @n P N, E r J2
n | Tn “ n s “ p

řn
i“1

řn
j“1 cijn q { n2.

Then: @n P N, E r J2
n | Tn “ n s “ p1{nq ¨ κn`p1´p1{nqq ¨ λn.

Then: as nÑ 8, E r J2
n | Tn “ n s Ñ 0 ¨ p ` 1 ¨ p2.

Then: as nÑ 8, E r J2
n | Tn “ n s Ñ p2.

End of proof of Claim.

16. Boltzmann distributions on nonempty finite sets

Recall (§9): @countable set Θ,

MΘ is the set of measures on Θ

and FMˆ
Θ is the set of nonzero finite measures on Θ

and PΘ is the set of probability measures on Θ.

Recall (§9): @nonempty countable set Θ, @µ P FMˆ
Θ,

N pµq is the normalization of µ.
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DEFINITION 16.1. Let E Ď R be nonempty and finite, β P R.

The unnormalized-β-Boltzmann distribution on E is

the measure pBE
β P FMˆ

E defined by:

@ε P E, pBE
β tεu “ e´β¨ε.

Also, the β-Boltzmann distribution on E is

BE
β :“ N p pBE

β q P PE.

Then: @ε P E, we have: BE
β tεu “ p pBE

β tεuq { p
pBE
β pEqq.

Example: Let E :“ t0, 1, 10u and let β P R.

Then: pBE
β t0u “ 1, pBE

β t1u “ e´β, pBE
β t10u “ e´10β.

Let C :“ 1{p1` e´β ` e´10βq.

Then: BE
β t0u “ C, BE

β t1u “ Ce´β, BE
β t10u “ Ce´10β.

Example: Let E :“ t2, 4, 8, 9u and let β P R.

Then: pBE
β t2u “ e´2β, pBE

β t4u “ e´4β,
pBE
β t8u “ e´8β, pBE

β t9u “ e´9β.

Let C :“ 1{pe´2β ` e´4β ` e´8β ` e´9βq.

Then: BE
β t2u “ Ce´2β, BE

β t4u “ Ce´4β,

BE
β t8u “ Ce´8β, BE

β t9u “ Ce´9β.

Recall (§9): For any countable set Θ, for any µ PMΘ,

Sµ is the support of µ.

Note: @nonempty finite E Ď R, @β P R, we have: S
pBEβ
“ E “ SBEβ .

THEOREM 16.2. Let E Ď R be nonempty and finite.

Let ε0 P E, β, ξ P R. Then: BE´ξ
β tε0 ´ ξu “ BE

β tε0u.

Proof. We have: BE´ξ
β tε0 ´ ξu “

e´β¨pε0´ξq
ř

εPE re
´β¨pε´ξqs

“
e´β¨ε0 ¨ eβ¨ξ

ř

εPE re
´β¨ε ¨ eβ¨ξs

“
eβ¨ξ ¨ e´β¨ε0

eβ¨ξ ¨
ř

εPE re
´β¨εs

“
e´β¨ε0

ř

εPE re
´β¨εs

“ BE
β tε0u. �

Recall (§9): Let Θ Ď R be countable, µ P PΘ. Assume #Sµ ă 8.

Then |µ|1 ă 8 and Mµ is the mean of µ and Vµ is the variance of µ.
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Let E Ď R be nonempty and finite. Let β P R. We define:

ΓEβ :“
ř

εPE rε ¨ e
β¨εs,

∆E
β :“

ř

εPE re
β¨εs,

AEβ :“ ΓEβ {∆E
β .

Then: ΓEβ “
ř

εPE rε ¨ p
pBE
β tεuqs.

Also, ∆E
β “

ř

εPE r
pBE
β tεus, and so ∆E

β “ pBE
β pEq.

Since
ΓEβ
∆E
β

“

ř

εPE rε ¨ p
pBE
β tεuqs

pBE
β pEq

“
ÿ

εPE

rε ¨ pBE
β tεuqs,

we conclude: AEβ “ MBEβ
.

Then: AEβ is the average value of any E-valued random-variable

whose distribution in E is BE
β .

THEOREM 16.3. Let E Ď R be nonempty and finite. Let β, ξ P R.

Then: AE´ξβ “ AEβ ´ ξ.

Proof. Want: MBE´ξβ
“MBEβ

´ ξ.

Let λ :“ BE´ξ
β , µ :“ BE

β . Want: Mλ “Mµ ´ ξ.

We have: λ P PE´ξ and µ P PE.

By Theorem 16.2, we have: @ε P E, BE´ξ
β tε´ ξu “ BE

β tεu.

Then: @ε P E, λtε´ ξu “ µtεu.

Since µ P PE, we get: µpEq “ 1.

Then: Mλ “
ř

εPE r pε´ ξq ¨ pλtε´ ξuq s

“
ř

εPE r pε´ ξq ¨ pµtεuq s

“
ř

εPE r ε ¨ pµtεuq ´ ξ ¨ pµtεuq s

“ p
ř

εPE r ε ¨ pµtεuq s q ´ p
ř

εPE r ξ ¨ pµtεuq s q

“ p
ř

εPE r ε ¨ pµtεuq s q ´ ξ ¨ p
ř

εPE rµtεu s q

“Mµ ´ ξ ¨ pµpEqq “ Mµ ´ ξ ¨ 1 “ Mµ ´ ξ. �

THEOREM 16.4. Let E Ď R be nonempty and finite. Then:

as β Ñ 8, AEβ Ñ minE

and as β Ñ ´8, AEβ Ñ maxE.

The proof is a matter of bookkeeping, best explained by example:

Let E :“ t2, 4, 8, 9u. Then minE “ 2 and maxE “ 9.

Since, @β P R, AEβ “
2e´2β ` 4e´4β ` 8e´8β ` 9e´9β

e´2β ` e´4β ` e´8β ` e´9β
,

we get as β Ñ 8, AEβ Ñ 2{1
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and as β Ñ ´8, AEβ Ñ 9{1,

and so as β Ñ 8, AEβ Ñ minE

and as β Ñ ´8, AEβ Ñ maxE.

For all nonempty, finite E Ď R, define AE‚ : RÑ R by:

@β P R, AE‚ pβq “ AEβ .

Recall (§2): “Cω” means “real-analytic”.

THEOREM 16.5. Let E Ď R. Assume: 2 ď #E ă 8.

Then: AE‚ is a strictly-decreasing Cω-diffeomorphism

from R onto pminE; maxEq.

Proof. Let κ :“ #E. Choose ε1, . . . , εκ P R s.t. E “ tε1, . . . , εκu.

Then: 2 ď κ ă 8 and ε1, . . . , εκ are distinct.

Then: @β P R, AE‚ pβq “

řκ
i“1 rεi ¨ e

´β¨εis
řκ
j“1 re

´β¨εj s
. Then AE‚ : RÑ R is Cω.

So, by Theorem 16.4 and the Cω-Inverse Function Theorem and

the Mean Value Theorem, it suffices to show: pAE‚ q
1 ă 0 on R.

Given β P R, want: pAE‚ q
1pβq ă 0.

Let P :“
řκ
i“1 r εi ¨ e

´β¨εi s, P 1 :“
řκ
i“1 r p´ε

2
i q ¨ e

´β¨εi s.

Let Q :“
řκ
j“1 r e

´β¨εj s, Q1 :“
řκ
j“1 r p´εjq ¨ e

´β¨εj s.

Then Q ą 0. Also, by the Quotient Rule, pAE‚ q
1pβq “ rQP 1´PQ1s{Q2.

Want: QP 1 ´ PQ1 ă 0.

We have: QP 1 “
řκ
i“1

řκ
j“1r p´ε

2
i q ¨ e´β¨pεi`εjq s.

We have: PQ1 “
řκ
i“1

řκ
j“1 r p ´ εiεjq ¨ e

´β¨pεi`εjq s.

Then: QP 1 ´ PQ1 “
řκ
i“1

řκ
j“1 r p´ε

2
i ` εiεjq ¨ e

´β¨pεi`εjq s.

Interchanging i and j, we get:

QP 1 ´ PQ1 “
řκ
j“1

řκ
i“1 r p´ε

2
j ` εjεiq ¨ e

´β¨pεj`εiq s.

By commutativity of addition and multiplication,

adding the last two equations gives:

2 ¨ pQP 1 ´ PQ1q “
řκ
i“1

řκ
j“1 r p´ε

2
i ´ ε

2
j ` 2εiεjq ¨ e

´β¨pεi`εjq s.

Then: 2 ¨ pQP 1 ´ PQ1q “
řκ
i“1

řκ
j“1 r ´pεi ´ εjq

2 ¨ e´β¨pεi`εjq s.

Then: 2 ¨ pQP 1 ´ PQ1q ă 0. Then: QP 1 ´ PQ1 ă 0. �

DEFINITION 16.6. Let E Ď R.

Assume: 2 ď #E ă 8. Let α P pminE; maxEq.

The α-Boltzmann-parameter on E is: BPE
α :“ pAE‚ q

´1pαq.
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So the α-Boltzmann-parameter on E is the unique β P R s.t. AEβ “ α.

Example: Computations in §7 show:

@β P R, if β “ pln 9q{10, then
e´β ` 10e´10β

1` e´β ` 10e´10β
“ 1.

Then, @β P R, if β “ pln 9q{10, then pA
t0,1,10u
‚ qpβq “ 1.

Then: pA
t0,1,10u
‚ qppln 9q{10q “ 1.

Then: pA
t0,1,10u
‚ q´1p1q “ pln 9q{10.

Then: BP
t0,1,10u
1 “ pln 9q{10.

Example: Let E :“ t2, 4, 8, 9u, α :“ 5, β :“ BPE
α .

To compute β, we need to solve AE‚ pβq “ 5 for β.

Since AE‚ is strictly-decreasing, there are iterative methods of solution,

and we get: β « 0.0918, accurate to four decimal places.

(Thanks to C. Prouty for these calculations. See §28.)

THEOREM 16.7. Let E Ď R. Assume: 2 ď #E ă 8.

Let α P pminE; maxEq. Let ξ P R. Then: BPE´ξ
α´ξ “ BPE

α .

Proof. Let β :“ BPE
α . Want: BPE´ξ

α´ξ “ β.

Since β “ BPE
α “ pA

E
‚ q
´1pαq, we get: pAE‚ qpβq “ α.

By Theorem 16.3, AE´ξβ “ AEβ ´ ξ.

Since pAE´ξ‚ qpβq “ AE´ξβ “ AEβ ´ ξ “ ppA
E
‚ qpβqq ´ ξ “ α ´ ξ,

we get: β “ pAE´ξ‚ q´1pα ´ ξq.

So, since BPE´ξ
α´ξ “ pA

E´ξ
‚ q´1pα ´ ξq, we get: BPE´ξ

α´ξ “ β. �

17. Residue-unconstrained finite sets

In the next three theorems, we generalize our work in §13

from t0, 1, 10u to arbitrary finite residue-unconstrained sets.

In the example at the end of this section,

we show that Theorem 17.3 below reproduces the result of §13.

Recall (§9): @countable set Θ,

FMΘ is the set of finite measures on Θ

and FMˆ
Θ is the set of nonzero finite measures on Θ

and PΘ is the set of probability measures on Θ.

Recall (§9): @ nonempty finite set F , @f P F , νF tfu “ 1{p#F q.

Recall (Definition 9.2): @countable set Θ, @µ P FMΘ, @n P N,

@x P Θn, µntxu “ pµtx1uq ¨ ¨ ¨ pµtxnuq.
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THEOREM 17.1. Let E Ď Z be finite and residue-unconstrained.

Let α P pminE; maxEq. Let β :“ BPE
α .

Let t1, t2, . . . P Z. Assume: ttn ´ nα |n P Nu is bounded.

For all n P N, let Ωn :“ tf P En | f1 ` ¨ ¨ ¨ ` fn “ tnu.

Let ε0 P E. Then: as nÑ 8, νΩn tf P Ωn | fn “ ε0u Ñ BE
β tε0u.

Recall (§9): νHpHq “ ´1.

So, since BE
β tε0u ą 0, part of the content of this theorem is:

@sufficiently large n P N, Ωn ‰ H;

see Claim 1 in the proof below.

Proof. Since E is residue-unconstrained, we get: E ‰ H.

By hypothesis, E Ď Z and E is finite.

Then: E Ď R and E is nonempty and finite.

Let µ :“ BE
β . Then: µ P PE and Sµ “ E.

So, since µ P PE Ď FME, we get: |µ|1 ă 8 and |µ|2 ă 8.

Since β “ BPE
α “ pA

E
‚ q
´1pαq, we get: pAE‚ qpβq “ α.

So, since pAE‚ qpβq “ AEβ “MBEβ
“Mµ, we get: Mµ “ α.

For all n P N, define ψn : ZÑ R by:

@t P Z, ψnp t q “ µntf P En | f1 ` ¨ ¨ ¨ ` fn “ tu.

Then: @n P N, ψnptnq “ µnpΩnq.

Let v :“ Vµ. By Theorem 10.6, we get: 0 ă v ă 8.

Let τ :“ 1{
?

2πv. Then: 0 ă τ ă 8.

By Theorem 10.6, we get:

as nÑ 8,
?
n ¨ pµntf P En | f1 ` ¨ ¨ ¨ ` fn “ tnuq Ñ 1{

?
2πv.

Then: as nÑ 8,
?
n ¨ p ψnptnq q Ñ τ .

So, since τ ą 0, choose n0 P N s.t.: @n P rn0..8q,
?
n ¨ pψnptnqq ą 0.

Claim 1: Let n P rn0..8q. Then: µnpΩnq ą 0.

Proof of Claim 1: Recall: ψnptnq “ µnpΩnq. Want: ψnptnq ą 0.

By the choice of n0, we get:
?
n ¨ pψnptnqq ą 0. Then: ψnptnq ą 0.

End of proof of Claim 1.

Recall: µ P PE.

Then: @n P N, µn P PEn , so µnpΩnq ď 1.

So, by Claim 1, @n P rn0..8q, 0 ă µnpΩnq ď 1.

Also, we have: @n P N, pµn|ΩnqpΩnq “ µnpΩnq.

Then: @n P rn0..8q, 0 ă pµn|ΩnqpΩnq ď 1.

Then: @n P rn0..8q, µn |Ωn P FMˆ
Ωn

.
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Then: @n P rn0..8q, N pµn |Ωnq P PΩn .

Claim 2: Let n P rn0..8q. Then: N pµn |Ωnq “ νΩn .

Proof of Claim 2: Let θ :“ N pµn|Ωnq, F :“ Ωn. Then θ P PF .

Want: θ “ νF . By Theorem 9.9, given f, g P F , want: θtfu “ θtgu.

By Claim 1, we have: µnpΩnq ą 0.

Since pµn|ΩnqpΩnq “ µnpΩnq and θ “ N pµn|Ωq, we get: θ “
µn|Ωn

µnpΩnq
.

Want:
pµn|Ωnqtfu

µnpΩnq
“
pµn|Ωnqtgu

µnpΩnq
.

Want: pµn|Ωnqtfu “ pµ
n|Ωnqtgu.

Since f, g P F “ Ωn, we get:

pµn|Ωnqtfu “ µntfu and pµn|Ωnqtgu “ µntgu.

Want: µntfu “ µntgu.

Since E Ď R is nonempty and finite, we get: pBE
β pEq ą 0.

Let C :“ 1{p pBE
β pEqq. Then N p pBE

β q “ C ¨ pBE
β

By definition of pBE
β , we have: @ε P E, pBE

β tεu “ e´β¨ε.

So, since µ “ BE
β “ N p pBE

β q “ C ¨ pBE
β ,

we get: @ε P E, µtεu “ Ce´β¨ε.

Since f P F “ Ωn, by definition of Ωn, we get: f1`¨ ¨ ¨`fn “ tn.

Since g P F “ Ωn, by definition of Ωn, we get: g1`¨ ¨ ¨`gn “ tn.

Since f1 ` ¨ ¨ ¨ ` fn “ tn “ g1 ` ¨ ¨ ¨ ` gn,

we get: Cne´β¨pf1`¨¨¨`fnq “ Cne´β¨pg1`¨¨¨`gnq.

Then: pCe´β¨f1q ¨ ¨ ¨ pCe´β¨fnq “ pCe´β¨g1q ¨ ¨ ¨ pCe´β¨gnq.

Then: p µtf1u q ¨ ¨ ¨ p µtfnu q “ p µtg1u q ¨ ¨ ¨ p µtgnu q.

Then: µntfu “ µntgu.

End of proof of Claim 2.

By hypothesis, E is residue-unconstrained and ε0 P E and

t1, t2, . . . P Z and ttn ´ nα |n P Nu is bounded.

Recall: µ P PE and Sµ “ E and |µ|2 ă 8 and Mµ “ α.

Let P :“ µtε0u. Then, since µ “ BE
β , we get: P “ BE

β tε0u.

We want: as nÑ 8, νΩn tf P Ωn | fn “ ε0u Ñ P .

By Theorem 12.2, as nÑ 8, pN pµn|Ωnqqtf P Ωn | fn “ ε0u Ñ P .

So, by Claim 2, as nÑ 8, νΩn tf P Ωn | fn “ ε0u Ñ P . �

Recall (§2): @t P R, ttu is the floor of t.

We record the tn “ tnαu version of the preceding theorem:
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THEOREM 17.2. Let E Ď Z be finite and residue-unconstrained.

Let α P pminE; maxEq. Let β :“ BPE
α .

For all n P N, let Ωn :“ tf P En | f1 ` ¨ ¨ ¨ ` fn “ tnαuu.

Let ε0 P E. Then: as nÑ 8, νΩn tf P Ωn | fn “ ε0u Ñ BE
β tε0u.

We record the α P Z special case of the preceding theorem:

THEOREM 17.3. Let E Ď Z be finite and residue-unconstrained.

Let α P pminE; maxEq. Let β :“ BPE
α . Assume α P Z.

For all n P N, let Ωn :“ tf P En | f1 ` ¨ ¨ ¨ ` fn “ nαu.

Let ε0 P E. Then: as nÑ 8, νΩn tf P Ωn | fn “ ε0u Ñ BE
β tε0u.

Example: Suppose E “ t0, 1, 10u and α “ 1.

Then ΩN “ tf P EN | f1 ` ¨ ¨ ¨ ` fN “ Nu,

so ΩN represents the set of all GFA dispensations,

as described in §3.

The measure νΩN gives equal probability to each dispensation,

so νΩN represents the GFA’s first system for awarding grants,

also described in §3.

Since β “ BPE
α “ BP

t0,1,10u
1 , we calculate: β “ pln 9q{10.

More calculation gives: pBE
β t0u, B

E
β t1u, B

E
β t10uq “

p1, 9´1{10, 9´1q

1` 9´1{10 ` 9´1
.

Since N is large, by Theorem 17.3, we get:

νΩN tf P ΩN | fN “ ε0u « BE
β tε0u.

So, if I am the Nth professor, then, under the first system,

my probability of receiving ε0 dollars

is approximately equal to BE
β tε0u.

Thus Theorem 17.3 reproduces the result of §13.

18. Rational award sets

In this section, we investigate what happens if

the set of awards is an arbitrary set of rational numbers.

Recall that, on our Earth, which is Earth-1218,

grants are $0, $1, $10, with average grant $1.

Example: In a parallel universe, on Earth-googol-plex,

there are N0 professors applying for grants from its GFA.

By GFA rules, grant amounts are $10, $14.45, $54,

and Congress allocates $13.37 per professor.

Earth-googol-plex has its own GFA.
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That GFA is using the “first system” for awarding grants,

in which every dispensation is equally likely.

Question: For any professor,

what is the approximate probability of receiving $10? $14.45? $54?

To simplify this problem, we can imagine that

that GFA makes two rounds of awards.

In the first round, it simply dispenses $10 to each professor.

In the second round, using the first system, it dispenses

additional grants of $0, $4.45, $44, with average grant $3.37.

We seek the approximate probability of the additional grant being

each of the numbers $0, $4.45, $44.

To simplify this problem still more, we can

change monetary units so that the grant amounts are all integers:

Additional grants, in pennies, are 0, 445, 4400, with average grant 337,

and we seek the approximate probability of receiving 0, 445, 4400.

Unfortunately, t0, 445, 4400u Ď 5Z` 0,

so t0, 445, 4400u is not residue-unconstrained,

making it difficult to apply the Discrete Local Limit Theorem.

Since gcdt0, 445, 4400u “ 5, we can change monetary units again:

Additional grants, in nickels, are 0, 89, 880, with average grant 337/5,

and we seek the approximate probability of receiving 0, 89, 880.

Let E :“ t0, 89, 880u and let α :“ 337{5.

Since 0 P E and gcdpEq “ 1, we get: E is residue-unconstrained.

The amount of money (in nickels) allocated by Congress is N0α,

to be dispensed among the N0 professors.

Unfortunately, a census reveals that: N0 is not divisible by 5.

Recall: α “ 337{5. Then N0α R Z, while 0, 89, 880 P Z.

It is therefore impossible to dispense the grant money.

The bureaucracy seizes up, there is pandemonium in the streets,

and the military steps in to impose order.

The superheroes of Earth-googol-plex are committed to democracy,

and so they reverse time and select a different time-line.

On this new time-line, E and α are unchanged, but

there is a new number, N1, of professors,

and N1 is blissfully divisible by 5. Then: N1α P Z.

Let ε0 P E be given.

We want: the approximate probability of receiving ε0 nickels.

Recall (§2): @t P R, ttu is the floor of t.
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For all n P N, let Ωn :“ tf P En | f1 ` ¨ ¨ ¨ ` fn “ tnαu u.

Since N1α P Z, we get: ΩN1 “ tf P E
N1 | f1 ` ¨ ¨ ¨ ` fN1 “ N1α u.

We want: an approximation to νΩN1
tf P ΩN1 | fN1 “ ε0u.

Recall: E is residue-unconstrained.

Let β :“ BPE
α . By Theorem 17.2, we have:

as nÑ 8, νΩn tf P Ωn | fn “ ε0u Ñ BE
β tε0u.

So, assuming N1 is large, we get

νΩN1
tf P ΩN1 | fN1 “ ε0u « BE

β tε0u.

For each ε0 P t0, 89, 880u, we want to compute BE
β tε0u.

We therefore want to compute pBE
β t0u , B

E
β t89u , BE

β t880u q.

Since β “ BPE
α “ BP

t0,89,880u
337{5 , we see that:

to evaluate β, we must solve A
t0,89,880u
‚ pβq “ 337{5 for β.

Since, by Theorem 16.5, A
t0,89,880u
‚ is strictly-decreasing,

there are simple iterative methods to do this.

We calculate β “ 0.003144, accurate to six decimal places.

We also calculate

pBE
β t0u , B

E
β t89u , BE

β t880u q “ p 0.5498 , 0.4156 , 0.0345 q,

all accurate to four decimal places.

(Thanks to C. Prouty for this calculation. See §28.)

Recall (§3): N is a large positive integer.

More generally: Imagine a parallel universe with N professors.

Let E0 denote the set of grant-awards.

Assume E0 Ď Q and 2 ď #E0 ă 8.

Let α0 P pminE0; maxE0q denote the average award.

Since #E0 ě 2, we get: E0 ‰ H. Choose ε0 P E0. Then ε0 P Q.

Let E1 :“ E0 ´ ε0, α1 :“ α0 ´ ε0. Then α1 P pminE1; maxE1q.

Also, 0 P E1.

So, by giving out awards in two rounds (first ε0, then the remainder),

we are reduced to a case where 0 is a possible grant-award.

Since E1 “ E0 ´ ε0 Ď Q, choose m P N s.t. mE1 Ď Z.

Let E2 :“ mE1, α2 :“ mα1. Then α2 P pminE2; maxE2q.

Also, 0 P E2 Ď Z.

So, by change of monetary unit,

we are reduced to a case where every grant-award is an integer

and where 0 is a possible grant-award.

Let g :“ gcdpE2q, E :“ E2{g, α :“ α2{g. Then α P pminE; maxEq.
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Also, 0 P E Ď Z and gcdpEq “ 1, so E is residue-unconstrained.

So, by change of monetary unit, we are reduced to a case where

the set of grant-awards is a residue-unconstrained set of integers.

If Nα R Z, then, since every grant-award is an integer,

no dispensation is possible, leading to

your typical military dictatorship and superhero intervention.

If Nα P Z, then, using Theorem 17.2,

we can compute the approximate probability of each award.

19. Irrational awards

In this section, we briefly discuss what can happen if

NOT every grant award is a rational number.

Here, we only present an example to show that

the award probabilities may NOT follow a Boltzmann distribution.

Example: On Earth-aleph-1, the GFA gives

grants of 0 ,
?

2 ,
?

3 , 10´
?

2´
?

3 dollars,

with an average grant of 1 dollar,

giving equal probability to every possible dispensation.

Let K be the number of professors. Assume: K is divisible by 10.

Let M :“ K{10. Then M P N and there are 10M professors.

Moreover, since the average grant is 1 dollar, we conclude:

there are 10M dollars to dispense among the 10M professors.

Claim: On Earth-aleph-1, every dispensation of awards has

7M grants of 0 dollars,

M grants of
?

2 dollars,

M grants of
?

3 dollars,

M grants of 10´
?

2´
?

3 dollars.

Proof of Claim: Given a dispensation,

let w be the number of 0 dollar grants and

let x be the number of
?

2 dollar grants and

let y be the number of
?

3 dollar grants and

let z be the number of 10´
?

2´
?

3 dollar grants,

want: w “ 7M and x “ y “ z “M .

Because the total money dispensed is 10M dollars, we get:

w ¨ 0` x ¨
?

2` y ¨
?

3` z ¨ p10´
?

2´
?

3q “ 10M .

Then: p10z ´ 10Mq ¨ 1` px´ zq ¨
?

2` py ´ zq ¨
?

3 “ 0.
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So, since 1,
?

2,
?

3 are linearly indpendent over Q, we get:

10z ´ 10M “ 0 and x´ z “ 0 and y ´ z “ 0.

Then z “M and x “ z and y “ z. Then x “ y “ z “M .

It remains only to show: w “ 7M .

Because there are 10M professors, we get: w ` x` y ` z “ 10M .

Then: w `M `M `M “ 10M . Then: w “ 7M .

End of proof of Claim.

By the Claim, in each dispensation, there are

exactly M grants of 10´
?

2´
?

3 dollars.

Of the four grant amounts, the largest is 10´
?

2´
?

3.

So, if I am one of the 10M professors, then I would hope to be among

the lucky M receiving 10´
?

2´
?

3 dollars.

My probability of being so lucky is: M{p10Mq, i.e., 10%.

That is, we obtain a probabity of:

10% for 10´
?

2´
?

3 dollars.

Extending this reasoning, we obtain probabities of:

70% for 0 dollars,

10% for
?

2 dollars,

10% for
?

3 dollars,

10% for 10´
?

2´
?

3 dollars.

In a Boltzmann distribution, depending on whether β “ 0 or β ‰ 0,

either the probabilities are all equal

or the probabilities are all distinct from one another.

The numbers 70,10,10,10 are neither all equal nor all distinct.

Thus, the 70-10-10-10 distribution above is NOT Boltzmann.

20. Earth-minimum-Mahlo-cardinal and the BUA

Next, we wish to handle thermodynamic systems in which

many states may have a single energy-level.

One says that such an energy-level is “degenerate”.

In this section, we develop a whimsical example.

In §21 and §22, we will develop a general theory.

Recall that N P N is large.

In a parallel universe, on Earth-minimum-Mahlo-cardinal,

the BUA (Best University Anywhere) employs N professors.

Each professor has a number, from 1 to N .
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Each professor wanders the campus,

carrying two bags: one red, one blue.

Each bag is closed from view, but has money in it or is empty.

The “state” of a professor is the pair σ “ pσ1, σ2q such that

σ1 is the number of dollars in the professor’s red bag,

σ2 is the number of dollars in the professor’s blue bag;

the professor’s “wealth” is σ1 ` σ2 dollars.

So, if I am one of the professors, and if my state is p3, 2q,

then I have: $3 in my red bag and $2 in my blue bag,

and my wealth is $5.

By BUA rules, the amount of money in any bag is always

$0 or $1 or $2 or $3 or $4,

and each professor’s wealth is always ď $7.

Therefore, the set of allowable states is

p r0..4s ˆ r0..4s q z t p4, 4q u.

Let Σ :“ p r0..4s ˆ r0..4s q z t p4, 4q u.

Since #p r0..4s ˆ r0..4s q “ 5 ¨ 5 “ 25, we get: #Σ “ 24.

Define ε : Σ Ñ r0..7s by: @σ P Σ, εpσq “ σ1 ` σ2.

For convenience of notation, @σ P Σ, let εσ :“ εpσq.

If I am one of the professors,

and if my state is σ “ pσ1, σ2q P Σ,

then I have: $σ1 in my red bag and $σ2 in my blue bag,

and my wealth is $εσ.

Since εp3,2q “ 5 “ εp1,4q, we see that ε is not one-to-one,

and we have a so-called “degeneracy” at 5.

This function ε has many other degeneracies, as well.

Recall: The professors are numbered, from 1 to N .

At random moments,

random pairs of wandering professors cross paths, and interact.

Each interaction involves three steps:

a game and then

a verbal offer and then

a rejection or a money transfer.

The first step, the game, is played as follows:

one of the two professors flips a fair coin and

if heads, then the lower-numbered professor wins and

if tails, then the higher-numbered professor wins.
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Next, without touching any money,

the losing professor verbally offers $1 to the winning professor.

The losing professor then flips a fair coin, and

if heads, then the loser’s red bag is opened and

if tails, then the loser’s blue bag is opened.

If the loser’s open bag is empty, then

then the winner gallantly rejects the $1 offer and

the opened bag is closed, the interaction is over, and

the professors continue their wanderings.

On the other hand, if the loser’s open bag is NOT empty, then,

both of the winner’s bags are opened.

Recall that, by BUA rules, every professor’s wealth must be ď $7.

If the winner’s wealth is $7,

then the winner rejects the $1 offer and

the opened bags are closed, the interaction is over, and

the professors continue their wanderings.

On the other hand, if the winner’s wealth is ď $6,

then the winner flips a fair coin, and

if heads, then the winner’s red bag is closed and

if tails, then the winner’s blue bag is closed.

At this point, the winner has one open bag, as does the loser.

Moreover, the loser’s open bag is NOT empty.

Recall that no bag may have more than $4.

If the winner’s open bag has $4,

then the winner rejects the $1 offer and

the opened bags are closed, the interaction is over, and

the professors continue their wanderings.

On the other hand, if the winner’s open bag has ď $3,

then $1 is transferred

from the losing professor’s open bag

to the winning professor’s open bag;

then the opened bags are closed, the interaction is over, and

the professors continue their wanderings.

Because of these interactions,

the wealth of an individual professor may change over time,

but the sum of the wealths of all of them is constant;

there is “conservation of (total) wealth”.
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An audit reveals that, at the BUA, that total wealth is always N .

Recall: Σ “ pr0..4s ˆ r0..4sqztp4, 4qu is the set of states.

A “state-dispensation” is a function r1..N s Ñ Σ,

representing the states of all N professors.

So, if, at some point in time, the state-dispensation is ω : r1..N s Ñ Σ,

then, for every ` P r1..N s, the state of Professor #` is ωp`q,

and the wealth of Professor #` is εωp`q;

therefore, the total wealth of all the professors is
řN
`“1 εωp`q.

As we mentioned, at the BUA, that total wealth is N .

Let Ω˚ :“
!

ω : r1..N s Ñ Σ
ˇ

ˇ

řN
`“1 εωp`q “ N

)

.

Then Ω˚ represents the set of all state-dispensations at the BUA.

The random interactions, described above,

induce a discrete Markov-chain on Ω˚.

This, in turn, induces a map Π : PΩ˚ Ñ PΩ˚ .

Let T :“ #Ω˚. Fix an ordering of Ω˚, i.e., a bijection r1..T s Ø Ω˚.

The Markov-chain then has a T ˆ T transition-matrix Φ,

with entries in r0; 1s, whose column-sums are all “ 1.

For every φ, ψ P Ω˚, the probability of transitioning from φ to ψ

is equal to

the probability of transitioning from ψ to φ.

That is, the transition-matrix Φ is symmetric.

So, since the column-sums of Φ are all 1,

we get: the row-sums of Φ are all 1.

Let v be a Tˆ1 column vector whose entries are all 1. Then Φv “ v.

Let w :“ v{T . Then: all the entries of w are 1{T and Φw “ w.

Recall that the probability-distribution νΩ˚ P PΩ˚

assigns equal probability to each state-dispensation in Ω˚.

That is, @ω P Ω˚, νΩ˚tωu “ 1{T .

Since the entries of w are equal to these νΩ˚-probabilities,

and since Φw “ w, we get: ΠpνΩ˚q “ νΩ˚ .

We will say that two state-dispensations φ, ψ P Ω˚ are “adjacent”,

if there is an interaction that carries φ to ψ.

For any φ, ψ P Ω˚,
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Da finite sequence of interactions that carries φ to ψ.

That is: @φ, ψ P Ω˚, Dm P N, Dω0, . . . , ωm P Ω˚

s.t. φ “ ω0 and ωm “ ψ

and s.t. @i P r1..ms, ωi´1 is adjacent to ωi.

That is, any two state-dispensations

are connected by an adjacency-path.

That is, the Markov-chain on Ω˚ is irreducible.

Recall that some interactions result in a rejection;

such interactions do not change the state-dispensation.

So, a state-dispensation is sometimes adjacent to itself.

That is, there are adjacency-cycles of length 1.

It follows that the Markov-chain is aperiodic.

So, since the Markov-chain is irreducible and since ΠpνΩ˚q “ νΩ˚ ,

by the Perron-Frobenius Theorem, we get:

@µ P PΩ˚ , µ , Πpµq , ΠpΠpµqq , ΠpΠpΠpµqqq , . . . Ñ νΩ˚ .

That is, for any starting probability-distribution on Ω˚,

after enough random interactions,

the resulting probability-distribution on Ω˚

will be approximately equal to νΩ˚ ,

to any desired level of accuracy.

Problem: Suppose I am Professor #N at the BUA.

Suppose that the probability-distribution µ of state-dispensations

is approximately equal to νΩ˚ .

For each σ P Σ, compute my probability of being in state σ.

That is, @σ P Σ, compute µtω P Ω˚ |ωpNq “ σu.

Since #Σ “ 24, there will be 24 answers.

Approximate answers are acceptable.

To make a precise mathematical problem,

we, in fact, assume that µ is exactly equal to νΩ˚ ,

and we seek the exact “thermodynamic limit”, meaning

we replace N with a variable n P N, and let nÑ 8.

In the next two sections, we will develop a theory

to solve problems like this one.

We need only adapt our earlier methods to allow for degeneracies.
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Our main theorems are

Theorem 22.1 and Theorem 22.2 and Theorem 22.3,

and the solution to the above “precise mathematical problem”

appears in the example at the end of §22.

21. Boltzmann distributions on finite sets with

degeneracy

In this section, we adapt our earlier work (§16)

on Boltzmann distributions to allow for degeneracies.

Recall (§9): @countable set Θ,

FMˆ
Θ is the set of nonzero finite measures on Θ

and PΘ is the set of probability measures on Θ.

Recall (§9): @nonempty countable set Θ, @µ P FMˆ
Θ,

N pµq is the normalization of µ.

DEFINITION 21.1. Let Σ be a nonempty finite set.

Let ε : Σ Ñ R. Let β P R.

Then pBε
β P FMˆ

Σ is defined by: @σ P Σ, pBε
βtσu “ e´β¨pεpσqq.

Also, we define: Bε
β :“ N p pBε

βq P PΣ.

Then: @nonempty finite set Σ, @ε : Σ Ñ R, @β P R,
pBε
βpΣq ą 0 and @σ P Σ, Bε

βtσu “ p pBε
βtσuq { p

pBε
βpΣqq

and S
pBεβ
“ Σ “ SBεβ .

Example: Let Σ :“ t0, 1, 10u and let β P R.

Define ε : Σ Ñ R by: @σ P Σ, εpσq “ σ.

Then: pBε
βt0u “ 1, pBε

βt1u “ e´β, pBε
βt10u “ e´10β.

Let C :“ 1{p1` e´β ` e´10βq.

Then: Bε
βt0u “ C, Bε

βt1u “ Ce´β, Bε
βt10u “ Ce´10β.

Example: Let Σ :“ t2, 4, 8, 9u and let β P R.

Define ε : Σ Ñ R by: @σ P Σ, εpσq “ σ.

Then: pBε
βt2u “ e´2β, pBε

βt4u “ e´4β,
pBε
βt8u “ e´8β, pBε

βt9u “ e´9β.

Let C :“ 1{pe´2β ` e´4β ` e´8β ` e´9βq.

Then: Bε
βt2u “ Ce´2β, Bε

βt4u “ Ce´4β,
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Bε
βt8u “ Ce´8β, Bε

βt9u “ Ce´9β.

Example: Let Σ :“ t1, 2, 3, 4u and let β P R.

Define ε : Σ Ñ R by:

εp1q “ 2, εp2q “ 4, εp3q “ 8, εp4q “ 9.

Then: pBε
βt1u “ e´2β, pBε

βt2u “ e´4β,
pBε
βt3u “ e´8β, pBε

βt4u “ e´9β.

Let C :“ 1{pe´2β ` e´4β ` e´8β ` e´9βq.

Then: Bε
βt1u “ Ce´2β, Bε

βt2u “ Ce´4β,

Bε
βt3u “ Ce´8β, Bε

βt4u “ Ce´9β.

In the preceding three examples, ε is one-to-one.

That is, ε has no degeneracies.

In the next, ε has one degeneracy, at energy-level 9.

Example: Let Σ :“ t1, 2, 3, 4u and define ε : Σ Ñ R by:

εp1q “ 2, εp2q “ 4, εp3q “ 9, εp4q “ 9.

Then: pBε
βt1u “ e´2β, pBε

βt2u “ e´4β,
pBε
βt3u “ e´9β, pBε

βt4u “ e´9β.

Let C :“ 1{pe´2β ` e´4β ` 2e´9βq.

Then: Bε
βt1u “ Ce´2β, Bε

βt2u “ Ce´4β,

Bε
βt3u “ Ce´9β, Bε

βt4u “ Ce´9β.

In the next example, ε has many degeneracies.

Example: Let Σ :“ p r0..4s ˆ r0..4s q z t p4, 4q u.

Let β P R and define ε : Σ Ñ R by: @σ P Σ, εpσq “ σ1 ` σ2.

Then: pBε
βtp3, 2qu “ e´5β, pBε

βtp1, 4qu “ e´5β, pBε
βtp0, 0qu “ 1.

Generally, @σ P Σ, pBε
βtσu “ e´pσ1`σ2q¨β.

Let C :“ 1{p
ř

σPΣ re
´pσ1`σ2q¨βsq.

Then: Bε
βtp3, 2qu “ Ce´5β, Bε

βtp1, 4qu “ Ce´5β, Bε
βtp0, 0qu “ C.

Generally, @σ P Σ, Bε
βtσu “ Ce´pσ1`σ2q¨β.

THEOREM 21.2. Let Σ be a nonempty finite set.

Let ε : Σ Ñ R, ξ, β P R. Then: Bε
β “ Bε´ξ

β .

Proof. For all σ P Σ, let εσ :“ εpσq.

Since, @σ P Σ, pBε
βtσu “ e´β¨εσ “ e´β¨ξ ¨ e´β¨pεσ´ξq “ e´β¨ξ ¨ p pBε´ξ

β tσuq,
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we get: pBε
β “ e´β¨ξ ¨ pBε´ξ

β .

Since e´βξ ą 0, we get: N pe´β¨ξ ¨ pBε´ξ
β q “ N p pBε´ξ

β q.

Then: Bε
β “ N p pBε

βq “ N pe´β¨ξ ¨ pBε´ξ
β q “ N p pBε´ξ

β q “ Bε´ξ
β . �

DEFINITION 21.3. Let Σ be a nonempty finite set, ε : Σ Ñ R.

For all σ P Σ, let εσ :“ εpσq.

For all β P R, let Γεβ :“
ř

σPΣ rεσ ¨ e
´β¨εσ s,

∆ε
β :“

ř

σPΣ re
´β¨εσ s,

Aεβ :“ Γεβ {∆ε
β.

Let Σ be a nonempty finite set, ε : Σ Ñ R.

Since Γεβ “
ř

σPΣ rεσ ¨ p
pBε
βtσuqs,

we get: Γεβ is the integral of ε wrt pBε
β.

Since ∆ε
β “

ř

σPΣ r
pBε
βtσus,

we get: ∆ε
β “ pBε

βpΣq.

Since
Γεβ
∆ε
β

“

ř

σPΣ rεσ ¨ p
pBε
βtσuqs

pBε
βpΣq

,

we get: Aεβ “
ř

σPΣ rεσ ¨ pB
ε
βtσuqs.

Then: Aεβ is the average value of ε wrt Bε
β.

Recall (§2) the notations If , f˚A. Recall (§9) the notation ε˚µ.

Recall (Definition 9.5) the notation Mµ.

THEOREM 21.4. Let Σ be a nonempty finite set.

Let ε : Σ Ñ R, β P R. Then: Mε˚Bεβ
“ Aεβ.

Proof. For all σ P Σ, let εσ :“ εpσq.

Because Σ is the disjoint union, over t P Iε, of ε˚ttu,

we get:
ř

tPIε

ř

σPε˚ttu rεσ ¨ pB
ε
βtσuqs “

ř

σPΣ rεσ ¨ pB
ε
βtσuqs.

Also, Aεβ “
ř

σPΣ rεσ ¨ pB
ε
βtσuqs.

Then:
ř

tPIε

ř

σPε˚ttu rεσ ¨ pB
ε
βtσuqs “ Aεβ.

So, since
ř

tPIε rt ¨ ppε˚B
ε
βqttuqs “Mε˚Bεβ

,

we want:
ř

tPIε rt ¨ ppε˚B
ε
βqttuqs “

ř

tPIε

ř

σPε˚ttu rεσ ¨ pB
ε
βtσuqs.

Want: @t P Iε, t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu rεσ ¨ pB
ε
βtσuqs.

Given t P Iε, want: t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu rεσ ¨ pB
ε
βtσuqs.

For all σ P ε˚ttu, since εσ “ εpσq P ttu, we get: εσ “ t.

Want: t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu r t ¨ pB
ε
βtσuq s.

Because ε˚ttu is the disjoint union, over σ P ε˚ttu, of tσu,
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we get: Bε
βpε

˚ttuq “
ř

σPε˚ttu r Bε
βtσu s.

Also, pε˚B
ε
βqttu “ Bε

βpε
˚ttuq.

Then: t ¨ ppε˚B
ε
βqttuq “ t ¨ pBε

βpε
˚ttuqq “

ř

σPε˚ttu r t ¨ pB
ε
βtσuqs. �

THEOREM 21.5. Let Σ be a nonempty finite set.

Let ε : Σ Ñ R, β, ξ P R. Then: Aε´ξβ “ Aεβ ´ ξ.

Proof. We have: Bε
βpΣq “

ř

σPΣ rB
ε
βtσu s.

Since Bε
β P PΣ, we get: Bε

βpΣq “ 1.

By Theorem 21.2, we have: Bε
β “ Bε´ξ

β .

For all σ P Σ, let εσ :“ εpσq.

Then: Aε´ξβ “
ř

σPΣ r pεσ ´ ξq ¨ pB
ε´ξ
β tσuq s

“
ř

σPΣ r pεσ ´ ξq ¨ pB
ε
βtσuq s

“ p
ř

σPΣ r εσ ¨ pB
ε
βtσuq s q ´ p

ř

σPΣ r ξ ¨ pB
ε
βtσuq s q

“ p
ř

σPΣ r εσ ¨ pB
ε
βtσuq s q ´ ξ ¨ p

ř

σPΣ rB
ε
βtσu s q

“ Aεβ ´ ξ ¨ pB
ε
βpΣqq “ Aεβ ´ ξ ¨ 1 “ Aεβ ´ ξ. �

THEOREM 21.6. Let Σ be a nonempty finite set, ε : Σ Ñ R.

Then: as β Ñ 8, Aεβ Ñ min Iε
and as β Ñ ´8, Aεβ Ñ max Iε.

The proof is a matter of bookkeeping, best explained by example:

Let Σ :“ t1, 2, 3, 4u and define ε : Σ Ñ R by:

εp1q “ 2, εp2q “ 4, εp3q “ 9, εp4q “ 9.

Then Iε “ t2, 4, 9u, so min Iε “ 2 and max Iε “ 9.

Since @ β P R, Aεβ “
2e´2β ` 4e´4β ` 9e´9β ` 9e´9β

e´2β ` e´4β ` e´9β ` e´9β
,

“
2e´2β ` 4e´4β ` 18e´9β

e´2β ` e´4β ` 2e´9β
,

we get as β Ñ 8, Aεβ Ñ 2{1

and as β Ñ ´8, Aεβ Ñ 18{2,

and so as β Ñ 8, Aεβ Ñ min Iε
and as β Ñ ´8, Aεβ Ñ max Iε.

For any nonempty finite set Σ, for any ε : Σ Ñ R,

define Aε‚ : RÑ R by: @β P R, Aε‚pβq “ Aεβ.

Recall (§2): “Cω” means “real-analytic”.

THEOREM 21.7. Let Σ be a finite set.

Let ε : Σ Ñ R. Assume: #Iε ě 2.
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Then: Aε‚ is a strictly-decreasing Cω-diffeomorphism

from R onto pmin Iε; max Iεq.

Proof. For all σ P Σ, let εσ :“ εpσq.

We have: @β P R, Aε‚pβq “

ř

σPΣ rεσ ¨ e
´β¨εσ s

ř

τPΣ re
´β¨ετ s

. Then Aε‚ : RÑ R is Cω.

So, by Theorem 21.6 and the Cω-Inverse Function Theorem and

the Mean Value Theorem, it suffices to show: pAε‚q
1 ă 0 on R.

Given β P R, want: pAε‚q
1pβq ă 0.

Let P :“
ř

σPΣ r εσ ¨ e
´β¨εσ s, P 1 :“

ř

σPΣ r p´ε
2
σq ¨ e

´β¨εσ s.

Let Q :“
ř

τPΣ r e
´β¨ετ s, Q1 :“

ř

τPΣ r p´ετ q ¨ e
´β¨ετ s.

Then Q ą 0. Also, by the Quotient Rule, pAε‚q
1pβq “ rQP 1 ´PQ1s{Q2.

Want: QP 1 ´ PQ1 ă 0.

We have: QP 1 “
ř

σPΣ

ř

τPΣ r p´ε
2
σ q ¨ e´β¨pεσ`ετ q s.

We have: PQ1 “
ř

σPΣ

ř

τPΣ r p ´ εσετ q ¨ e
´β¨pεσ`ετ q s.

Then: QP 1 ´ PQ1 “
ř

σPΣ

ř

τPΣ r p´ε
2
σ ` εσετ q ¨ e

´β¨pεσ`ετ q s.

Interchanging σ and τ , we get:

QP 1 ´ PQ1 “
ř

τPΣ

ř

σPΣ r p´ε
2
τ ` ετεσq ¨ e

´β¨pετ`εσq s.

By commutativity of addition and multiplication,

adding the last two equations gives:

2 ¨ pQP 1´PQ1q “
ř

σPΣ

ř

τPΣ r p´ε
2
σ ´ ε

2
τ ` 2εσετ q ¨ e

´β¨pεσ`ετ q s.

Then: 2 ¨ pQP 1 ´ PQ1q “
ř

σPΣ

ř

τPΣ r ´pεσ ´ ετ q
2 ¨ e´β¨pεσ`ετ q s.

Then: 2 ¨ pQP 1 ´ PQ1q ă 0. Then: QP 1 ´ PQ1 ă 0. �

DEFINITION 21.8. Let Σ be a finite set. Let ε : Σ Ñ R.

Assume: #Iε ě 2. Let α P pmin Iε; max Iεq.
The α-Boltzmann-parameter on ε is: BPε

α :“ pAε‚q
´1pαq.

So the α-Boltzmann-parameter on ε is the unique β P R s.t. Aεβ “ α.

Example: Let Σ :“ t0, 1, 10u and define ε : Σ Ñ R by:

@σ P Σ, εpσq “ σ.

Computation shows: Aε
pln 9q{10 “ 1. Then: BPε

1 “ pln 9q{10.

Example: Let Σ :“ t2, 4, 8, 9u and define ε : Σ Ñ R by:

@σ P Σ, εpσq “ σ.

To evaluate BPε
5, we must solve Aε‚pβq “ 5 for β,

and, since, by Theorem 21.7, Aε‚ is strictly-decreasing,

there are simple iterative methods to do this.

We compute: BPε
5 « 0.0918, accurate to four decimal places.
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(Thanks to C. Prouty for this calculation. See §28.)

Next, let Σ :“ t1, 2, 3, 4u and define ε : Σ Ñ R by:

εp1q “ 2, εp2q “ 4, εp3q “ 8, εp4q “ 9.

Then Aε‚ “ Aε‚, so BPε
5 “ BPε

5.

Then BPε
5 « 0.0918, accurate to four decimal places.

Example: Let Σ :“ t1, 2, 3, 4u and define ε : Σ Ñ R by:

εp1q “ 2, εp2q “ 4, εp3q “ 9, εp4q “ 9.

To evaluate BPε
5, we must solve Aε‚pβq “ 5 for β,

and, since, by Theorem 21.7, Aε‚ is strictly-decreasing,

there are simple iterative methods to do this.

We compute: BPε
5 « 0.1060, accurate to four decimal places.

(Thanks to C. Prouty for this calculation. See §28.)

Example: Let Σ :“ p r0..4s ˆ r0..4s q z t p4, 4q u.

Define ε : Σ Ñ R by: @σ P Σ, εpσq “ σ1 ` σ2.

To evaluate BPε
1, we must solve Aε‚pβq “ 1 for β,

and, since, by Theorem 21.7, Aε‚ is strictly-decreasing,

there are simple iterative methods to do this.

We compute: BPε
1 « 1.0670, accurate to four decimal places.

(Thanks to C. Prouty for this calculation. See §28.)

THEOREM 21.9. Let Σ be a finite set.

Let ε : Σ Ñ R. Assume: #Iε ě 2.

Let α P pmin Iε; max Iεq. Let ξ P R. Then: BPε´ξ
α´ξ “ BPε

α.

Proof. Let β :“ BPε
α. Want: BPε´ξ

α´ξ “ β.

Since β “ BPε
α “ pA

ε
‚q
´1pαq, we get: pAε‚qpβq “ α.

By Theorem 21.5, Aε´ξβ “ Aεβ ´ ξ.

Since pAε´ξ‚ qpβq “ Aε´ξβ “ Aεβ ´ ξ “ ppA
ε
‚qpβqq ´ ξ “ α ´ ξ,

we get: β “ pAε´ξ‚ q´1pα ´ ξq.

So, since BPε´ξ
α´ξ “ pA

ε´ξ
‚ q´1pα ´ ξq, we get: BPε´ξ

α´ξ “ β. �

22. Degenerate energy levels

Recall (§2): the notations If and f˚A.

Recall (§9): the notation νF .

THEOREM 22.1. Let Σ be a finite set.

Let ε : Σ Ñ Z. Assume Iε is residue-unconstrained.
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Let α P pmin Iε; max Iεq. Let β :“ BPε
α.

Let t1, t2, . . . P Z. Assume: ttn ´ nα |n P Nu is bounded.

For all n P N, let Ωn :“ tf P Σn | pεpf1qq ` ¨ ¨ ¨ ` pεpfnqq “ tnu.

Let σ0 P Σ. Then: as nÑ 8, νΩn tf P Ωn | fn “ σ0u Ñ Bε
βtσ0u.

Recall (§9): νHpHq “ ´1.

So, since Bε
βtσ0u ą 0, part of the content of Theorem 22.1 is:

@sufficiently large n P N, Ωn ‰ H;

see Claim 1 in the proof below.

Proof. Since Iε is residue-unconstrained, we get: Iε ‰ H.

So, since ε : Σ Ñ Z, we conclude: Σ ‰ H.

By hypothesis, Σ is finite. Then: Σ is a nonempty finite set.

Since β “ BPε
α “ pA

ε
‚q
´1pαq, we get: Aε‚pβq “ α.

By Theorem 21.4, we have: Mε˚Bεβ
“ Aεβ.

So, since Aεβ “ Aε‚pβq “ α, we get: Mε˚Bεβ
“ α.

Let µ :“ Bε
β. Then: µ P PΣ and Mε˚µ “ α.

Let E :“ Iε, rµ :“ ε˚µ. Then: rµ P PE and M
rµ “ α.

By hypothesis, E is residue-unconstrained.

Since ε : Σ Ñ Z, we get: E Ď Z.

Since Σ is finite, we get: E is finite.

So, since rµ P PE Ď FME, we get: |rµ|1 ă 8 and |rµ|2 ă 8.

For all σ P Σ, let εσ :“ εpσq.

Then: @n P N, Ωn “ tf P Σn | εf1 ` ¨ ¨ ¨ ` εfn “ tnu.

For all n P N, define εn : Σn Ñ En by:

@f1, . . . , fn P Σ, εnpf1, . . . , fnq “ pεf1 , . . . , εfnq.

Then, since ε˚µ “ rµ, we get: @n P N, pεnq˚pµ
nq “ rµn.

For all n P N, let rΩn :“ t rf P En | rf1 ` ¨ ¨ ¨ `
rfn “ tnu;

then pεnq˚rΩn “ Ωn.

Then: @n P N, µnppεnq˚rΩnq “ µnpΩnq.

Then: @n P N, ppεnq˚µ
nqprΩnq “ µnpΩnq.

Then: @n P N, rµnprΩnq “ µnpΩnq.

For all n P N, define ψn : ZÑ R by:

@t P Z, ψnp t q “ rµnt rf P En | rf1 ` ¨ ¨ ¨ `
rfn “ tu.

Then: @n P N, ψnptnq “ rµnprΩnq.

Since E is finite and residue-unconstrained, we get: 2 ď #E ă 8.

Since ε : Σ Ñ Z, we get: SBεβ “ Σ.

So, since µ “ Bε
β, we get: Sµ “ Σ.

So, since ε : Σ Ñ Z, we get: Sε˚µ “ Iε.
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So, since ε˚µ “ rµ and Iε “ E, we get: S
rµ “ E.

Since E is finite, we get: E is countable.

Let v :“ V
rµ. By Theorem 10.6, we get: 0 ă v ă 8.

Let τ :“ 1{
?

2πv. Then: 0 ă τ ă 8.

By Theorem 10.6, we get:

as nÑ 8,
?
n ¨ pµnt rf P En | rf1 ` ¨ ¨ ¨ `

rfn “ tnuq Ñ 1{
?

2πv.

Then: as nÑ 8,
?
n ¨ p ψnptnq q Ñ τ .

So, since τ ą 0, choose n0 P r2..8q such that:

@n P rn0..8q,
?
n ¨ pψnptnqq ą 0.

Claim 1: Let n P rn0..8q. Then: µnpΩnq ą 0.

Proof of Claim 1: Recall: rµnprΩnq “ µnpΩnq and ψnptnq “ rµnprΩnq.

By the choice of n0, we get:
?
n ¨ pψnptnqq ą 0. Then: ψnptnq ą 0.

Then: µnpΩnq “ rµnprΩnq “ ψnptnq ą 0.

End of proof of Claim 1.

Recall: Σ ‰ H and ε : Σ Ñ Z. Then pBε
βpΣq ą 0.

Let C :“ 1{p pBε
βpΣqq. Then N p pBε

βq “ C ¨ pBε
β

By definition of pBε
β, we have: @σ P Σ, pBε

βtσu “ e´β¨εσ .

So, since µ “ Bε
β “ N p pBε

βq “ C ¨ pBε
β,

we get: @σ P Σ, µtσu “ Ce´β¨εσ .

Since µ P PΣ, we get: @n P N, µn P PΣn , so µnpΩnq ď 1.

So, by Claim 1, @n P rn0..8q, 0 ă µnpΩnq ď 1.

Also, we have: @n P N, pµn|ΩnqpΩnq “ µnpΩnq.

Then: @n P rn0..8q, 0 ă pµn|ΩnqpΩnq ď 1.

Then: @n P rn0..8q, µn |Ωn P FMˆ
Ωn

.

Then: @n P rn0..8q, N pµn |Ωnq P PΩn .

Also, @n P N, @S Ď Ωn, pµn|ΩnqpS q “ µnpS q.

Then: @n P N, pµn|ΩnqpΩnq “ µnpΩnq.

For all n P N, let zn :“ µnpΩnq.

Then: @n P rn0..8q, pµn|ΩnqpΩnq “ zn and 0 ă zn ď 1.

For all n P rn0..8q, let λn :“ N pµn|Ωnq.

Then: @n P rn0..8q, λn “ pµ
n|Ωnq{zn.

Then: @n P rn0..8q, @S Ď Ωn, λnpSq “ pµ
npSqq{zn.

Claim 2: Let n P rn0..8q. Then: λn “ νΩn .

Proof of Claim 2: Let F :“ Ωn. Want: λn “ νF .
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Since λn “ N pµn|Ωnq “ N pµn|F q, we get: λn P PF .

By Theorem 9.9, given f, g P F , want: λntfu “ λntgu.

Want: pµntfuq{zn “ pµ
ntguq{zn. Want: µntfu “ µntgu.

For all i P r1..ns, let rfi :“ εfi and rgi :“ εgi .

Recall: @σ P Σ, µtσ u “ Ce´β¨εσ .

Then: @i P r1..ns, µtfiu “ Ce´β¨
rfi and µtgiu “ Ce´β¨rgi .

Since f P F “ Ωn, we get: εf1 ` ¨ ¨ ¨ ` εfn “ tn.

Since g P F “ Ωn, we get: εg1 ` ¨ ¨ ¨ ` εgn “ tn.

Since rf1 ` ¨ ¨ ¨ `
rfn “ εf1 ` ¨ ¨ ¨ ` εfn “ tn
“ εg1 ` ¨ ¨ ¨ ` εgn “ rg1 ` ¨ ¨ ¨ ` rgn,

we get: Cne´β¨p
rf1`¨¨¨` rfnq “ Cne´β¨prg1`¨¨¨`rgnq.

Then: pCe´β¨
rf1q ¨ ¨ ¨ pCe´β¨

rfnq “ pCe´β¨rg1q ¨ ¨ ¨ pCe´β¨rgnq.

Then: p µtf1u q ¨ ¨ ¨ p µtfnu q “ p µtg1u q ¨ ¨ ¨ p µtgnu q.

Then: µntfu “ µntgu.

End of proof of Claim 2.

Claim 3: Let σ P ε˚tεσ0u. Then: µtσu “ µtσ0u.

Proof of Claim 3: Since σ P ε˚tεσ0u, we get: εpσq P tεσ0u.

Since εσ “ εpσq P tεσ0u, we get: εσ “ εσ0 .

Then: µtσu “ Ce´β¨εσ “ Ce´β¨εσ0 “ µtσ0u.

End of proof of Claim 3.

Since εpσ0q “ εσ0 P tεσ0u, we get: σ0 P ε
˚tεσ0u.

Then ε˚tεσ0u ‰ H, so #pε˚tεσ0uq ě 1.

Let k :“ #pε˚tεσ0uq. Then: k ě 1.

Claim 4: µpε˚tεσ0uq “ k ¨ pµtσ0uq.

Proof of Claim 4: Since ε˚tεσ0u is equal to

the disjoint union, over σ P ε˚tεσ0u, of tσ u,

we get: µpε˚tεσ0uq “
ř

σPε˚tεσ0u
rµtσ us,

So, by Claim 3, we get: µpε˚tεσ0uq “
ř

σPε˚tεσ0u
rµtσ0us.

So, since k “ #pε˚tεσ0uq, we get: µpε˚tεσ0uq “ k ¨ pµtσ0uq.

End of proof of Claim 4.

Claim 5: Let n P r2..8q. Let σ P ε˚tεσ0u.

Then: µntf P Ωn | fn “ σu “ µntf P Ωn | fn “ σ0u.

Proof of Claim 5:
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Let X :“ tf P Σn´1 | εf1 ` ¨ ¨ ¨ ` εfn´1 “ tn ´ εσu.

Recall: Ωn “ tf P Σn | εf1 ` ¨ ¨ ¨ ` εfn´1 ` εfn “ tnu.

Since tf P Ωn | fn “ σ u

“ tf P Σn | rεf1 ` ¨ ¨ ¨ ` εfn´1 ` εfn “ tns& rfn “ σsu

“ tf P Σn | rεf1 ` ¨ ¨ ¨ ` εfn´1 ` εσ “ tns& rfn “ σsu

“ tf P Σn | rεf1 ` ¨ ¨ ¨ ` εfn´1 “ tn ´ εσ s& rfn “ σsu,

it follows that, under the standard bijection Σn Ø Σn´1 ˆΣ, we have:

tf P Ωn | fn “ σu Ď Σn

corresponds to X ˆ tσu Ď Σn´1 ˆ Σ.

Then: µntf P Ωn | fn “ σ u “ pµn´1pXqq ¨ pµtσuq.

Want: µntf P Ωn | fn “ σ0u “ pµ
n´1pXqq ¨ pµtσuq.

By Claim 3, we have: µtσu “ µtσ0u.

Want: µntf P Ωn | fn “ σ0u “ pµ
n´1pXqq ¨ pµtσ0uq.

Since σ P ε˚tεσ0u, we get: εpσq P tεσ0u.

Since εσ “ εpσq P tεσ0u, we get: εσ “ εσ0 .

Then X “ tf P Σn´1 | εf1 ` ¨ ¨ ¨ ` εfn´1 “ tn ´ εσ0u.

Since tf P Ωn | fn “ σ0 u

“ tf P Σn | rεf1 ` ¨ ¨ ¨ ` εfn´1 ` εfn “ tns& rfn “ σ0su

“ tf P Σn | rεf1 ` ¨ ¨ ¨ ` εfn´1 ` εσ0 “ tns& rfn “ σ0su

“ tf P Σn | rεf1 ` ¨ ¨ ¨ ` εfn´1 “ tn ´ εσ0s& rfn “ σ0su,

it follows that, under the standard bijection Σn Ø Σn´1 ˆΣ, we have:

tf P Ωn | fn “ σ0u Ď Σn

corresponds to X ˆ tσ0u Ď Σn´1 ˆ Σ.

Then: µntf P Ωn | fn “ σ0u “ pµ
n´1pXqq ¨ pµtσ0uq.

End of proof of Claim 5.

Claim 6: Let n P r2..8q.

Then: rµnt rf P rΩn |
rfn “ εσ0u “ k ¨ pµntf P Ωn | fn “ σ0uq.

Proof of Claim 6: Recall: pεnq˚rΩn “ Ωn.

Then pεnq˚t rf P rΩn |
rfn “ εσ0u “ tf P Ωn | fn P ε

˚tεσ0uu,

and so µnppεnq˚t rf P rΩn |
rfn “ εσ0uq “ µntf P Ωn | fn P ε

˚tεσ0uu.

Then: ppεnq˚pµ
nqqt rf P rΩn |

rfn “ εσ0u “ µntf P Ωn | fn P ε
˚tεσ0uu.

Recall: pεnq˚pµ
nq “ rµn.

Then: rµnt rf P rΩn |
rfn “ εσ0u “ µntf P Ωn | fn P ε

˚tεσ0uu.

Want: µntf P Ωn | fn P ε
˚tεσ0uu “ k ¨ pµntf P Ωn | fn “ σ0uq.

Since tf P Ωn | fn P ε
˚tεσ0uu

is the disjoint union, over σ P ε˚tεσ0u, of

tf P Ωn | fn “ σu,
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we get: µntf P Ωn | fn P ε
˚tεσ0uu “

ř

σPε˚tεσ0u
rµntf P Ωn | fn “ σ us.

Then, by Claim 5, we conclude:

µntf P Ωn | fn P ε
˚tεσ0uu “

ř

σPε˚tεσ0u
rµntf P Ωn | fn “ σ0us.

So, since k “ #pε˚tεσ0uq, we get:

µntf P Ωn | fn P ε
˚tεσ0uu “ k ¨ pµntf P Ωn | fn “ σ0uq.

End of proof of Claim 6.

Recall: @n P N, µnpΩnq “ rµnprΩnq.

Recall: @n P rn0..8q, 0 ă µnpΩnq ď 1.

Then: @n P rn0..8q, 0 ă rµnprΩnq ď 1.

Also, @n P N, @S Ď rΩn, prµn|rΩnqp S q “ rµnp S q.

Then: @n P N, prµn|rΩnqp rΩnq “ rµnp rΩnq.

By dividing the last two equations, we get:

@n P rn0..8q, @S Ď rΩn, pN prµn|rΩnqqpSq “ prµ
npSqq{prµnprΩnqq.

For all n P rn0..8q, let rλn :“ N prµn|rΩnq.

Then: @n P rn0..8q, @S Ď rΩn, rλnpSq “ prµ
npSqq{prµnprΩnqq.

So, since @n P N, zn “ µnpΩnq “ rµnprΩnq, we get:

@n P rn0..8q, @S Ď rΩn, rλnpSq “ prµ
npSqq{zn.

Recall: @n P rn0..8q, λn “ N pµn|Ωnq.

Recall: @n P rn0..8q, @S Ď Ωn, λnpSq “ pµ
npSqq{zn.

Claim 7: Let n P rn0..8q.

Then: rλnt rf P rΩn |
rfn “ εσ0u “ k ¨ pλntf P Ωn | fn “ σ0uq.

Proof of Claim 7: By choice of n0, we have: n0 P r2..8q.

Then rn0..8q Ď r2..8q, so, since n P rn0..8q, we get: n P r2..8q.

Then, by Claim 6, rµnt rf P rΩn |
rfn “ εσ0u “ k ¨ pµntf P Ωn | fn “ σ0uq.

Dividing this last equation by zn yields
rλnt rf P rΩn |

rfn “ εσ0u “ k ¨ pλntf P Ωn | fn “ σ0uq.

End of proof of Claim 7.

Let P :“ µtσ0u and rP :“ rµtεσ0u. Recall: k ě 1.

By Claim 4, we have: µpε˚tεσ0uq “ k ¨ pµtσ0uq.

Recall: rµ “ ε˚µ.

Since rP “ rµtεσ0u “ pε˚µqtεσ0u “ µpε˚tεσ0uq “ k ¨ pµtσ0uq “ k ¨ P ,

we get: rP {k “ P .

Recall: M
rµ “ α and rµ P PE and S

rµ “ E.

Recall: E is residue-unconstrained and |rµ|2 ă 8.
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Since εσ0 “ εpσ0q P Iε “ E, we get: εσ0 P E.

Let rε0 :“ εσ0 . Then: rε0 P E and rP “ rµtrε0u.

Recall: @n P N, rΩn :“ t rf P En | rf1 ` ¨ ¨ ¨ `
rfn “ tnu.

By hypothesis, t1, t2, . . . P Z and ttn ´ nα |n P Nu is bounded.

By Theorem 12.2, as nÑ 8, N prµn|rΩnqt
rf P rΩn |

rfn “ rε0u Ñ rP .

Recall: @n P rn0..8q, rλn “ N prµn|rΩnq.

Then: as nÑ 8, rλnt rf P rΩn |
rfn “ rε0 u Ñ rP .

Then: as nÑ 8, rλnt rf P rΩn |
rfn “ εσ0u Ñ rP .

So, by Claim 7, as nÑ 8, k ¨ pλntf P Ωn | fn “ σ0 u q Ñ rP .

Then: as nÑ 8, λntf P Ωn | fn “ σ0 u Ñ rP {k.

So, by Claim 2, as nÑ 8, νΩntf P Ωn | fn “ σ0 u Ñ rP {k.

Recall: µ “ Bε
β.

Then, since rP {k “ P “ µtσ0u “ Bε
βtσ0u, we get:

as nÑ 8, νΩntf P Ωn | fn “ σ0u Ñ Bε
βtσ0u. �

The possibility of degeneracy at rε0 (i.e., the possibility that k ‰ 1)

causes a number of complications in the preceding proof.

Here is another approach to proving Theorem 22.1:

By density of the set of injective functions Σ Ñ R
in the topological space of all functions Σ Ñ R,

we reduce to the case where ε is injective.

Then the proof can follow the proof of Theorem 17.1, avoiding

the degeneracy complications in the preceding proof.

Recall (§2): @t P R, ttu is the floor of t.

Next, we record the tn “ tnαu version of the preceding theorem:

THEOREM 22.2. Let Σ be a finite set.

Let ε : Σ Ñ Z. Assume Iε is residue-unconstrained.

Let α P pmin Iε; max Iεq. Let β :“ BPε
α.

For all n P N, let Ωn :“ tf P Σn | pεpf1qq ` ¨ ¨ ¨ ` pεpfnqq “ tnαuu.

Let σ0 P Σ. Then: as nÑ 8, νΩn tf P Ωn | fn “ σ0u Ñ Bε
βtσ0u.

We record the α P Z special case of the preceding theorem:

THEOREM 22.3. Let Σ be a finite set.

Let ε : Σ Ñ Z. Assume Iε is residue-unconstrained.

Let α P pmin Iε; max Iεq. Assume α P Z. Let β :“ BPε
α.

For all n P N, let Ωn :“ tf P Σn | pεpf1qq ` ¨ ¨ ¨ ` pεpfnqq “ nαu.

Let σ0 P Σ. Then: as nÑ 8, νΩn tf P Ωn | fn “ σ0u Ñ Bε
βtσ0u.
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Example: Suppose Σ “ t0, 1, 10u and α “ 1.

Suppose, also, @σ P Σ, εpσq “ σ.

Then ΩN represents

the set of all GFA dispensations to the N professors.

Since νΩN gives equal probability to each dispensation,

νΩN represents the GFA’s first system for awarding grants.

Since β “ BPε
α “ BPε

1, we calculate: β “ pln 9q{10.

More calculation gives: pBε
βt0u, B

ε
βt1u, B

ε
βt10uq “

p1, 9´1{10, 9´1q

1` 9´1{10 ` 9´1
.

Since N is large, by Theorem 22.3, we get:

νΩN tf P ΩN | fN “ σ0u « Bε
βtσ0u.

So, if I am the Nth professor, then, under the first system,

my probability of receiving σ0 dollars

is approximately equal to Bε
βtσ0u.

Thus Theorem 22.3 reproduces the result of §13.

Example: Suppose Σ “ p r0..4s ˆ r0..4s q z t p4, 4q u.

Suppose, also, α “ 1 and @σ P Σ, εpσq “ σ1 ` σ2.

Then ΩN represents

the set of all state-distributions at the BUA. (See §20.)

Since β “ BPε
α “ BPε

1, we calculate:

β « 1.0670, accurate to four decimal places.

Let M P R5ˆ5 be the matrix defined by: M55 “ 0 and

@pi, jq P p r1..5s ˆ r1..5s q z t p5, 5q u, Mij “ Bε
βtpi´ 1, j ´ 1qu.

Then M «

»

—

—

—

—

–

0.4345 0.1495 0.0514 0.0177 0.0061

0.1495 0.0514 0.0177 0.0061 0.0021

0.0514 0.0177 0.0061 0.0021 0.0007

0.0177 0.0061 0.0021 0.0007 0.0002

0.0061 0.0021 0.0007 0.0002 0

fi

ffi

ffi

ffi

ffi

fl

all accurate to four decimal places.

(Thanks to C. Prouty for these calculations. See §28.)

According to Theorem 22.3, this answers

the “precise mathematical problem” formulated near the end of §20.

Since Bε
βtp0, 0qu “M11 « 0.4345, it is possible (cf. §15) to prove:

If N is sufficiently large, then, more than 99% of the time,

over 43% of the BUA professors have $0 wealth.
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23. 8-properness and p´8q-properness

Recall (§2): the notations If and f˚A.

DEFINITION 23.1. Let Σ be a set. Let ε : Σ Ñ R.

By ε is 8-proper , we mean: @t P R, #tσ P Σ | εpσq ď tu ă 8.

That is, @t P R, #p ε˚p´8; ts q ă 8.

Note that, for any finite set Σ, for any ε : Σ Ñ R,

we have: ε is 8-proper.

THEOREM 23.2. Let Σ be a set.

If Dε : Σ Ñ R s.t. ε is 8-proper, then Σ is countable.

The next result asserts that, for a nonempty set Σ,

if ε : Σ Ñ R is 8-proper,

then its image, Iε, has a minimal element, i.e., min Iε exists.

THEOREM 23.3. Let Σ be a set. Let ε : Σ Ñ R be 8-proper.

Assume: Σ ‰ H. Then: Dt0 P Iε s.t., @t P Iε, t ě t0.

THEOREM 23.4. Let Σ be a set. Let ε : Σ Ñ R be 8-proper.

Then: Iε is bounded below and @t P Iε, ε˚ttu is finite.

The preceding three theorems are basic; we omit proofs.

When ε is Z-valued, the converse of Theorem 23.4 is also true:

THEOREM 23.5. Let Σ be a set. Let ε : Σ Ñ Z.

Then: r ε is 8-proper s

ô r p Iε is bounded below q & p @t P Iε, ε˚ttu is finite q s.

The preceding is basic; we omit proof.

The following two results are corollaries of Theorem 23.5:

THEOREM 23.6. Let Σ be a set. Let ε : Σ Ñ Z be injective.

Then: r ε 8-proper s ô r Iε is bounded below s.

THEOREM 23.7. Let Σ Ď Z.

Define ε : Σ Ñ R by: @σ P Σ, εpσq “ σ.

Then: r ε 8-proper s ô r Σ is bounded below s.

DEFINITION 23.8. Let Σ be a set. Let ε : Σ Ñ R.

By ε is p´8q-proper , we mean: @t P R, #tσ P Σ | εpσq ě tu ă 8.



62

Let Σ be a set, ε : Σ Ñ R.

Then: p ε is p´8q-proper q ô p ´ε is 8-proper q.

THEOREM 23.9. Let Σ be a finite set.

Then: @ε : Σ Ñ R, ε is both 8-proper and p´8q-proper.

THEOREM 23.10. Let Σ be a set.

Assume: Dε : Σ Ñ R s.t. ε is both 8-proper and p´8q-proper.

Then: Σ is finite.

The preceding two theorems are basic; we omit proofs.

24. Boltzmann distributions on countable sets

In the next few sections,

we generalize our earlier work on Boltzmann distributions (§21)

to allow for a countably infinite set of states.

DEFINITION 24.1. Let Σ be a set, ε : Σ Ñ R, β P R.

Then: ∆ε
β :“

ř

σPΣ r e
´β¨pεpσqq s P r0;8s.

We have: @nonempty set Σ, @ε : Σ Ñ R, @β P R, ∆ε
β ą 0.

DEFINITION 24.2. Let Σ be a set, ε : Σ Ñ R.

Then the Delta-finite-set of ε is: DFε :“ tβ P R |∆ε
β ă 8u.

We have: @finite set Σ, @ε : Σ Ñ R, @β P R, ∆ε
β ă 8.

Then: @finite set Σ, @ε : Σ Ñ R, DFε “ R.

Let Σ be a set, ε : Σ Ñ R.

Since @β P R, ∆´ε
´β “ ∆ε

β, we get: DF´ε “ ´DFε.

Let Σ be a set, ε : Σ Ñ R, ξ P R.

Since @β P R, ∆ε`ξ
β “ e´β¨ξ ¨∆ε

β, we get: DFε`ξ “ DFε.

Recall (§9) the notations: MΘ, FMˆ
Θ, PΘ, N pµq.

DEFINITION 24.3. Let Σ be a countable set, ε : Σ Ñ R, β P R.

Then pBε
β PMΣ is defined by: @σ P Σ, pBε

βtσu “ e´β¨pεpσqq.

Let Σ be a countable set, ε : Σ Ñ R, β P R.

Since ∆ε
β “

ř

σPΣ r
pBε
βtσus, we get: ∆ε

β “
pBε
βpΣq.
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For any countable set Σ, for any ε : Σ Ñ R, for any β P R,

pΣ ‰ H and β P DFε q ô

p 0 ă ∆ε
β ă 8q ô p 0 ă pBε

βpΣq ă 8 q ô p pBε
β P FMˆ

Σ q.

DEFINITION 24.4. Let Σ be a countable set, ε : Σ Ñ R, β P R.

Assume: 0 ă ∆ε
β ă 8. Then: Bε

β :“ N p pBε
βq P PΣ.

Let Σ be a countable set, ε : Σ Ñ R.

If DFε “ H, then, @β P R, since pBε
βpΣq “ ∆ε

β “ 8,

we see that pBε
β cannot be normalized, i.e., there is no Bε

β.

So, if DFε “ H, then we have no Boltzmann distributions to study.

So, going forward, we often focus on cases where DFε ‰ H.

If Σ “ H, ε is the empty function, and there is nothing to say.

If Σ is nonempty and finite,

we already developed a satisfactory Boltzmann theory, in §21.

So, going forward, we often focus on cases where Σ is infinite.

Recall (§2): the notations If and f˚A.

Let Σ be an infinite set, ε : Σ Ñ R. Then: ε˚R “ Σ,

We have: p´8; 0s
Ť

r0;8q “ R.

Since p ε˚p´8; 0s q
Ť

p ε˚r0;8q q “ ε˚R “ Σ,

we get: either ε˚p´8; 0s is infinite or ε˚r0;8q is infinite.

Assuming Σ is countable,

the Boltzmann theory splits into these two cases;

replacing ε with ´ε interchanges the two cases,

so the theory in one case parallels the theory in the other.

Also, by Theorem 24.7 below, if DFε ‰ H,

then only one of the two cases can happen.

THEOREM 24.5. Let Σ be a set, ε : Σ Ñ R.

Assume: ε˚r0;8q is infinite. Then: DFε Ď p0;8q.

Proof. Given β P DFε, want: β P p0;8q.

Since DFε Ď R, we get: β P R.

Want: β ą 0. Assume: β ď 0. Want: Contradiction.

For all σ P Σ, let εσ :“ εpσq.

For all σ P ε˚r0;8q, since εσ “ εpσq P r0;8q, we get: εσ ě 0.

So, since β ď 0, we get: @σ P ε˚r0;8q, ´β ¨ εσ ě 0.

Then: @σ P ε˚r0;8q, e´β¨εσ ě 1.
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So, since ε˚r0;8q is infinite, we get:
ř

σPε˚r0;8qs re
´β¨εσ s “ 8.

Since ∆ε
β “

ř

σPΣ re
´β¨εσ s ě

ř

σPε˚r0;8qs re
´β¨εσ s “ 8,

we get: β R DFε. Contradiction. �

THEOREM 24.6. Let Σ be a set, ε : Σ Ñ R.

Assume: ε˚p´8; 0s is infinite. Then: DFε Ď p´8; 0q.

Proof. Since p´εq˚r0;8q “ ε˚p´8; 0s, we get: p´εq˚r0;8q is infinite.

Then, by Theorem 24.5, we get: DF´ε Ď p0;8q.

Then: DFε “ ´DF´ε Ď ´p0;8q “ p´8; 0q. �

THEOREM 24.7. Let Σ be a set, ε : Σ Ñ R.

Assume: ε˚p´8; 0s and ε˚r0;8q are both infinite. Then: DFε “ H.

Proof. By Theorem 24.5, we get: DFε Ď p0;8q.

By Theorem 24.6, we get: DFε Ď p´8; 0q.

Since DFε Ď p´8; 0q
Ş

p0;8q “ H, we get: DFε “ H. �

THEOREM 24.8. Let Σ be a set, ε : Σ Ñ R.

Assume: DFε
Ş

r0;8q ‰ H. Then: ε is 8-proper.

Proof. Given t P R, let Σ0 :“ tσ P Σ | εpσq ď tu, want: #Σ0 ă 8.

Since DFε
Ş

r0;8q ‰ H, choose β P DFε
Ş

r0;8q.

Then β P DFε and β P r0;8q.

Since β P DFε, we get: ∆ε
β ă 8. Then: eβ¨t ¨∆ε

β ă 8.

For all σ P Σ, let εσ :“ εpσq. Then: ∆ε
β “

ř

σPΣ re
´β¨εσ s.

By definition of Σ0, we have: @σ P Σ0, εpσq ď t.

Since β P r0;8q and since @σ P Σ0, t ě εpσq “ εσ,

we get: @σ P Σ0, ´β ¨ t ď ´β ¨ εσ.

Then: @σ P Σ0, e´β¨t ď e´β¨εσ .

Then: #Σ0 “
ř

σPΣ0
r1s “ eβ¨t ¨

ř

σPΣ0
re´β¨ts ď eβ¨t ¨

ř

σPΣ0
re´β¨εσ s

ď eβ¨t ¨
ř

σPΣ re
´β¨εσ s “ eβ¨t ¨∆ε

β ă 8. �

THEOREM 24.9. Let Σ be a set, ε : Σ Ñ R.

Assume: DFε
Ş

p´8; 0s ‰ H. Then: ε is p´8q-proper.

Proof. Since ´pDFε
Ş

p´8; 0s q ‰ H,

we get: DF´ε
Ş

r0;8q ‰ H.

Then, by Theorem 24.8, ´ε is8-proper, and so ε is p´8q-proper. �

THEOREM 24.10. Let Σ be a set, ε : Σ Ñ R.

Assume: DFε ‰ H. Then: Σ is countable.
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Proof. Since pDFε
Ş

p´8; 0sq q
Ť

pDFε
Ş

r0;8q q “ DFε ‰ H,

it follows that: either DFε
Ş

p´8; 0s ‰ H or DFε
Ş

r0;8q ‰ H.

Then, by Theorem 24.9 or Theorem 24.8,

we get: either ε is p´8q-proper or ε is 8-proper.

Then: either ´ε is 8-proper or ε is 8-proper.

In either case, by Theorem 23.2, we get: Σ is countable. �

THEOREM 24.11. Let Σ be a set, ε : Σ Ñ R.

Assume: DFε
Ş

p´8; 0s ‰ H ‰ DFε
Ş

r0;8q. Then: Σ is finite.

Proof. By Theorem 24.8, we get: ε is 8-proper.

By Theorem 24.9, we get: ε is p´8q-proper.

Then, by Theorem 23.10, we get: Σ is finite. �

THEOREM 24.12. Let Σ be a set, ε : Σ Ñ R.

Assume: ε˚r0;8q is infinite and DFε ‰ H. Then: ε is 8-proper.

Proof. By Theorem 24.5, we have: DFε Ď p0;8q.

Since DFε Ď p0;8q Ď r0;8q, we get: DFε
Ş

r0;8q “ DFε.

Since DFε
Ş

r0;8q “ DFε ‰ H, by Theorem 24.8,

we get: ε is8-proper. �

THEOREM 24.13. Let Σ be a set, ε : Σ Ñ R.

Assume: ε˚p´8; 0s is infinite and DFε ‰ H. Then: ε is p´8q-proper.

Proof. Since p´εq˚r0;8q “ ε˚p´8; 0s, we get: p´εq˚r0;8q is infinite.

Since DF´ε “ ´DFε, we get: DF´ε ‰ H.

Then, by Theorem 24.12, ´ε is 8-proper, so ε is p´8q-proper. �

DEFINITION 24.14. Let Σ be a set, ε : Σ Ñ R, β P R.

For all σ P Σ, let εσ :“ εpσq.

Then, @ρ P r0;8q, the ρ-exponent pβ, εq-absolute-sum is:

X
ρ
Sεβ :“

ř

σPΣ r |εσ|
ρ ¨ |e´β¨εσ | s P r0;8s.

Also, @ρ P r0..8q, if X
ρ
Sεβ ă 8,

then the ρ-exponent pβ, εq-sum is:

XρSεβ :“
ř

σPΣ r ε
ρ
σ ¨ e

´β¨εσ s P R.

Let Σ be a set, ε : Σ Ñ R, β P R, ρ P r0..8q.

If X
ρ
Sεβ ă 8, then, by subadditivity of absolute value,

we get: |XρSεβ| ď X
ρ
Sεβ.
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Let Σ be a set, ε : Σ Ñ R, β P R.

Recall our convention (§2): 00 “ 1. Then: X
0
Sεβ “ ∆ε

β.

Also, if X
0
Sεβ ă 8, then X0Sεβ “ ∆ε

β.

THEOREM 24.15. Let Σ be a set, ε : Σ Ñ R.

Assume: DFε ‰ H and Iε is bounded below. Let ρ ě 0 be real.

Let β P DFε and let γ ą β be real. Then: X
ρ
Sεγ ă 8.

We cannot replace “γ ą β” with “γ ě β”; see Theorem 24.17 below.

Proof. Since Iε is bounded below, choose t0 P R s.t., @σ P Σ, εpσq ě t0.

For all σ P Σ, let εσ :“ εpσq. Then: @σ P Σ, εσ ě t0.

Let δ :“ γ ´ β. Then δ ą 0, so, as tÑ 8, |t|ρ ¨ e´δ¨t Ñ 0.

So, since t ÞÑ |t|ρ ¨ e´δ¨t : rt0;8q Ñ R is continuous,

by the Extreme Value Theorem, choose M P R s.t.,

@real t ě t0, | t |ρ ¨ e´δ¨t ďM .

Recall: @σ P Σ, we have: εσ ě t0.

Then: @σ P Σ, |εσ|
ρ ¨ e´δ¨εσ ďM .

By definition of X
ρ
Sεγ, we get: X

ρ
Sεγ “

ř

σPΣ r |εσ|
ρ ¨ e´γ¨εσ s.

So, since ´γ “ ´δ´β, we get: X
ρ
Sεγ “

ř

σPΣ r p|εσ|
ρ ¨ e´δ¨εσq ¨ pe´β¨εσq s.

Since β P DFε, we get: ∆ε
β ă 8. Then: M ¨∆ε

β ă 8.

Then: X
ρ
Sεγ “

ř

σPΣ r p|εσ|
ρ ¨ e´δ¨εσq ¨ pe´β¨εσq s

ď
ř

σPΣ r M ¨ pe´β¨εσq s

“ M ¨ p
ř

σPΣ r e
´β¨εσ s q “ M ¨∆ε

β ă 8. �

THEOREM 24.16. Let Σ be a set, ε : Σ Ñ R, β, ρ P R.

Assume: ρ ě 0, ε is 8-proper, X
ρ
Sεβ ă 8. Then: β P DFε.

The proof below shows that we can weaken the hypothesis

“ε is 8-proper” to “tσ P Σ | εpσq ď 1u is finite”.

However, it cannot be dropped altogether; see Theorem 24.18 below.

Proof. Want: ∆ε
β ă 8.

Let F :“ tσ P Σ | εpσq ď 1u. Since ε is 8-proper, we get: F is finite.

For all σ P Σ, let εσ :“ εpσq. Then: F “ tσ P Σ | εσ ď 1u.

Since F is finite, we get:
ř

σPF re
´β¨εσ s ă 8.

So, since ∆ε
β “ p

ř

σPF re
´β¨εσ sq ` p

ř

σPΣzF re
´β¨εσ sq,

it suffices to show:
ř

σPΣzF re
´β¨εσ s ă 8.

Since F “ tσ P Σ | εσ ď 1u,

we get: @σ P ΣzF , εσ ą 1.

Then: @σ P ΣzF , since εσ ą 1 ą 0,



67

we get: εσ “ |εσ|.

Since @σ P ΣzF , 1 ă εσ “ |εσ|,

we get: @σ P ΣzF , 1ρ ď |εσ|
ρ.

Then: @σ P ΣzF , 1ρ ¨ e´β¨εσ ď |εσ|
ρ ¨ e´β¨εσ .

Then:
ř

σPΣzF re
´β¨εσ s “

ř

σPΣzF r1
ρ ¨ e´β¨εσ s ď

ř

σPΣzF r|εσ|
ρ ¨ e´β¨εσ s

ď
ř

σPΣ r|εσ|
ρ ¨ e´β¨εσ s “ X

ρ
Sεβ ă 8. �

THEOREM 24.17. Let Σ :“ r3..8q.

Define ε : Σ Ñ R by: @k P Σ, εpkq “ pln kq ` 2 ¨ plnpln kqq.

Let β :“ 1, γ :“ 1, ρ :“ 1. Then: β P DFε and X
ρ
Sεγ “ 8.

Proof. For all k P Σ, let εk :“ εpkq.

Then: @k P r3..8q, εk “ pln kq ` 2 ¨ plnpln kqq.

Since ∆ε
β “ ∆ε

1 “
ř

kPΣ re
´εks “

ř8

k“3 re
´εks

“

8
ÿ

k“3

„

1

eεk



“

8
ÿ

k“3

„

1

epln kq`2plnpln kqq



“

8
ÿ

k“3

„

1

k ¨ pln kq2



ă 8,

we get: β P DFε. It remains only to show: X
ρ
Sεγ “ 8.

We have: @k P r3..8q, k ą e, so ln k ą 1, so lnpln kq ą 0.

For all k P r3..8q, since εk “ pln kq ` 2 ¨ plnpln kqq ą 1` 2 ¨ 0 “ 1 ą 0,

we get: |εk| “ εk.

Since X
ρ
Sεγ “ X

1
Sε1 “

ř

kPΣ r|εk| ¨ e
´εks

“
ř8

k“3 r|εk| ¨ e
´εks

“
ř8

k“3 r εk ¨ e
´εks

“

8
ÿ

k“3

” εk
eεk

ı

“

8
ÿ

k“3

„

pln kq ` 2 ¨ plnpln kqq

epln kq`2plnpln kqq



“

8
ÿ

k“3

„

pln kq ` 2 ¨ plnpln kqq

k ¨ pln kq2



ě

8
ÿ

k“3

„

ln k

k ¨ pln kq2



“

8
ÿ

k“3

„

1

k ¨ pln kq



“ 8,

we get: X
ρ
Sεγ “ 8. �

THEOREM 24.18. Let Σ :“ N.

Define ε : Σ Ñ R by: @k P Σ, εpkq “ 1{k2.

Let β :“ 1, ρ :“ 1. Then: X
ρ
Sεβ ă 8 and β R DFε.

Proof. For all k P Σ, let εk :“ εpkq. Then: @k P Σ, εk “ 1{k2.

We have: @k P N, both |εk| “ 1{k2 and ´εk “ ´1{k2.
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Since X
ρ
Sεβ “ X

1
Sε1 “

ř

kPΣ r |εk| ¨ e
´εk s

“
ř8

k“1 r |εk| ¨ e
´εk s

“
ř8

k“1 rp1{k
2q ¨ e´1{k2s

ď
ř8

k“1 rp1{k
2q ¨ 1 s

“
ř8

k“1 r 1{k2 s ă 8,

it remains only to show: β R DFε Want: ∆ε
β “ 8.

We have: as k Ñ 8, e´1{k2 Ñ 1. Then:
ř8

k“1 re
´1{k2s “ 8.

Then: ∆ε
β “ ∆ε

1 “
ř

kPΣ re
´εks “

ř8

k“1 re
´εks “

ř8

k“1 re
´1{k2s “ 8. �

THEOREM 24.19. Let Σ be a set, ε : Σ Ñ R.

Assume: DFε ‰ H and Iε is bounded below. Let ρ ě 0 be real.

Let β0 :“ inf DFε and let γ P pβ0;8q. Then: X
ρ
Sεγ ă 8.

Proof. Since γ ą β0 “ inf DFε, choose β P DFε s.t. γ ą β.

Then, by Theorem 24.15, we get: X
ρ
Sεγ ă 8. �

THEOREM 24.20. Let Σ be a set, ε : Σ Ñ R.

Assume: DFε ‰ H and Iε is bounded below.

Let β0 :“ inf DFε and let γ P pβ0;8q. Then: γ P DFε.

Proof. By Theorem 24.19, we have: X
0
Sεγ ă 8.

Since ∆ε
γ “ X

0
Sεγ ă 8, we get: γ P DFε. �

THEOREM 24.21. Let Σ be a set, ε : Σ Ñ R.

Assume: ε˚r0;8q is infinite and DFε ‰ H. Let β0 :“ inf DFε.

Then: 0 ď β0 ă 8 and pβ0;8q Ď DFε.

Proof. By Theorem 24.5, DFε Ď p0;8q. Then: inf DFε ě infp0;8q.

Since DFε ‰ H, we get: inf DFε ă 8.

Since β0 “ inf DFε ě infp0;8q “ 0 and since β0 “ inf DFε ă 8,

we get: 0 ď β0 ă 8.

It remains to show: pβ0;8q Ď DFε.

Given γ P pβ0;8q, want: γ P DFε.

By Theorem 24.12, we have: ε is 8-proper.

Then, by Theorem 23.4, we have: Iε is bounded below.

Then, by Theorem 24.20, we have: γ P DFε. �

THEOREM 24.22. Let Σ be a set, ε : Σ Ñ R.

Assume: ε˚r0;8q is infinite and DFε ‰ H. Let β0 :“ inf DFε.

Then either p DFε “ rβ0;8q and 0 ă β0 ă 8 q

or p DFε “ pβ0;8q and 0 ď β0 ă 8 q.
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Proof. By Theorem 24.21, we get: 0 ď β0 ă 8 and pβ0;8q Ď DFε.

Since β0 “ inf DFε, we get: DFε Ď rβ0;8q.

By Theorem 24.5, we get: DFε Ď p0;8q.

Case 1: β0 P DFε. Want: DFε “ rβ0;8q and 0 ă β0 ă 8.

Recall: pβ0;8q Ď DFε and DFε Ď rβ0;8q and DFε Ď p0;8q.

Since β0 P DFε and pβ0;8q Ď DFε,

we get: tβ0u
Ť

pβ0;8q Ď DFε.

Since rβ0;8q “ tβ0u
Ť

pβ0;8q Ď DFε and since DFε Ď rβ0;8q,

we get: DFε “ rβ0;8q.

It remains only to show: 0 ă β0 ă 8.

Recall: 0 ď β0 ă 8. Then: β0 ă 8.

It remains only to show: 0 ă β0.

Since β0 P rβ0;8q “ DFε Ď p0;8q, we get: 0 ă β0.

End of Case 1.

Case 2: β0 R DFε. Want: DFε “ pβ0;8q and 0 ď β0 ă 8.

Recall: 0 ď β0 ă 8.

It remains only to show: DFε “ pβ0;8q.

Recall: DFε Ď rβ0;8q,

Since β0 R DFε and DFε Ď rβ0;8q,

we get: DFε Ď rβ0;8qztβ0u. Recall: pβ0;8q Ď DFε.

Since DFε Ď rβ0;8qztβ0u “ pβ0;8q and pβ0;8q Ď DFε,

we get: DFε “ pβ0;8q.

End of Case 2. �

THEOREM 24.23. Let Σ be a set, ε : Σ Ñ R.

Assume: ε˚p´8; 0s is infinite and DFε ‰ H. Let β0 :“ ´ sup DFε.

Then one of the following holds:

Either p DFε “ p´8;´β0s and 0 ă β0 ă 8 q

or p DFε “ p´8;´β0q and 0 ď β0 ă 8 q.

Proof. Since p´εq˚r0;8q is infinite and DF´ε ‰ H and β0 “ inf DF´ε,

by Theorem 24.22, we get:

either p DF´ε “ rβ0;8q and 0 ă β0 ă 8 q

or p DF´ε “ pβ0;8q and 0 ď β0 ă 8 q.

Then: either p DFε “ p´8;´β0s and 0 ă β0 ă 8 q

or p DFε “ p´8;´β0q and 0 ď β0 ă 8 q. �
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THEOREM 24.24. Let Σ be a set, ε : Σ Ñ R. Assume: DFε ‰ H.

Then one of the following holds:

(i) DFε “ R
or (ii) Dreal β0 ě 0 s.t. DFε “ pβ0;8q

or (ii’) Dreal β0 ą 0 s.t. DFε “ rβ0;8q

or (iii) Dreal β0 ě 0 s.t. DFε “ p´8;´β0q

or (iii’) Dreal β0 ą 0 s.t. DFε “ p´8;´β0s.

Below, in each of

Theorem 24.28, Theorem 24.30, Theorem 24.32,

we give examples of 8-proper ε : Σ Ñ Z such that

DFε “ H, DFε “ pβ0;8q, DFε “ rβ0;8q, respectively;

it follows that ´ε is p´8q-proper and that

DF´ε “ H, DF´ε “ p´8;´β0q, DF´ε “ p´8;´β0s, respectively.

Proof. Since ε : Σ Ñ R, we get: ε˚R “ Σ.

Since p´8; 0s
Ť

r0;8q “ R, we get: ε˚p´8; 0s
Ť

ε˚r0;8q “ ε˚R.

In case #Σ ă 8, we get: (i) holds. We therefore assume #Σ “ 8.

Want: (ii) or (ii’) or (iii) or (iii’) holds.

Because ε˚p´8; 0s
Ť

ε˚r0;8q “ ε˚R “ Σ,

and because Σ is infinite, we get:

either ε˚p´8; 0s is infinite or ε˚r0;8q is infinite.

Then, by Theorem 24.23 or Theorem 24.22, we get:

either (iii) or (iii’) holds or (ii) or (ii’) holds.

Then: (ii) or (ii’) or (iii) or (iii’) holds. �

THEOREM 24.25. Let n1, n2, . . . P r0..8q.

Let Σ :“ tpk, jq P Nˆ N | j ď nku.

Define ε : Σ Ñ r0..8q by: @pk, jq P Σ, εpk, jq “ k ´ 1.

Then: @k P N, #p ε˚rk ´ 1; kq q “ nk.

Proof. Given k P N, want: #p ε˚rk ´ 1; kq q “ nk.

Since ε˚rk ´ 1; kq “ tp`, jq P Σ | εp`, jq P rk ´ 1; kqu

“ tp`, jq P Σ | `´ 1 P rk ´ 1; kqu

“ tp`, jq P Σ | `´ 1 “ k ´ 1u

“ tp`, jq P Σ | ` “ ku

“ tp`, jq P Nˆ N | ` “ k , j ď n`u

“ tp`, jq P Nˆ N | ` “ k , j ď nku

“ t pk, 1q , . . . , pk, nkq u,

we get: #p ε˚rk ´ 1; kq q “ nk. �
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THEOREM 24.26. Let Σ be a set, ε : Σ Ñ r0;8q.

For all k P N, let nk :“ #p ε˚rk ´ 1; kq q.

Let β P r0;8q. Then: p β P DFε q ô p
ř8

k“1 rnke
´β¨ks ă 8 q.

Proof. For all σ P Σ, let εσ :“ εpσq.

Proof of ñ: Assume: β P DFε. Want:
ř8

k“1 rnke
´β¨ks ă 8.

Since β P DFε, we get: ∆ε
β ă 8.

Because Σ is the disjoint union, over k “ 1 to 8, of ε˚rk ´ 1; kq,

we get:
ř

σPΣ re
´β¨εσ s “

ř8

k“1

ř

σPε˚rk´1;kq re
´β¨εσ s.

For all k P N, for all σ P ε˚rk ´ 1; kq, since εσ “ εpσq P rk ´ 1; kq,

we have: k ą εσ.

Since β P r0;8q, we get: ´β ď 0.

For all k P N, for all σ P ε˚rk ´ 1; kq, we have: ´β ¨ k ď ´β ¨ εσ.

For all k P N, for all σ P ε˚rk ´ 1; kq, we have: e´β¨k ď e´β¨εσ .

Then: @k P N,
ř

σPε˚rk´1;kq re
´β¨ks ď

ř

σPε˚rk´1;kq re
´β¨εσ s.

Also, @k P N,
ř

σPε˚rk´1;kq re
´β¨ks “ nke

´β¨k.

Then: @k P N, nke
´β¨k ď

ř

σPε˚rk´1;kq re
´β¨εσ s.

Then:
ř8

k“1 rnke
´β¨ks ď

ř8

k“1

ř

σPε˚rk´1;kq re
´β¨εσ s

“
ř

σPΣ re
´β¨εσ s “ ∆ε

β ă 8.

End of proof of ñ.

Proof of ð: Assume:
ř8

k“1 rnke
´β¨ks ă 8. Want: β P DFε.

Because Σ is the disjoint union, over k “ 1 to 8, of ε˚rk ´ 1; kq,

we get:
ř

σPΣ re
´β¨pεσ`1qs “

ř8

k“1

ř

σPε˚rk´1;kq re
´β¨pεσ`1qs.

For all k P N, for all σ P ε˚rk ´ 1; kq, since εσ “ εpσq P rk ´ 1; kq,

we have: εσ ě k ´ 1.

For all k P N, for all σ P ε˚rk ´ 1; kq, we have: εσ ` 1 ě k.

Since β P r0;8q, we get: ´β ď 0.

For all k P N, for all σ P ε˚rk ´ 1; kq, we have: ´β ¨ pεσ ` 1q ď ´β ¨ k.

For all k P N, for all σ P ε˚rk ´ 1; kq, we have: e´β¨pεσ`1q ď e´β¨k.

Then: @k P N,
ř

σPε˚rk´1;kq re
´β¨pεσ`1qs ď

ř

σPε˚rk´1;kq re
´β¨ks.

Also, @k P N, nke
´β¨k “

ř

σPε˚rk´1;kq re
´β¨ks.

Then: @k P N,
ř

σPε˚rk´1;kq re
´β¨pεσ`1qs ď nke

´β¨k.

Then:
ř8

k“1

ř

σPε˚rk´1;kq re
´β¨pεσ`1qs ď

ř8

k“1 rnke
´β¨ks.

By assumption,
ř8

k“1 rnke
´β¨ks ă 8. Then eβ ¨

ř8

k“1 rnke
´β¨ks ă 8.

Since ∆ε
β “

ř

σPΣ r e´β¨εσ s

“
ř

σPΣ r eβ ¨ e´β¨pεσ`1q s
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“ eβ ¨
ř

σPΣ r e´β¨pεσ`1q s

“ eβ ¨
ř8

k“1

ř

σPε˚rk´1;kq r e
´β¨pεσ`1q s

ď eβ ¨
ř8

k“1 rnke
´β¨ks ă 8, we get: β P DFε.

End of proof of ð. �

THEOREM 24.27. Let Σ be a set, ε : Σ Ñ r0;8q.

For all k P N, let nk :“ #p ε˚rk ´ 1; kq q.

Assume: @k P N, nk ě ek
2
. Then: DFε “ H.

Proof. Since @k P N, nk ě ek
2
ą 1, we get:

ř8

k“1 nk “ 8.

Since #pε˚r0;8qq “
ř8

k“1 r#pε
˚rk ´ 1; kqqs “

ř8

k“1 nk “ 8,

it follows, from Theorem 24.5, that: DFε Ď p0;8q.

It therefore suffices to show: @β P p0;8q, β R DFε.

Given β P p0;8q, want: β R DFε.

Since, as k Ñ 8, ek
2´β¨k Ñ 8, we get:

ř8

k“1 re
k2´β¨ks “ 8.

Since
ř8

k“1 rnke
´β¨ks ě

ř8

k“1 re
k2e´β¨ks “

ř8

k“1 re
k2´β¨ks “ 8,

and since β P p0;8q Ď r0;8q,

by Theorem 24.26, we get: β R DFε. �

Recall (§2): @t P R, ttu denotes the floor of t.

THEOREM 24.28. For all k P N, let nk :“ tek
2
` 1u.

Let Σ :“ tpk, jq P Nˆ N | j ď nku.

Define ε : Σ Ñ r0..8q by: @pk, jq P Σ, εpk, jq “ k ´ 1.

Then: DFε “ H.

Proof. We have: @k P N, nk ě ek
2
.

By Theorem 24.25, we get: @k P N, #p ε˚rk ´ 1; kq q “ nk.

Then, by Theorem 24.27, we get: DFε “ H. �

THEOREM 24.29. Let Σ be a set, ε : Σ Ñ r0;8q.

For all k P N, let nk :“ #p ε˚rk ´ 1; kq q. Let β0 P r0;8q.

Assume: as k Ñ 8, nke
´β0¨k Ñ 1. Then: DFε “ pβ0;8q.

Proof. Since as k Ñ 8, nke
´β0¨k Ñ 1, we get:

#tk P N |nke´β0¨k “ 0u ă 8.

Then: #tk P N |nk “ 0u ă 8.

Then #tk P N |nk ě 1u “ 8, and so
ř8

k“1 nk “ 8.

Since #pε˚r0;8qq “
ř8

k“1 r#pε
˚rk ´ 1; kqqs “

ř8

k“1 nk “ 8,

it follows, from Theorem 24.5, that: DFε Ď p0;8q.

Since DFε Ď p0;8q Ď r0;8q, we get: DFε
Ş

r0;8q “ DFε.

Since β0 P r0;8q, we get: pβ0;8q Ď p0;8q.
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Since pβ0;8q Ď p0;8q Ď r0;8q, we get: pβ0;8q
Ş

r0;8q “ pβ0;8q.

We have: @β P R, @k P N, rnke
´β¨ks { re´pβ´β0q¨ks “ nke

´β0¨k.

By hypothesis, as k Ñ 8, nke
´β0¨k Ñ 1.

Then: @β P R, as k Ñ 8, rnke
´β¨ks { re´pβ´β0q¨ks Ñ 1.

Then: @β P R, p
ř8

k“1 rnke
´β¨ks ă 8q ô p

ř8

k“1 re
´pβ´β0q¨ks ă 8q.

Also, @β P R, p β P pβ0;8q q ô p
ř8

k“1 re
´pβ´β0q¨ks ă 8q.

Then: @β P R, p
ř8

k“1 rnke
´β¨ks ă 8q ô p β P pβ0;8q q.

Then, by Theorem 24.26,

@β P r0;8q, pβ P DFεq ô p β P pβ0;8q q.

Then: DFε
Ş

r0;8q “ pβ0;8q
Ş

r0;8q.

Then: DFε “ DFε
Ş

r0;8q “ pβ0;8q
Ş

r0;8q “ pβ0;8q. �

THEOREM 24.30. Let β0 P r0;8q. For all k P N, let nk :“ teβ0¨ku.

Let Σ :“ tpk, jq P Nˆ N | j ď nku.

Define ε : Σ Ñ r0..8q by: @pk, jq P Σ, εpk, jq “ k ´ 1.

Then: DFε “ pβ0;8q.

Proof. We have: as k Ñ 8, nke
´β0¨k Ñ 1.

By Theorem 24.25, we get: @k P N, #p ε˚rk ´ 1; kq q “ nk.

Then, by Theorem 24.29, we get: DFε “ pβ0;8q. �

THEOREM 24.31. Let Σ be a set, ε : Σ Ñ r0;8q.

For all k P N, let nk :“ #p ε˚rk ´ 1; kq q.

Let p P p1;8q, β0 P p0;8q.

Assume: as k Ñ 8, kpnke
´β0¨k Ñ 1. Then: DFε “ rβ0;8q.

Proof. Since, as k Ñ 8, kpnke
´β0¨k Ñ 1, we get:

#tk P N | kpnke´β0¨k “ 0u ă 8.

Then #tk P N | nk “ 0u ă 8.

Then #tk P N | nk ě 1u “ 8, and so
ř8

k“1 nk “ 8.

Since #pε˚r0;8qq “
ř8

k“1 r#pε
˚rk ´ 1; kqqs “

ř8

k“1 nk “ 8,

it follows, from Theorem 24.5, that: DFε Ď p0;8q.

Since DFε Ď p0;8q Ď r0;8q, we get: DFε
Ş

r0;8q “ DFε.

Since β0 P p0;8q, we get: rβ0;8q Ď p0;8q.

Since rβ0;8q Ď p0;8q Ď r0;8q, we get: rβ0;8q
Ş

r0;8q “ rβ0;8q.

We have: @β P R, @k P N, rnke
´β¨ks{rk´pe´pβ´β0q¨ks “ kpnke

´β0¨k.

By hypothesis, as k Ñ 8, kpnke
´β0¨k Ñ 1.

Then: @β P R, as k Ñ 8, rnke
´β¨ks{rk´pe´pβ´β0q¨ks Ñ 1.

Then: @β P R, p
ř8

k“1 rnke
´β¨ks ă 8q ô p

ř8

k“1 rk
´pe´pβ´β0q¨ks ă 8q.

Also, since p P p1;8q, we get:
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@β P R, p β P rβ0;8q q ô p
ř8

k“1 rk
´pe´pβ´β0q¨ks ă 8q.

Then: @β P R, p
ř8

k“1 rnke
´β¨ks ă 8q ô p β P rβ0;8q q.

Then, by Theorem 24.26,

@β P r0;8q, pβ P DFεq ô p β P rβ0;8q q.

Then: DFε
Ş

r0;8q “ rβ0;8q
Ş

r0;8q.

Then: DFε “ DFε
Ş

r0;8q “ rβ0;8q
Ş

r0;8q “ rβ0;8q. �

THEOREM 24.32. Let β0 P p0;8q.

For all k P N, let nk :“ tk´2eβ0¨ku.

Let Σ :“ tpk, jq P Nˆ N | j ď nku.

Define ε : Σ Ñ r0..8q by: @pk, jq P Σ, εpk, jq “ k ´ 1.

Then: DFε “ rβ0;8q.

Proof. We have: as k Ñ 8, k2nke
´β0¨k Ñ 1.

By Theorem 24.25, we get: @k P N, #p ε˚rk ´ 1; kq q “ nk.

Then, by Theorem 24.31, we get: DFε “ rβ0;8q. �

Let Σ be an infinite set. Let ε : Σ Ñ r0;8q.

For all k P N, let nk :“ #p ε˚rk ´ 1; kq q.

In many applications, the sequence n1, n2, . . . is subexponential.

By the next theorem, whenever that happens, we get: DFε “ p0;8q.

THEOREM 24.33. Let Σ be an infinite set, ε : Σ Ñ r0;8q.

For all k P N, let nk :“ #p ε˚rk ´ 1; kq q.

Assume: @β P p0;8q, as k Ñ 8, nke
´β¨k Ñ 0. Then: DFε “ p0;8q.

Proof. Since ε : Σ Ñ r0;8q, we get: ε˚r0;8q “ Σ.

So, since Σ is infinite, we get: ε˚r0;8q is infinite.

It follows, from Theorem 24.5, that: DFε Ď p0;8q.

Want: p0;8q Ď DFε.

Given β P p0;8q, want: β P DFε.

Since β P p0;8q Ď r0;8q, by Theorem 24.26,

it suffices to show:
ř8

k“1 rnke
´β¨ks ă 8.

Let β1 :“ β{2. Since β P p0;8q, we get: β1 P p0;8q.

Then, by hypothesis, we have: as k Ñ 8, nke
´β1¨k Ñ 0.

It follows that: tnke
´β1¨k | k P Nu is bounded.

Choose M P R s.t., @k P N, nke
´β1¨k ďM .

Since β1 P p0;8q, it follows that 1´ e´β
1

ą 0

and that e´β
1

` e´2β1 ` e´3β1 ` ¨ ¨ ¨ “ e´β
1

{p1´ e´β
1

q.

Then: e´β
1

` e´2β1 ` e´3β1 ` ¨ ¨ ¨ ă 8.

Then: M ¨ pe´β
1

` e´2β1 ` e´3β1 ` ¨ ¨ ¨ q ă 8.
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Then:
ř8

k“1 rnke
´β¨ks “

ř8

k“1 rnke
´2β1¨ks

“
ř8

k“1 rpnke
´β1¨kq¨e´β

1¨ks ď
ř8

k“1 rMe´β
1¨ks “M ¨

ř8

k“1 re
´β1¨ks

“M ¨ pe´β
1

` e´2β1 ` e´3β1 ` ¨ ¨ ¨ q ă 8. �

The next theorem is a corollary of Theorem 24.33.

THEOREM 24.34. Let Σ be an infinite set, ε : Σ Ñ r0..8q.

Assume: ε is injective. Then: DFε “ p0;8q.

Example: Let Σ :“ r0..8q. Define ε : Σ Ñ R by: @σ P Σ, εpσq “ σ.

Then, @k P N, ε˚rk´ 1; kq “ tk´ 1u, and so #p ε˚rk´ 1; kq q “ 1.

Then, by Theorem 24.34, we get: DFε “ p0;8q.

DEFINITION 24.35. Let Σ be a set, ε : Σ Ñ R.

Then: IDFε denotes the interior in R of DFε.

THEOREM 24.36. Let Σ be a set, ε : Σ Ñ R. Assume: DFε ‰ H.

Then one of the following holds:

(i) IDFε “ R
or (ii) Dβ0 P r0;8q s.t. IDFε “ pβ0;8q

or (iii) Dβ0 P r0;8q s.t. IDFε “ p´8;´β0q.

The preceding theorem is a corollary of Theorem 24.24.

THEOREM 24.37. Let Σ be a set, ε : Σ Ñ R.

Then: p DFε “ H q ô p IDFε “ H q.

Proof. Since IDFε Ď DFε, we get:

p DFε “ H q ñ p IDFε “ H q.

Want: p DFε ‰ H q ñ p IDFε ‰ H q.

Assume DFε ‰ H. Want: IDFε ‰ H.

By Theorem 24.36, one of the following is true:

(i) IDFε “ R
or (ii) Dβ0 P r0;8q s.t. IDFε “ pβ0;8q

or (iii) Dβ0 P r0;8q s.t. IDFε “ p´8;´β0q.

Then: IDFε ‰ H. �

THEOREM 24.38. Let Σ be a set, ε : Σ Ñ R.

Then: p IDFε “ R q ô p DFε “ R q ô p Σ is finite q.

Proof. Since IDFε Ď DFε Ď R, we get:

p IDFε “ R q ñ p DFε “ R q.
By Theorem 24.11, p DFε “ R q ñ p Σ is finite q.
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It remains to show: p Σ is finite q ñ p IDFε “ R q.
Assume: Σ is finite. Want: IDFε “ R.

Since the interior in R of R is equal to R,

it suffices to show: DFε “ R.

Since DFε Ď R, want: R Ď DFε.

Given β P R, want: β P DFε.

Since Σ is finite, we get:
ř

σPΣ re
´β¨pεpσqqs ă 8.

Since ∆ε
β “

ř

σPΣ re
´β¨pεpσqqs ă 8, we get: β P DFε. �

THEOREM 24.39. Let Σ be a set, ε : Σ Ñ R.

Assume: Dβ0 P r0;8q s.t. IDFε “ pβ0;8q. Then: ε is 8-proper.

Proof. We have: IDFε
Ş

r0;8q ‰ H.

So, since DFε Ě IDFε, we get: DFε
Ş

r0;8q ‰ H.

Then, by Theorem 24.8, we get: ε is 8-proper. �

THEOREM 24.40. Let Σ be a set, ε : Σ Ñ R. Then:

p Dβ0 P r0;8q s.t. IDFε “ p´8;´β0q q ñ p ε is p´8q-proper q.

Proof. We have: IDFε
Ş

p´8; 0s ‰ H.

So, since DFε Ě IDFε, we get: DFε
Ş

p´8; 0s ‰ H.

Then, by Theorem 24.9, we get: ε is p´8q-proper. �

THEOREM 24.41. Let Σ be a set, ε : Σ Ñ R.

Assume: DFε ‰ H. Then:

p ε is 8-proper q or p ε is p´8q-proper q.

Proof. MORE LATER. �

THEOREM 24.42. Let Σ be a set, ε : Σ Ñ R, β P IDFε,

ρ P r0;8q. Assume ε is proper. Then: X
ρ
Sεβ ă 8.

We can remove the properness hypothesis from Theorem 24.42:

THEOREM 24.43. Let Σ be a set, ε : Σ Ñ R, β P IDFε,

ρ P r0;8q. Then: X
ρ
Sεβ ă 8.

Proof. By Theorem 24.41, we have:

p ε is 8-proper q or p ε is p´8q-proper q. USE Theo-

rem 24.19. MORE LATER. �

25. Convergence, complex-differentiation, Cω results

Recall (§2): the notations If and f˚A.

Recall (§8): for f : S Ñ C, the notation
ř

xPS rfpxqs.
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THEOREM 25.1. Let Σ be an infinite set, ε : Σ Ñ R.

Assume: H ‰ DFε Ď p0;8q. Let γ P IDFε.

For all n P N, let Σn :“ ε˚p´8;ns and let εn :“ ε|Σn.

Then: p X
ρ
Sεγ ă 8 q and p as nÑ 8, XρSεnγ Ñ XρSεγ q.

Proof. Since DFε Ď p0;8q Ď r0;8q, we get: DFε
Ş

r0;8q “ DFε.

Since DFε
Ş

r0;8q “ DFε ‰ H, by Theorem 24.8,

we get: ε is 8-proper.

Let β0 :“ inf DFε. By Theorem 24.22, we get: IDFε “ pβ0;8q.

Since γ P pβ0;8q, by Theorem 24.19, we get: X
ρ
Sεγ ă 8.

It remains to show: as nÑ 8, XρSεnγ Ñ XρSεγ.

For all σ P Σ, let εσ :“ εpσq.

Define f : Σ Ñ R by: @σ P Σ, fpσq “ ερσ ¨ e
´γ¨εσ .

By Theorem 8.4, as nÑ 8,
ř

σPΣn
rfpσqs Ñ

ř

σPΣ rfpσqs.

So, since @n P N,
ř

σPΣn
rfpσqs “ XρSεnγ

and since
ř

σPΣ rfpσqs “ XρSεγ,

we get: as nÑ 8, XρSεnγ Ñ XρSεγ. �

Recall (§2): the notations <pzq and =pzq.
Note: @z P C, |ez| “ e<pzq.

Also, @S Ď R, <˚S “ tx` y
?
´1 |x P Su.

THEOREM 25.2. Let U be an open subset of C, g, h : U Ñ C.

Let f1, f2, . . . : U Ñ C all be complex-differentiable on U .

Assume, as nÑ 8, we have:

both fn Ñ g pointwise on U and f 1n Ñ h uniformly on U .

Then: g is complex-differentiable on U and g1 “ h on U .

Theorem 25.2 is a standard result about

commuting of limit and differentiation. We omit proof.

It will be helpful to extend Definition 24.14 to C:

DEFINITION 25.3. Let Σ be a set, ε : Σ Ñ C, z P C.

For all σ P Σ, let εσ :“ εpσq.

Then, @ρ P r0;8q, the ρ-exponent pz, εq-absolute-sum is:

X
ρ
Sεz :“

ř

σPΣ r |εσ|
ρ ¨ |e´z¨εσ | s P r0;8s.

Also, @ρ P r0..8q, if X
ρ
Sεz ă 8,

then the ρ-exponent pz, εq-sum is:

XρSεz :“
ř

σPΣ r ε
ρ
σ ¨ e

´z¨εσ s P C.
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We continue to focus on the case where Iε Ď R.

We have: @set Σ, @ε : Σ Ñ R, @z P C, @ρ P r0;8q,

X
ρ
Sεz “ X

ρ
Sε<pzq.

Recall: Theorem 24.43.

Then: @set Σ, @ε : Σ Ñ R, @z P <˚IDFε, @ρ P r0;8q,

X
ρ
Sεz ă 8, and so XρSεz is defined.

DEFINITION 25.4. Let Σ be a set, ε : Σ Ñ R, ρ P r0..8q.

For all σ P Σ, let εσ :“ εpσq.

Then XρSε‚ : IDFε Ñ R is defined by:

@β P IDFε, pXρSε‚qpβq “ XρSεβ.

Also, XρSε‚C : <˚IDFε Ñ C is defined by:

@z P <˚IDFε, pXρSε‚qpzq “ XρSεz.

THEOREM 25.5. Let Σ be a set, ε : Σ Ñ R.

Assume: H ‰ DFε Ď p0;8q. Let γ P IDFε.

For all n P N, let Σn :“ ε˚p´8;ns and let εn :“ ε|Σn.

Then: as nÑ 8, XρSεn‚C Ñ XρSε‚C uniformly on <˚pγ;8q.

Proof. Given δ ą 0, want: Dn0 P N s.t., @n P rn0..8q,

|XρSε‚C ´ XρSεn‚C| ă δ on <˚pγ;8q.

Let β0 :“ inf DFε. Then IDFε “ pβ0;8q.

On <˚pγ;8q, |XρSε‚C ´ XρSεn‚C| ď XρSεγ ´ XρSεnγ .

MORE LATER �

THEOREM 25.6. Let Σ be a set, ε : Σ Ñ R.

Assume: Σ is finite. Let ρ P r0..8q.

Then: XρSε‚C is complex-differentiable on C.

and pXρSε‚Cq
1 “ ´Xρ`1Sε‚C on C.

Proof. For all σ P Σ, let εσ :“ εpσq.

We have: @z P C, pXρSε‚Cq pzq “
ř

σPΣ rε
ρ
σ ¨ e

´z¨εσ s

Since Σ is finite, we may differentiate term-by-term, yielding:

@z P C, pXρSε‚Cq
1pzq “

ř

σPΣ rε
ρ
σ ¨ e

´z¨εσ ¨ p´εσqs

Thus XρSε‚C is complex-differentiable on C.

It remains to show: pXρSε‚Cq
1 “ ´Xρ`1Sε‚C on C.

Since @z P C, we have: pXρSε‚Cq
1pzq “

ř

σPΣ rε
ρ
σ ¨ e

´z¨εσ ¨ p´εσqs

“ ´
ř

σPΣ rε
ρ`1
σ ¨e´z¨εσ s “ ´pXSεqpzq,

we conclude: pXρSε‚Cq
1 “ ´Xρ`1Sε‚C on C. �
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In Theorem 25.6, we assumed Σ was finite.

We next investigate what happens without that assumption:

THEOREM 25.7. Let Σ be a set, ε : Σ Ñ R.

Assume: H ‰ DFε Ď p0;8q. Let ρ P r0..8q.

Then: XρSε‚C is complex-differentiable on <˚IDFε.

and pXρSε‚Cq
1 “ ´Xρ`1Sε‚C on <˚IDFε.

Proof. Let β0 :“ inf DFε. Then IDFε “ pβ0;8q.

For all n P N, let Σn :“ ε˚p´8;ns and let εn :“ ε|Σn.

Given z P <˚pβ0;8q, want: XρSε‚C is complex-differentiable at z

and pXρSε‚Cq
1pzq “ ´pXρ`1Sε‚Cqpzq.

Let β :“ <pzq. Let γ :“ pβ0 ` βq{2. Then β0 ă γ ă β.

It suffices to show: XρSε‚C is complex-differentiable on <˚pγ;8q

and pXρSε‚Cq
1 “ ´Xρ`1Sε‚C on <˚pγ;8q.

By Theorem 25.5, as nÑ 8, we have both

XρSεn‚C Ñ XρSε‚C uniformly on <˚pγ;8q

and Xρ`1Sεn‚C Ñ Xρ`1Sε‚C uniformly on <˚pγ;8q.

For all n P N, since Σn is finite, by Theorem 25.6, we see that

XρSεn‚C is complex-differentiable at z

and pXρSεn‚Cq
1 “ ´Xρ`1Sεn‚C on <˚pβ0;8q.

Then, as nÑ 8, we have both

XρSεn‚C Ñ XρSε‚C pointwise on <˚pγ;8q

and pXρSεn‚Cq
1 Ñ ´Xρ`1Sε‚C uniformly on <˚pγ;8q.

Then, by Theorem 25.2, we get:

XρSε‚C is complex-differentiable on <˚pγ;8q

and pXρSε‚Cq
1 “ ´Xρ`1Sε‚C on <˚pγ;8q. �

We can remove the hypothesis “H ‰ DFε Ď p0;8q”

from the preceding theorem:

THEOREM 25.8. Let Σ be a set, ε : Σ Ñ R. Let ρ P r0..8q.

Then: XρSε‚C is complex-differentiable on <˚IDFε.

and pXρSε‚Cq
1 “ ´Xρ`1Sε‚C on <˚IDFε.

Recall (§2): “Cω” means “real-analytic”.

THEOREM 25.9. Let V be an open subset of C, U :“ V
Ş

R.

Let g : V Ñ C. Assume g˚U Ď R. Let f :“ g|U .

Assume: g : V Ñ C is complex-differentiable on V .

Then: f : U Ñ R is Cω on U .

Also, p pg1q˚U Ď R q and p f 1 “ g1|U q.
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THEOREM 25.10. Let Σ be a set, ε : Σ Ñ R, ρ P r0..8q.

Then: XρSε‚ is Cω on IDFε
and pXρSε‚q

1 “ ´Xρ`1Sε‚ on IDFε.

Proof. Let β0 :“ inf DFε. Then IDFε “ pβ0;8q.

Use Theorem 25.9.

MORE LATER �

26. Boltzmann averages on countable sets

DEFINITION 26.1. Let Σ be a set, ε : Σ Ñ R, β P R.

For all σ P Σ, let εσ :“ εpσq.

Assume: X
1
Sεβ ă 8. Then: Γεβ :“ X1Sεβ.

Let Σ be a countable set, ε : Σ Ñ R, β P R.

If X
1
Sεβ ă 8, then Γεβ “

ř

σPΣ rεσ ¨ p
pBε
βtσuqs,

and so Γεβ is the integral of ε wrt pBε
β.

In the next definition, in order that Γεβ{∆
ε
β is defined,

we need: both Γεβ is defined and 0 ă ∆ε
β ă 8.

We therefore assume X
1
Sεβ ă 8, to ensure that Γεβ is defined.

We also assume Σ is nonempty, to ensure that ∆ε
β ą 0.

Finally, we assume β P DFε, to ensure that ∆ε
β ă 8.

DEFINITION 26.2. Let Σ be a nonempty set, ε : Σ Ñ R, β P R.

Assume: X
1
Sεβ ă 8 and β P DFε. Then: Aεβ :“ Γεβ{∆

ε
β.

Note that, by Theorem 24.16, if ε is 8-proper, then

pX
1
Sεβ ă 8q ñ p β P DFε q.

Without 8-properness, this fails, by Theorem 24.18,

pX
1
Sε1 ă 8q ­ñ p 1 P DFε q.

By Theorem 24.17, even with 8-properness,

p 1 P DFε q ­ñ pX
1
Sε1 ă 8q.

THEOREM 26.3. Let Σ be a nonempty countable set, ε : Σ Ñ R.

Let β P DFε. Assume X
1
Sεβ ă 8. Then |ε˚B

ε
β|1 ă 8 and Aεβ “Mε˚Bεβ

.

Proof. BY Theorem 8.5,

SHOW:
ř

tPIε r|t| ¨ ppε˚B
ε
βqttuqs “

ř

σPΣ r|εσ| ¨ pB
ε
βtσuqs.

IDEA: BY Theorem 8.5,
ř

tPIε

ř

σPε˚ttu r|t| ¨ pB
ε
βtσuqs “

ř

σPΣ r|εσ| ¨ pB
ε
βtσuqs.
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THEN: |ε˚B
ε
β|1 “ pX

1
Sεβq{∆

ε
β.

THEN: |ε˚B
ε
β|1 ă 8.

THEN: Mε˚Bεβ
“
ř

tPIε rt ¨ ppε˚B
ε
βqttuqs.

Since Σ ‰ H, we get: ∆ε
β ą 0.

Since β P DFε, we get: ∆ε
β ă 8.

Then 0 ă ∆ε
β ă 8, so, since ∆ε

β “
pBε
βpΣq,

we get: 0 ă pBε
βpΣq ă 8.

For all σ P Σ, let εσ :“ εpσq.

Since
ř

σPΣ |εσ ¨ p
pBε
βtσuq| “

ř

σPΣ r |εσ| ¨ e
´β¨εσ s “ X

1
Sεβ ă 8,

dividing by pBε
βpΣq, we get:

ř

σPΣ |εσ ¨ pB
ε
βtσuq| ă 8.

Then, by Theorem 8.6,

we get: @t P Iε,
ř

σPε˚ttu |εσ ¨ pBβtσuq | ă 8 and
ř

tPIε |
ř

σPε˚ttu rεσ ¨ pBβtσuqs | ă 8 and
ř

tPIε

ř

σPε˚ttu rεσ ¨ pB
ε
βtσuqs “

ř

σPΣ rεσ ¨ pB
ε
βtσuqs.

Also, Aεβ “
ř

σPΣ rεσ ¨ pB
ε
βtσuqs.

Then:
ř

tPIε

ř

σPε˚ttu rεσ ¨ pB
ε
βtσuqs “ Aεβ.

So, since
ř

tPIε rt ¨ ppε˚B
ε
βqttuqs “Mε˚Bεβ

,

we want:
ř

tPIε rt ¨ ppε˚B
ε
βqttuqs “

ř

tPIε

ř

σPε˚ttu rεσ ¨ pB
ε
βtσuqs.

Want: @t P Iε, t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu rεσ ¨ pB
ε
βtσuqs.

Given t P Iε, want: t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu rεσ ¨ pB
ε
βtσuqs.

For all σ P ε˚ttu, since εσ “ εpσq P ttu, we get: t “ εσ.

Want: t ¨ ppε˚B
ε
βqttuq “

ř

σPε˚ttu r t ¨ pB
ε
βtσuq s.

Because ε˚ttu is the disjoint union, over σ P ε˚ttu, of tσu,

we get: Bε
βpε

˚ttuq “
ř

σPε˚ttu r Bε
βtσu s.

Also, pε˚B
ε
βqttuq “ Bε

βpε
˚ttuq.

Then: t ¨ ppε˚B
ε
βqttuq “ t ¨ pBε

βpε
˚ttuqq “

ř

σPε˚ttu r t ¨ pB
ε
βtσuqs. �

THEOREM 26.4. Let Σ be a set, ε : Σ Ñ R.

Assume: ε˚r0;8q is infinite and DFε ‰ H. Let β0 :“ inf DFε.

Then: @real γ ą β0, @real ρ ą 0, X
ρ
Sεγ ă 8.

Proof. Given a real γ ą β0 and a real ρ ą 0, want: X
ρ
Sεγ ă 8.

By Theorem 24.12, ε is 8-proper.

Then, by Theorem 23.4, Iε is bounded below.

By Theorem 24.19, we have: X
ρ
Sεγ ă 8. �

DEFINITION 26.5. Let Σ be a set, ε : Σ Ñ R.

Then Aε‚ : IDFε Ñ R is defined by: @β P IDFε, Aε‚pβq “ Aεβ.
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THEOREM 26.6. Let Σ be a set.

Let ε : Σ Ñ R. Assume: #Iε ě 2.

Then: Aε‚ is a strictly-decreasing Cω-diffeomorphism

from IDFε onto pinf IAε‚ ; sup IAε‚q.

Proof. For all σ P Σ, let εσ :“ εpσq.

We have: @β P IDFε, A
ε
‚pβq “

ř

σPΣ rεσ ¨ e
´β¨εσ s

ř

τPΣ re
´β¨ετ s

.

We have: @β P IDFε, A
ε
‚pβq “

Γε‚pβq

∆ε
‚pβq

.

We have: @β P IDFε, A
ε
‚pβq “

pX1Sε‚qpβq

pX0Sε‚qpβq
.

By Theorem 25.7, X1Sε‚ and X0Sε‚ are both Cω.

So, since X0Sε‚ ‰ 0 on IDFε, we conclude: Aε‚ is Cω.

By Theorem 25.10, we have:

@β P IDFε, pX
1Sε‚q

1pβq “ ´pX2Sε‚qpβq,

and @β P IDFε, pX
0Sε‚q

1pβq “ ´pX1Sε‚qpβq.

Then: @β P IDFε, pX
1Sε‚q

1pβq “
ř

σPΣ rp´ε
2
σq ¨ e

´β¨εσ s,

and @β P IDFε, pX
0Sε‚q

1pβq “
ř

τPΣ rp´ετ q ¨ e
´β¨ετ s.

So, by the Cω-Inverse Function Theorem and

the Mean Value Theorem, it suffices to show: pAε‚q
1 ă 0 on IDFε.

Given β P IDFε, want: pAε‚q
1pβq ă 0.

Let P :“
ř

σPΣ r εσ ¨ e
´β¨εσ s, P 1 :“

ř

σPΣ r p´ε
2
σq ¨ e

´β¨εσ s.

Let Q :“
ř

τPΣ r e
´β¨ετ s, Q1 :“

ř

τPΣ r p´ετ q ¨ e
´β¨ετ s.

Then Q ą 0. Also, by the Quotient Rule, pAε‚q
1pβq “ rQP 1 ´PQ1s{Q2.

Want: QP 1 ´ PQ1 ă 0.

CITE NEW THEOREM THAT SAYS

p
ř

x rfpxqs q ¨ p
ř

y rgpyqs q “
ř

x

ř

y r pfpxqq ¨ pgpyqq s.

We have: QP 1 “
ř

σPΣ

ř

τPΣr p´ε
2
σq ¨ e

´β¨pεσ`ετ q s.

We have: PQ1 “
ř

σPΣ

ř

τPΣ r p´εσετ q ¨ e
´β¨pεσ`ετ q s.

Then: QP 1 ´ PQ1 “
ř

σPΣ

ř

τPΣ r p´ε
2
σ ` εσετ q ¨ e

´β¨pεσ`ετ q s.

Interchanging σ and τ , we get:

QP 1 ´ PQ1 “
ř

τPΣ

ř

σPΣ r p´ε
2
τ ` ετεσq ¨ e

´β¨pετ`εσq s.

By commutativity of addition and multiplication,

adding the last two equations gives:

2 ¨ pQP 1´PQ1q “
ř

σPΣ

ř

τPΣ r p´ε
2
σ ´ ε

2
τ ` 2εσετ q ¨ e

´β¨pεσ`ετ q s.

Then: 2 ¨ pQP 1 ´ PQ1q “
ř

σPΣ

ř

τPΣ r ´pεσ ´ ετ q
2 ¨ e´β¨pεσ`ετ q s.

Then: 2 ¨ pQP 1 ´ PQ1q ă 0. Then: QP 1 ´ PQ1 ă 0. �
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Recall (Theorem 23.3):

If ε is 8-proper, then Iε has a minimum element, i.e., min Iε exists.

THEOREM 26.7. Let Σ be a set, ε : Σ Ñ R.

Assume: ε˚r0;8q is infinite and DFε ‰ H.

Then: ε is 8-proper and as β Ñ 8, Aεβ Ñ min Iε.

Proof. By Theorem 24.12, ε is 8-proper.

It remains to show: as β Ñ 8, Aεβ Ñ min Iε.
Let t0 :“ min Iε. Want: Aεβ Ñ t0.

Let Σ1 :“ Σzpε˚tt0uq. Let n0 :“ #pε˚tt0uq.

Since tt0u Ď p´8; t0s, we get ε˚tt0u Ď ε˚p´8; t0s.

Since ε is 8-proper, we get: ε˚p´8; t0s is finite.

Then ε˚tt0u is finite. That is, n0 ă 8.

Since t0 P Iε, we get ε˚tt0u ‰ H, and so n0 ą 0. Then 0 ă n0 ă 8.

For all β P pβ0;8q, we have:

Aεβ “
n0 ¨ t0 ¨ e

´β¨t0 `
ř

σPΣ1 rεσ ¨ e
´β¨εσ s

n0 ¨ e´β¨t0 `
ř

σPΣ1 re
´β¨εσ s

“
n0 ¨ t0 ¨ e

´β¨t0 `
ř

σPΣ1 rεσ ¨ e
´β¨εσ s

n0 ¨ e´β¨t0 `
ř

σPΣ1 re
´β¨εσ s

¨
eβ¨t0

eβ¨t0

“
n0 ¨ t0 `

ř

σPΣ1 rεσ ¨ e
´β¨pεσ´t0qs

n0 `
ř

σPΣ1 re
´β¨pεσ´t0qs

.

Let β1 :“ β0 ` 1.

Then, for all β P rβ1;8q, for all σ P Σ, we have

|εσ ¨ e
´β¨pεσ´t0q| ď |εσ| ¨ e

´β1¨pεσ´t0q

and |e´β¨pεσ´t0q| ď e´β1¨pεσ´t0q.

We have:
ř

σPΣ r|εσ| ¨ e
´β1¨pεσ´t0qs “ X

1
Sεβ1 .

Also,
ř

σPΣ re
´β1¨pεσ´t0qs “ X

0
Sεβ1 .

By Theorem 26.4, we have: X
1
Sεβ1 ă 8 and X

0
Sεβ1 ă 8.

So, by the Dominated Convergence Theorem, as β Ñ 8,
ř

σPΣ1 rεσ ¨ e
´β¨pεσ´t0qs Ñ 0

and
ř

σPΣ1 re
´β¨pεσ´t0qs Ñ 0.

Then: as β Ñ 8, Aεβ Ñ
n0 ¨ t0 ` 0

n0 ` 0
.

Then: as β Ñ 8, Aεβ Ñ t0. �

Let Σ be a set and let ε : Σ Ñ r0;8q be 8-proper.

Assume: ε˚r0;8q is infinite and sup Iε “ 8 and DFε ‰ H.

Let β0 :“ inf DFε. By Theorem 24.21, pβ0;8q Ď DFε.

Even though sup Iε “ 8,
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it does NOT necessarily follow that: as β Ñ pβ0q
`, Aεβ Ñ 8.

Here is an example:

THEOREM 26.8. For all k P N, let nk :“ tek{k3u.

Let Σ :“ tpk, jq P Nˆ N | k P N, j P r1..nksu.
Define ε : Σ Ñ r0..8q by: @k P N, @j P r1..nks, εpk, jq “ k ´ 1.

Then IAε‚ is bounded.

Proof. We have DFε “ r1;8q, so inf DFε “ 1.

Also, Γε1 ă 8 and 0 ă ∆ε
1 ă 8, so Aε1 ă 8.

Also, by the Dominated Convergence Theorem, we have:

as β Ñ 1`, both Γεβ Ñ Γε1 and ∆ε
β Ñ ∆8

1 .

Then, as β Ñ 1`, Aεβ Ñ Aε1 ă 8.

Then IAε‚ is bounded. �

Theorem 26.8 leads to an open problem, as follows:

For all k P N, let nk :“ tek{k3u.

Let Σ :“ tpk, jq P Nˆ N | k P N, j P r1..nksu.
Define ε : Σ Ñ N by: @k P N, @j P r1..nks, εpk, jq “ k.

By Theorem 26.6, Aε‚ is strictly-decreasing, and so

and since as β Ñ 1`, Aεβ Ñ Aε1, we get:

IAε‚ is bounded above by Aε1.

Let α P N. Assume: α ą Aε1. Then: α R IAε‚ .
Suppose N professors, numbered 1 to N , have states in Σ.

Suppose each state σ P Σ has wealth εpσq.

Suppose the total wealth of all professors is Nα.

Give equal probability to every dispensation of states.

For each σ0 P Σ, we seek a method to approximate

the probability that Professor#N is in state σ0.

More precisely: For all n P N,

let Ωn :“ tω : r1..ns Ñ Σ |
řn
`“1 rεpωp`qqs “ nαu.

Then ΩN represents the set of all state-dispensations.

Open Problem: For each σ0 P Σ,

determine whether

the limit, as nÑ 8, of νΩntω P Ωn |ωpnq “ σ0u exists,

and, if it does, compute it.

This is a well-defined mathematical problem.

However, since α R IAε‚ , we cannot solve Aεβ “ α for β,

so our earlier techniques do not immediately apply.
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THEOREM 26.9. Let β0 P R, I :“ pβ0;8q, g : I Ñ R.

Assume: g is differentiable on I and g1 is semi-decreasing on I.

Assume: as β Ñ pβ0q
`, g pβq Ñ ´8.

Then: as β Ñ pβ0q
`, g1pβq Ñ 8.

Proof. Since g : I Ñ R and g is differentiable on I, we get: g1 : I Ñ R.

Since I “ pβ0;8q ‰ H and g1 : I Ñ R, we get: Ig1 ‰ H.

Since H ‰ Ig1 Ď R, we get: sup Ig1 ‰ ´8.

Let M :“ sup Ig1 P p´8;8s.

Since g1 is strictly-decreasing, we get: as β Ñ pβ0q
`, g1pβq ÑM .

Want: M “ 8. Assume M ă 8. Want: Contradiction.

Let β1 :“ β0 ` 1.

Since, as β Ñ pβ0q
`, g pβq Ñ ´8,

choose γ P pβ0; β1q s.t. gpγq ă pgpβ1qq ´M .

By the Mean Value Theorem, choose ξ P pγ; β0 ` 1q s.t.
pgpβ1q ´ pgpγqq

β1 ´ γ
“ g1pξq.

Since M “ sup Ig1 , we get: g1pξq ďM .

Since γ P pβ0; β1q, we get: β1 ´ γ ą 0.

Then pg1pξqq ¨ pβ1 ´ γq ďM ¨ pβ1 ´ γq.

Since pgpβ1q ´ pgpγqq “ pg
1pξqq ¨ pβ1 ´ γq ďM ¨ pβ1 ´ γq,

we get: gpγq ě pgpβ1qq ´M ¨ pβ1 ´ γq.

By the choice of γ, we get γ P pβ0; β1q, and so γ ´ β0 ą 0.

By the choice of γ, we get:

pgpβ1qq ´M ą gpγq.

Since pgpβ1qq ´M ą gpγq ě pgpβ1qq ´M ¨ pβ1 ´ γq,

we get: M ă M ¨ pβ1 ´ γq.

Then: M ¨ pγ ` 1´ β1q ă 0.

Since β1 “ β0 ` 1, we get: 1´ β1 “ ´β0.

Then: M ¨ pγ ´ β0q ă 0.

So, since γ ´ β0 ą 0, we get: M ă 0.

Recall: I “ pβ0;8q and g is differentiable on I and sup Ig1 “M .

So, since M ă 0, we get: g1 ă 0 on I.

Then, by the Mean Value Theorem, g is strictly-decreasing on I.

We conclude: @β P pβ0; β1q, gpβq ą gpβ1q.

This contradicts the hypothesis that, as β Ñ pβ0q
`, gpβq Ñ ´8. �

Next, we prove that the pathology observed in Theorem 26.8

does not happen when DFε is open in R and bounded below.
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By Theorem 24.33, in typical Boltzmann applications,

DFε “ p0;8q, and so DFε is open in R and bounded below.

THEOREM 26.10. Let Σ be a set, ε : Σ Ñ R, β0 P R.

Assume: DFε “ pβ0;8q. Then: as β Ñ pβ0q
`, ∆ε

β Ñ 8.

Proof. By Theorem 24.39, ε is 8-proper.

Then, by Theorem 23.4, Iε is bounded below.

Choose ξ P R s.t. ξ ` Iε Ď p0;8q. Let rε :“ ε` ξ.

Then ∆ε
β “ eβ¨ξ ¨∆rε

β. Want: as β Ñ pβ0q
`, ∆rε

β Ñ 8.

Otherwise, since β ÞÑ ∆rε
β is strictly-decreasing,

we get t∆rε
β | β P DF

rεu is bounded above.

Let M be an upper bound.

Since β0 R pβ0;8q “ DF
rε, we get: ∆rε

β “ 8.

That is,
ř

σPΣ re
´β¨rεσ s “ 8.

Choose a finite subsum that is ąM .

Perturb β0 to a slightly larger β.

If the perturbation is small enough,

then the finite subsum stays ąM .

Then ∆rε
β ě the perturbed finite subsum ąM ,

contradicting that M is an upper bound. �

THEOREM 26.11. Let Σ be a set, ε : Σ Ñ R, β0 P R.

Assume: DFε “ pβ0;8q. Then: as β Ñ pβ0q
`, Aεβ Ñ 8.

Proof. Let I :“ pβ0;8q. Define f : I Ñ R by: @β P I, fpβq “ ∆ε
β.

Then f “ X0Sε‚, so, by Theorem 25.7, we get: f 1 “ ´X1Sε‚.

We have: @β P I, X1Sεβ “ Γεβ.

Then: @β P I, f 1pβq “ ´Γεβ.

Define g : I Ñ R by: @β P I, gpβq “ ´plnpfpβqqq.

Then: g is differentiable on I and,

by the Chain Rule, @β P I, g1pβq “ ´pf 1pβqq{pfpβqq.

Then: @β P I, g1pβq “ Γεβ{∆
ε
β.

Then: @β P I, g1pβq “ Aεβ.

Want: as β Ñ pβ0q
`, g1pβq Ñ 8.

By Theorem 26.6, we get: g1 is strictly-decreasing on I.

By Theorem 26.10, we get: as β Ñ pβ0q
`, ∆ε

β Ñ 8.

Then: as β Ñ pβ0q
`, fpβq Ñ 8.

Then: as β Ñ pβ0q
`, lnpfpβqq Ñ 8.
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Then: as β Ñ pβ0q
`, gpβq Ñ ´8.

Then, by Theorem 26.9, we get: as β Ñ pβ0q
`, g1pβq Ñ 8. �

27. Countably infinite sets of states

MORE LATER
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28. Appendix: Python code

Thanks once again to C. Prouty, for writing the Python code to do

the Boltzmann computations in this paper:

First code: The GFA and 0, 2, 20 dollar awards, with average 3 dollars.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

def F(beta):

z = np.zeros(3)

z[0] = 1

z[1] = np.exp(-2 * beta)

z[2] = np.exp(-20 * beta)

return z

def G(beta):

z = np.zeros(3)

z[0] = 0

z[1] = 2 * np.exp(-2 * beta)

z[2] = 20 * np.exp(-20 * beta)

return z

def f(beta):

return np.sum(F(beta))

def g(beta):

return np.sum(G(beta))

def bisection(minval, maxval, y, fn):

mid = (maxval + minval) / 2

while((fn(mid) - y) ** 2 ą 0.0000001):

if(fn(mid) ă y):

maxval = mid

else:

minval = mid

mid = (maxval + minval) / 2

return mid

fn = lambda x: g(x) / f(x)
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target = bisection(-25, 25, 3, fn)

b = 0.07410049 # hard-coded result of bisection

r = F(b) / f(b)

df = pd.DataFrame(r)

df.to excel(“results2.xlsx”, index=False)

betas = np.linspace(-25,25,100000)

z = np.zeros(len(betas))

for i in range(len(betas)):

z[i] = fn(betas[i])

plt.plot(betas,z)

plt.show()

Second code: The BUA and red bags and blue bags

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

def F(beta):

z = np.zeros(25).reshape(5,5)

for i in range(5):

for j in range(5):

z[i,j] = np.exp(-(i+j)*beta)

z[4,4] = 0

return z

def G(beta):

z = np.zeros(25).reshape(5,5)

for i in range(5):

for j in range(5):

z[i,j] = (i+j) * np.exp(-(i+j)*beta)

z[4,4] = 0

return z

def f(beta):

return np.sum(F(beta))

def g(beta):

return np.sum(G(beta))

def bisection(minval, maxval, y, fn):
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mid = (maxval + minval) / 2

while((fn(mid) - y) ** 2 ą 0.0000001):

if(fn(mid) ă y):

maxval = mid

else:

minval = mid

mid = (maxval + minval) / 2

return mid

fn = lambda x: g(x) / f(x)

target = bisection(-25, 25, 1, fn)

b = 1.06697083 # hard-coded result of bisection

r = F(b) / f(b)

df = pd.DataFrame(r)

df.to excel(”results5.xlsx”, index=False)

betas = np.linspace(-25,25,100000)

z = np.zeros(len(betas))

for i in range(len(betas)):

z[i] = fn(betas[i])

plt.plot(betas, z)

plt.show()


	1. Introduction
	2. Some notation
	3. First system of grant awards
	4. Particles and energy
	5. Second and third systems of grant awards
	6. Computing p,q,r à la Boltzmann
	7. Showing the Boltzmann p,q,r work
	8. Infinite summation
	9. Countable measure theory
	10. The Discrete Local Limit Theorem
	11. Average events have low information, particular case
	12. Average events have low information, general result
	13. Solving the main problem
	14. Probability of two professors getting zero
	15. Fraction of professors getting a zero award
	16. Boltzmann distributions on nonempty finite sets
	17. Residue-unconstrained finite sets
	18. Rational award sets
	19. Irrational awards
	20. Earth-minimum-Mahlo-cardinal and the BUA
	21. Boltzmann distributions on finite sets with degeneracy
	22. Degenerate energy levels
	23. -properness and (-)-properness
	24. Boltzmann distributions on countable sets
	25. Convergence, complex-differentiation, C results
	26. Boltzmann averages on countable sets
	27. Countably infinite sets of states
	28. Appendix: Python code

