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From Chapter 9:

I Pricing Rules:
Market complete+nonarbitrage=⇒ Asset prices

I The idea is based on perfect hedge:

H = V0 +

∫ T

0

φtdSt +

∫ T

0

φ0
tdS0

t

I With completeness, any contingent claim can be
perfectly hedged.

I With nonarbitrage, V0 could pin down.
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Also From Chapter 9:

I Market completeness breaks down when there
are even small jumps

I So without perfect hedges, the risk to do
hedging can’t be completely ruled out, we have
to find ways out.
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In this chapter:

I Merton’s approach(10.1): ignore the extra
risks=⇒pin down pricing and hedging

I Superhedging (10.2): leads to a bound for
prices(preference-free, but the bound is too
wide)

I Expected utility max(10.3): choosing hedge by
min some measure of hedging errors=⇒utility
indifference price

I Special case of the above where the loss
function is quadratic (10.4)
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Merton’s Approach:

I In Merton:

St = S0 exp

[
µt + σWt +

Nt∑
i=1

Yi

]
Wt : SBM; Nt :Poisson process with
λ;Yi ∼ N(m, δ2)

I He assigns a choice from many risk-neutral
measures:

QM : St = S0 exp

[
µMt + σW M

t +

Nt∑
i=1

Yi

]
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Merton’s Approach:

I QM just shift the drift of the BM, and left the
jumps unchanged

I Rationale: jump risks are diversifiable, so no risk
premium/no change of measure upon it.

I Application: Euro option with H(ST ) has price
process:

ΠM
t = e−r(T−t)EQM [H(ST )|Ft ]
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Merton’s Approach:

I Furthermore, since St is a Markov process(under
QM), so Ft contains as much info as St , thus:

ΠM
t = e−r(T−t)EQM [(ST − K )+|St = S ]

I Then by conditioning on the # of jumps Nt , we
can express ΠM

t as a weighted sum of B-S
prices, finally, we get(set τ = T − t):

Π(τ, S ; σ) = e−rτE [H(Se(r−σ2/2)τ+σWτ )]
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Merton’s Approach:

I For call and put options ,apply Ito to
e−rtC (t, St).

Π̂M
t = e−rtΠM

t = EQM [e−rT (ST − K )+|Ft ]

I the discounted value is a martingale under QM ,
so

Π̂M
T − Π̂M

0 = Ĥ(ST )− EQM [H(ST )]

I Merton gives the hedging portfolio (φ0
t , φt):

φt = ∂ΠM

∂S (t, St−) and φ0
t = φtSt −

∫ t

0 φdS
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Merton’s Approach:

I From this self-financing strategy, the risk from
the diffusion part is hedged, but the discounted
hedging error is:

Ĥ−e−rTVT (φ) = Π̂M
T−Π̂M

0 −
∫ t

0

∂ΠM

∂S
(u, Su−)dŜu

I Go back to Merton’s rational, how could we
hedge jump risk: he assumes the jumps across
the stocks are indenp, so in a large market a
diversified portfolios such as market index would
not have jumps, ’coz they cancel out each other.
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Superhedging:

I A conservative approach to hedge:
P(VT (φ) = V0 +

∫ t

0 φdS ≥ H) = 1
Here φ is said to superhedge against the claim
H.

I Defn:The cost of superhedging: the cheapest
superhedging strategy,

Πsup(H) = inf {V0,∃φ ∈ S , P(V0+

∫ T

0

φdS ≥ H) = 1}
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Superhedging:

I Intuition: When some option writer/seller is
willing to take the risk at some certain price, it
means he can at least partially hedge the option
with a cheaper cost, thus the this price
represents an upper bound for the option.

I Similarly, the cost of superhedging a short
position in H, given by −Πsup(−H) gives a lower
bound on the price.

I Henceforth, we pin down an interval:

[−Πsup(−H), Πsup(H)]
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Superhedging:

Prop10.1 Cost of superhedging:

I Consider a European option with a positive
payoff H on an underlying asset described by a
semimartingale (St)t∈[0,T ] and assume that

sup
Q∈M(S)

EQ[H] < ∞

Then the following duality relation holds:

inf
φ∈S
{V̂t(φ), P(VT (φ) ≥ H) = 1} = esssupEQ[Ĥ |Ft ]
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Superhedging:

Prop10.1 Cost of superhedging(con’d):

I In particular, the cost of the cheapest
superhedging strategy for H is given by

Πsup(H) = esssupQ∈Ma(S)E
Q[Ĥ]

where Ma(S) is the set of martingale measure
absolutely continuous wrt to P
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Superhedging:

Prop10.1 Cost of superhedging(comments):

I preference-free method: no subjective risk
aversion parameter nor ad hoc choice of a
martingale measure

I in terms of equivalent martingale measures,
superhedging cost corresponds to the value of
the option under the least favorable martingale
measure
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Superhedging:

Application of Prop 10.1: Superhedging in
exponential-Levy processes: Prop10.2

I So we have St = S0expXt where (Xt) is a Levy
process, if X has infinite variation, no Brownian
component, negative jumps of arbitrary size and
Levy measure ν :

∫ 1

0 ν(dy) = +∞ and∫ 0

−1 ν(dy) = +∞ then the range of prices is:[
inf

Q∈M(S)
EQ[(ST − K )+], sup

Q∈M(S)

EQ[(ST − K )+

]
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Superhedging:

Application of Prop 10.1: Superhedging in
exponential-Levy processes: Prop10.2

I If X is a jump-diffusion process with diffusion
coefficient σ and compound Poisson jumps then
the price range for a call option is:[

CBS(0, S0; T , K ; σ), S0

]

Chapter 10: Pricing and hedging in incomplete markets



Superhedging: Comments

I From the above, the superhedging cost is too
high. Consider St = S0exp(σWt + aNt), apply
prop10.1, we find that the superhedging cost is
given by S0, so however small the jump is, the
cheapest superhedging strategy for a call option
is a complete hedge.
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Utility Maximization

I “As if” method: the agent is picking some
strategy to max utility level:

max
Z

EP[U(Z )]

usually, U : R −→ R is concave, increasing, and
P could be seen either as a prob distribution
objectively or subjectively describe future events.

I The concavity of U is related to risk aversion of
the agent. say U(x) = ln(x), U(x) = x1−α

1−α
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Utility Maximization: Certainty equivalent

I Another way to measure risk aversion: c(x , H)

I U(x + c(x , H)) = E [U(x + H)] =⇒ c(x , H) =
U−1(E [U(x + H)])− x

I Intuition: at the same level x, faced with the
same H, the higher compensation you require,
the more risk averse you are

I Notice: c is not linear in H, c depends on x
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Utility Maximization: Utility indifference price

I The agent wants to max his final wealth:
VT = x +

∫ T

0 φtdSt :

u(x , 0) = sup
φ∈S

EP[U(x +

∫ T

0

φtdSt)]

I Suppose now it buys an option, with terminal
payoff H, at price p, then

u(x−p, H) = sup
φ∈S

EP[U(x−p +H +

∫ T

0

φtdSt)]
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Utility Maximization: Utility indifference price

I The utility indifference price is defined as price
πU(x , H):

u(x , 0) = u(x − πU(x , H), H)

I Notice:
1.πU is not linear in H
2.πU depends on initial wealth, except for
special utility like: U(x) = 1− e−αx

3.To same U, same x, same H, buying and
selling derives different price:
u(x , 0) = u(x + p,−H)
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Utility Maximization: More comments

I The “As if” method: from vNM, Savage

I Hard to identify U and P, and there is
homogeneity among agents

I Attack to nonlinearity: remedies–quadratic
hedging(where the utility is : U(x) = −x2
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Utility Maximization: Quadratic hedging

I As if the agent is choosing so to min the
hedging error in a mean square sense.

I Different criterion to be min in a least squares
sense can be:
1.hedging error at maturity =⇒“Mean-variance
hedging”;
2.hedging error measure locally in time =⇒
local risk min.

I The two approaches are equivalent if the
discounted price is a martingale measure.

Chapter 10: Pricing and hedging in incomplete markets



Going Further: “Optimal” martingale measures

I By fund theorem , choosing an arbitrage-free
pricing is choosing a martingale measure Q ∼ P

I More general, we’re choosing prob measures
according to:

Jf (Q) = EP
[
f (

dQ
dP

)

]
where f : [0,∞) −→ R is str convex, Jf a
measure of deviation from the prior P
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Going Further: “Optimal” martingale measures

I Some example: relative entropy:

H(Q, P) = EP
[
dQ
dP

ln
dQ
dP

]
I quadratic distance:

E

[(
dQ
dP

)2
]
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Going Further: “Optimal” martingale measures

I More on relative entropy: here f = x ln x

H(Q, P) = EP
[
dQ
dP

ln
dQ
dP

]
= EQ

[
ln

dQ
dP

]
I So given (St) the minimal entropy martingale

model is defined as a martingale (S∗t ) such that
the Q∗ of S∗ minimizes the relative entropy wrt
P among all martingale process:

inf
Q∈Ma(S)

H(Q, P)
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Going Further: “Optimal” martingale measures

I Interpretation for min entropy martingale model:
minimizing relative entropy corresponds to
choosing a martingale measure by adding the
least amount of info to the prior model.

I Existence: ? But for exp-Levy, nice
result(analytic computable ) in Prop10.7
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