
Risk-neutral modelling with exponential Levy processes

For a martingale measure Q

e−rtSt = Ŝt = EQ[ŜT |Ft]

An option with terminal payoff HT has a value at time t given by the
discounted expectation

Πt(HT ) = e−r(T−t)EQ[HT |Ft]

Generalize geometric Brownian motion with exponential Levy process

St = S0exp((r − σ2/2)t+ σWt) → St = S0exp(rt+Xt)

with the restrictions on exponential moments∫
|x|≥1 e

xν(dx) <∞

and the martingale condition

γ + σ2/2 +
∫

(ex − 1− x1|x|≤1)ν(dx) = ψ(−i) = 0

European Call options form a basis for other European payoffs

Ct(t, St;T,K) = e−r(T−t)EQ[(ST−K)+|Ft] = Se−rτ

∫ ∞

k

dxρT (x)(erτ+x−ek)

τ = T − t and k = ln(K/S)

Implied volatility can be computed for each strike and maturity as an ”in-
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consistency check” for Black-Scholes. CBS(T,K, σimp(T,K)) = Cmarket(T,K)

Geometric Brownian motion alone constricts σimp(T,K) to a 2-d flat plane.
Here are a few cross sections of σimp(T,K) vs. K/S (moneyness) for a given
T for a few different commodity futures markets.
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General statements about implied volatility surfaces of exponential Levy
processes

• Addition of jumps allows an explanation of implied volatility surfaces
seen in financial market. Skew (slope) and Smile (curvature) of these
surfaces can be fit to model parameters with good precision.

• IV surfaces are constant with time to expiration (floating smile) and
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independent of St (sticky delta or moneyness). The second feature is
opposed sticky strike (generally stochastic volatility models. cf Chap 15)
which have a correlation between St and σimp(T − t,K)

• Short term skew is well represented by the jumps of levy processes

• Flattening of the skew with option maturity. This occurs in accord with
the central limit theorem c3 ∝ 1/

√
T and c4 ∝ 1/T as shown in Chap 3.

However Additive processes of Chap 14 can modify this moment decay.

So how do we compute CT (k) = Se−rτ

∫ ∞

k

dxρT (x)(erτ+x − ek)?

Given the characteristic function ΦT (ν) we can use an assortment of Fourier
Transform techniques that all have a similar smell to them.

1. Method of Scott, Chen, Heston, Bates, et. al.: Calculate delta (Π1)
and probability option expires in the money (Π2) with Fourier variable
k =ln(K)

C(k) = SΠ1 − e−rτKΠ2

Π1 = 1
2 + 1

2π

∫
dνe−iνkeiνrτ Φτ(ν − i)

iνΦτ(−i)

Π2 = 1
2 + 1

2π

∫
dνe−iνkeiνrτ Φτ(ν)

iν

Although delta (not necessarily hedge ratio) is computed for free, con-
vergence is slow and FFT difficult

2. Method A of Carr and Madan: Since C(k) is not integrable, subtract
time value = (es+rτ − ek)+

C(k) = (es+rτ − ek)+ + 1
2π

∫
dνe−iνkeiνrτ Φτ(ν − i)− 1

iν(1 + iν)

6



For better convergence, one can replace time value with a Black-Scholes
option value Cσ∗

BS(k) to yield a smooth function:

C(k) = Cσ∗

BS + 1
2π

∫
dνe−iνkeiνrτ Φτ(ν − i)− Φσ∗

BS(ν − i)

iν(1 + iν)

Still converges slowly but FFT can be utilized.

3. Method B of Carr and Madan: Dampened Call price eαkC(k) is integrable
with α > 0

Ξ(ν) =

∫
dνeiνkeαkC(k) =

e−rτΦτ(ν − i(α+ 1))

α2 + α− ν2 + i(2α+ 1)ν

C(k) =
e−αk

2π

∫
dνe−iνkΞ(ν)

Converges much quicker, but there might be additional conditions on α

to insure only imaginary roots of Ξ(ν) and thus integrability along Re(ν)

4. Method of Lewis using Generalized FT: Fg(z) =
∫
eizxg(x)dx with z

complex and x =ln(Sτ/S0) as Fourier variable.

FC(z) =
Φτ(−z)e(1+iz)(k−rτ)

iz(iz + 1)

1 < Iz = µ < 1 + α

C(x) =
eµx+(1−µ)(k−rτ)

2π

∫ ∞

−∞
du
eiu(k−rτ−x)Φτ(−iµ− u)

(iu− µ)(1 + iu− µ)

Similar convergence and α choice issues as (3)

From limited experience, (3) seems to work quite well except when cali-
bration takes model parameters into integrand into delinquent territory.
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