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Stopping Times

Stopping time:

{τ ≤ t} ∈ Ft

Indicator process:

Nτ (t) := 1{τ≤t}

Predictable stopping time: it has an announcing sequence.

Totally inaccessible stopping time: No predictable stopping
time can give any information.

P(τ = τ ′ <∞) = 0

for any τ ′ predictable.

Mathematical Background Chapter 4



Hazard Rate

Let τ be a stopping time and F (T ) its distribution function.
Its hazard rate is defined as.

h(t,T ) =
f (t,T )

1− F (t,T )

where F (t,T ) = P(τ ≤ T |Ft)

Interpretation:

h(t,T ) = lim∆t−>0
1

∆t
P(τ ≤ T + ∆t|τ > t)

Or, by looking at:

F (t,T ) = 1− e−
R T
t h(t,s)ds

we see that, again, it is like forward rates.
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Point Processes

{τi , i ∈ N} = {τ1, τ2, ...}

Counting Process

N(t) :=
∑

i

1{τi≤t}

Predictable Compensator Process

M(t) = N(t)− A(t) is a martingale

If A is differentiable we define the intensity as:

A(t) =

∫ t

0
λ(s)ds
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Point Processes II

Assume that A is differentiable.

These type of models are called intensity models (chapter 7).

All the models in chapter 9 don’t satisfy this.
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Hazard/Intensity

Hazard rates and intensity are related, under some conditions:

λ(t) = h(t, t)

There are two ways of viewing a counting process:

As a stochastic process (predictable compensator, intensities,
etc.)

By looking at the distribution of the next jump time (using
hazard rates)
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Hazard/Intensity II

If we know P(t,T ) and it is differentiable wrt T (at T = t)
then (under conditions of theorem 4.1) :

dA(t)

dt
= − ∂

∂T
|T=tP(t,T ) = h(t, t)

Converse is not true.

Starting from the intensity does not always give easy access to
the survival probability.
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Marked Point Processes and the Jump Measure

A marked point process is a point process in which the jumps
are stochastic:

{(τi ,Yi ), i ∈ N} = {τ1, τ2, ...}

One way to generalize the counting process is:

X (t) :=
∑

i

Yi1{τi≤t}

However, sometimes Y could take values that are not
numbers (the name of the defaulting company, jumps in the
rating classes etc.)

Because of this we use a different approach: the jump
measure.
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Marked Point Processes and the Jump Measure II

We first define the concept of random measure:
ν : ΩxExB(R+)− > R+ is a random measure if for every
ω ∈ Ω, ν(ω, ·, ·) is a measure on ((ExR+), E ⊗ B(R+)) and
ν(ω,E , 0) = 0 identically.

We can use random measures to construct stochastic
processes by integrating.

The jump measure of a marked point process is a random
measure:

µ(ω,E ′, [0, t]) =

∫ t

0

∫
E ′
µ(ω, de, ds) :=

∞∑
i=1

1{τi (ω)≤t}1{Yi (ω)∈E ′}

By integrating against the jump measure we can represent
functionals of the marked point process.
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The Compensator Measure

The idea here is that, given a random measure, there exists a
predictable random measure so that for every predictable
stochastic function f (ω, e, t) the process defined by:

M(ω, t) :=

∫ t

0

∫
E

f (ω, e, s)µ(ω, de, ds)−

∫ t

0

∫
E

f (ω, e, s)ν(ω, de, ds)

is a local martingale.

Many times we can separate the probability that an event
occurs from the conditional distribution of the marker given
that an event has occurred.

ν(de, dt) = K (t, de)dA(t) with

∫
E

K (t, de) = 1
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The Compensator Measure II

In discrete time:

Suppose

X (ω, t) =

∫
+0t

∫
E

f (s, e)µ(de, ds)

In discrete time:

X (tn)− X (tn−1) =

∫
E

f (tn, e)µn(de)

f has to be adapted (for X to be).

We will ask it to be predictable: at time tn−1 we will know
what f will be at time tn conditioned on Y .

Define νn(de) = P(Y ∈ de and τ = tn|Fn)
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The Compensator Measure III

So:

E ((X (tn)− X (tn−1))|Fn−1) =

∫
E

f (tn, e)νn(de)

We can now construct the compensator:

A(tn)− A(tn−1) =

∫
E

f (tn, e)νn(de)

Then A is predictable and X − A is a martingale.
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The Compensator Measure IV

Examples

Poisson Process N(t) with intensity λ (constant)

Compensator measure ν(de, dt) = δY=1(de)λdt
Conditional distribution dA(t) = λdt,K (de) = δY=1(de)

Poisson Process N(t) with intensity λ(t) (stochastic)

Compensator measure ν(de, dt) = δY=1(de)λ(t)dt
Conditional distribution dA(t) = λ(t)dt,K (de) = δY=1(de)

Marked inhomogeneous Poisson Process I

Marker: Y ∼ N(0, 1).

Compensator measure ν(de, dt) = 1√
2π

e−1/2e2

λ(t)dedt

Conditional distribution
dA(t) = λ(t)dt,K (de) = 1√

2π
e−1/2e2

de
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The Compensator Measure V

More Examples

Marked Poisson process II

Marker Y is the value of a geometric brownian motion at time
t (the time of the jump).
Compensator measure ν(de, dt) = δY=S(t−)(de)λ(t)dt
Conditional distribution
dA(t) = λ(t)dt,K (de) = δY=S(t−)(de)

Lognormal Jump Diffusion

Jump times triggered by a Poisson process with parameter λ.
Marker Y (log of the jump size) is N(0, 1).

Compensator measure ν(de, dt) = 1√
2π

e−1/2e2

λ(t)dedt
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The Compensator Measure VI

More Examples

First hitting time process

Arrival time is the first time that a geometric brownian motion
S(t) hits a barrier.
No marker
Compensator measure ν(dt) = dA(t) where

dA(x) =

{
1 if the barrier is hit S(t) = K̄
0 otherwise

Since the default arrival is predictable its compensator is the
process itself.
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The Compensator Measure VII

More Examples

A (maybe not so) unusual process

Compensator measure ν(de, dt) = 1
|e|dedt for 0 /∈ de where

This process has an infinite number of very small jumps and a
few larger ones.
If [a, b] is an interval away from zero then jumps of a size in
[a, b] occur with an intensity of

λ[a,b] =

∫ b

a

1

|e|
de

So, the process can be viewed as a collection of Poisson
processes, one Poisson process per interval in R. The intensity
converges to infinity the closer we get to zero.
In the book he assumes that the processes have a finite
number of jumps in any finite interval. So, processes like this
are excluded.

Mathematical Background Chapter 4



The Compensator Measure VIII

More Examples

A very simple process

Jumps occur at τ1 = 2, τ2 = 4, τ3 = 8, ...
This is known at the beginning.
This is known at the beginning so it is predictable and then its
compensator is the jump measure itself:

ν(de, dt) = δt=τi (dt)
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Itô’s Lemma For Jump Processes

The processes considered have RCLL paths.

Notation ∆X (t) := X (t)− X−(t), X d(t) :=
∑

s≤t ∆X (s),

X c(t) := X (t)− X d(t).

Let X = (X 1, ...,X n) be an n−dimensional semi-martingale
with a finite number of jumps and f a teice differentiable
function on Rd . Then f (X ) is also a semi-martingale and:

f (X (t))− f (X (0)) =
n∑

i=1

∫ t

0

∂f (X−(s))

∂xi
dX c,i (s)+

1

2

n∑
i ,j=1

∫ t

0

∂2f (X−(s))

∂xi∂xj
d < X c,i ,X c,j > (s)+

∑
s≤t

∆f (X (s))

Mathematical Background Chapter 4



Itô’s Lemma For Jump Processes II

The jump times τi and the jump sizes ∆X (τi ) define a
marked point process.

This marked point process has a jump measure µx (which
puts mass 1 on the jump times and sizes of the jumps). and a
compensator measure νx .

The process X can be rewritten:

dX (t) = dX c(t) +

∫
Rn

xµx(dx , dt)
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Itô’s Lemma For Jump Processes III

Using the jump measure:

f (X (t))− f (X (0)) =
n∑

i=1

∫ t

0

∂f (X−(s))

∂xi
dX c,i (s)+

1

2

n∑
i ,j=1

∫ t

0

∂2f (X−(s))

∂xi∂xj
d < X c,i ,X c,j > (s)+

∫ t

0

∫
Rn

f (X−(s) + x)− f (X−(s))µx(dx , ds)
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Applications of Itô’s Lemma

In a lot of applications X can be written as a jump diffusion
process

dX i = αidt +
K∑

k=1

σikdWk +

∫
Rn

hi (x)µX (dx , dt)

And the compensator measure ν can be decomposed as

νX (dx , dt) = K (t, dx)dA(t)
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Applications of Itô’s Lemma II

Can do Itô to find f (X ) and its compensator.

In this case the predictable compensator is the sum of the
usual drift and:∫ t

0
(

∫
Rn

f (X−(s) + x)K (s, dx)− f (X−(s)))dA(s)

which compensates for the influence of the jumps.∫
Rn

f (X−(s) + x)K (s, dx)

represents the expected value of f after a jump at time s.
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Applications of Itô’s Lemma III

Itô product and quotient rule.

Let Y and Z be

dY

Y−
= αy +

K∑
k=1

σy
kdWk(s) +

∫
Rn

hy (x)µX (dx , dt)

dZ

Z−
= αz +

K∑
k=1

σz
kdWk(s) +

∫
Rn

hz(x)µX (dx , dt)

so, the jumps of both processes are driven by the jumps of a
third process X .

So doing Itô can find the process g(Y ,Z ) = YZ .
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Applications of Itô’s Lemma IV

The stochastic exponential

Let X be a stochastic process with ∆X ≥ −1. Then Y (t) is
called the stochastic exponential of X iff Y solves:

dY (t) = Y−(t)dX (t)

If X has finitely many jumps:

Y (t) = eX c (t)−X c (0)− 1
2
<X c>(t)

∏
s≤t

(1 + ∆X (s))
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Martingale Measure

Let Q be a probability measure If for every dividend-free
traded asset with price process p(t) the discounted process
p(t)
b(t) is a martingale under Q then Q is called a martingale
measure.

This is important because its existence is equivalent to
absence of arbitrage.
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Change of numeraire

Radon-Nikodym: Given two measures Q and P so that
P << Q (Q(A) = 0 => P(A) = 0) there exists a density L so
that EP(X ) = EQ(LX ) for all measurable X.

In a dynamic model we define L(t) = EQ(L|Ft) then, if X is
FT -measurable:

EP(X |Ft) = EQ(LX |Ft) = EQ(EQ(LX |FT )|Ft) =

= EQ(EQ(L|FT )X |Ft) = EQ(L(T )X |Ft) =

L(t)EQ(
L(T )

L(t)
X |Ft)
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Girsanov Theorem

It tells us how probabilistic properties of processes change
when we change measures.

A brownian motion under a measure Q does not need to be a
brownian motion under P.

Jump measures don’t change (since path are unchanged) but
compensator measures will change (since compensators
determine probabilities.
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Girsanov Theorem II

Assume a probability space with a brownian motion (WQ(t))
and a marked point process µ(de, dt) with its compensator
νQ(de, dt) = KQ(de)λQ(t)dt.

Define a process L as:

dL(t)

L(t−)
= ϕ(t)dWQ(t)+

∫
E
(Φ(e, t)−1)(µ(de, dt)−νQ(de, dt))

Then:

dWP(t) = dWQ(t)− ϕ(t)dt is a P-brownian motion
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Girsanov Theorem III

The compensator under P is:

νP(de, dt) = Φ(t, e)νQ(de, dt)

If ψ(t) =
∫
E Φ(e, t)KQ(t, de) and LE (e, t) = Φ(e, t)/ψ(t) for

ψ(t) > 0 and LE (e, t) = 1 otherwise. Then the intensity
under P becomes:

λP(t) = ψ(t)λQ(t)

The conditional distribution of the marker is

KP(t, de) = LE (e, t)KQ(de)
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Change of measure/Change of numeraire technique

Let p(t) be a price (under the money market numeraire, so
discounted..).

Then:

p(t)

b(t)
= EQ(

XT

b(T )
|Ft)

Consider a different numeraire A(t), and consider also the

process dP
dQ |t = A(t)

A(0)b(t)

Then X/A is a P-martingale iff Xt
A(t)

A(t)
A(0)b(t) is a Q-martingale.
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