Discussion of Chapter 8

1 Introduction

We will discuss some of the ideas in Chapter 8 of our text [4].

We will work to some extent in reverse order, starting with a complicated
financial model and then simplifying it to get a Markov chain, which we then
analyze further.

2 Building on the Heath-Jarrow-Morton Model

Here we study material from Section 8.7 of our text. One of our goals is to derive

the condition on page 253, which guarantees that a discounted defaultable bond

price process is a martingale with respect to the given probability measure for

the model. We also study this particular model to give a specific context for the

ideas. It is only one of the possible settings which are considered in the text.
We consider a time interval [0, T, for some fixed 7' > 0.

2.1 The Default-Free Case

We recall some of the standard setting used earlier in the text.

Following [1], in the default-free case the text considers forward rates f (t, s),
for 0 <t < s <T. According to [1], f (t,T) “corresponds to the rate one can
contract for at time ¢, on a riskless loan that begins at date T and is returned
an instant later”. The quantities f (¢, s) are random variables, in general.

A default-free bond which matures at time s and pays 1 at time s has (or
perhaps one should say is assumed to have) a price given by

B(tas) =e fts f(t,u) du (1)

at time t. We will need to take an expectation of this price to compare it with
experimental data.

If we choose to think of B (¢, s) as the primary concept, we can define f (¢, s)
by

fts) = —% log B (t, s) (2)

for all s € [0, 7] and all ¢ € [0, s].



Remark Differentiating B (t, s) with respect to ¢ is much harder than differ-
entiating with respect to s, because t appears inside the integral, and f (¢, s)
is not differentiable with respect to t in the calculus sense. This is one of the
problems which is solved in [1], as we will see below. They are able to show that
following the same pattern of differentiation under integral sign used in calculus
gives the correct formula.

Given a family f (¢, s), we let

r(t)=f(t1). (3)

This is referred to as the spot rate, and it appears that it can actually be
observed.

It seems that the main information we use from the default-free case is the
spot rate r (t).

Now we consider the defaultable bond case.

2.2 Behavior in between rating changes

We suppose there are K —1 ratings categories, which we label by k =1,... K —
1. The first ingredient in the overall model is the time behavior of a typical bond
in category k during periods when no drastic changes take place in the state of
the issuing company, i.e. during periods when there is no change in rating. For
each k we consider a (fictitious) bond, called the benchmark bond, which never
changes its rating, so that its behavior over the whole time interval is of the
non-drastic sort.

Thus we assume that for each k € {1,..., K — 1}, there is a forward rate
£ (t,5) (with a corresponding spot rate 7, (¢)). This is the benchmark rate for
rating category k.

A benchmark bond in category k which pays 1 at time s is considered to be
worth

B (t,5) = e~ [ Tt du .

We might recall the comment made by Schénbucher on page 51: “Unfortu-
nately, we cannot observe the prices of such a set of zero-recovery defaultable
zero-coupon bonds in real markets...”. This appears to apply to both B (¢,T')
and By, (t,T).

Up to this point we have not specified the statistical behavior of the random
forward rates. We assume now that for each fixed s € [0, 7], for ¢t € [0, s] the
quantity f}, (£, s) has the following stochastic differential respect to t:

n

dfy(ts) =0y (t,s) dt+> Tig(t,s) - dW' (1), (5)
i=1
where W' (t), i = 1,...,n are independent Wiener processes. For technical

reasons we assume that the @; j (¢, s) are predictable stochastic processes.



The text describes the benchmark bonds as defaultable, but notes that “they
never change their rating, nor are they affected by defaults”. This suggests that
if they were real bonds they would be priced at the default-free price, so we
should think of them as only an ingredient in a real bond.

Remark on nonnegative forward rates From the context, it is required
(page 53 of the text) that the functions f, (t,T) should be nonnegative, i.e. that
we must have nonnegative solutions to (5) with s = 7. Apparently there is no
natural general condition to guarantee this. The initial value f, (0,7, the sign
of @y, (t,s) and the size of 7, 1 (¢, s) are all relevant.

2.3 The actual bond

We now consider the model for an actual defaultable bond, as opposed to the
benchmark bonds just described.

Let B (t,T) be the price at time t of a defaultable bond which pays 1 at
time T'. This is the quantity we wish to study.

Let R (t) denote the rating of the bond at time ¢.

We agree on a constant ¢ > 0, which is the fraction of value lost by a bond
during a default. If ¢ = 1 then the value of the bond is zero after a default.
This is the zero recovery case.

2.3.1 Rating changes and defaults

The values of R (¢) lie in the set {1,..., K —1}.

To have a very general setting, we can say that there are markers (k, /),
k.te{l,...,K—1},and k € {1,..., K —1}. The marker (k,¢) symbolizes a
ratings transition from k to ¢ and the marker k symbolizes a default of from
rating state k.

That is, we assume there is a jump measure p such that if u ( (k, £), {t}) =1,
and if R(t—) = k, then R(t) = ¢, and such that if p(k,{t}) = 1, and if
R (t—) =k, then a default occurs at time t.

We assume the jump measure p has a compensator v such that

v((k,0),dt) = Ae (1) dt, (6)
and
v(k,dt) =y (1) dt, (7)

where the intensities (or rates) A, (t) and 1y, (t) are predictable random pro-
cess.

More concretely, if A\, ¢ (t) is a constant which does not depend on omega
then R (t) is a time-inhomogeneous Markov chain. If in addition A, (¢) does
not depend on t then R (¢) is a time-homogeneous Markov chain. The Markov
chain is discussed further below.

We should probably think of the Markov chain case to provide intuition and
regard the general case as an extension in which we allow more complex rates,



which could, for example, depend at time ¢ on the whole history of all the bond
prices up to time ¢.

2.3.2 Remark: No state to represent default

In some other models considered in Section 8 of our text, there are K states,
and state K represents the default state. We don’t have such a state in our
representation, because we want to allow for some value to remain after default.
As Schonbucher puts it (on page 252), after a default “the face value of the
defaulted bond is reduced (multiplied by 1 — ¢ < 1), and the obligor continues
his life in the pre-default rating class”.

If we are in the zero recovery case, we can add a state K to represent a
company in default. In Markov chain terms this state is an absorbing state,
meaning that once it is entered, the process never leaves this state. The average
rate per unit time at which the process moves from a state k € {1,..., K — 1}
to state K is just the average rate per unit time at which a default occurs for a
company in state k. In terms of usefulness, having an extra state to represent
default does not increase the applicability of our discussion, but it permits more
familiar terminology in the zero recovery case.

2.3.3 The price of the defaultable bond

Let N (t) denote the number of defaults the company which issues the bond has
suffered by time ¢. Define the surviving fraction of value at time ¢ to be

Q)=(1-q"". (8)
By definition, the price of our defaultable bond at time ¢ is
B(t,T) = Q(t) Br (1, T). 9)

This price only takes account of possible future defaults through the forward
rates f (¢,T).

3 The differential of a benchmark bond price

We will eventually want to study the compensator of the process B (t,T). The
key step for that is to find the stochastic differential dBy, (t,T) for each k €
{1,..., K —1}. For that purpose we use a nice argument from [1]. In that
paper it is shown that one can take a stochastic differential inside the integral
with respect to a parameter. Thus the stochastic differential turns out to be
exactly what one would expect from a purely formal manipulation.



/tTfk<t7u> du—/tTfk(O,u) du =
/tT (/Otak (v, ) dv) du+/tT (/oti"iv’“ (o.0) - AW (v)> "

_ /(:(/tT (v, )dm/tZ(/ Fok ( )du>-dwi(v).

Here we used the fact that we can exchange the order of integration under fairly
general conditions, even when one of the integrals is a stochastic integral.
We then have

/fktUdU*/ fr(0,u) du =
At</v k (v, >dv+ Otz":</ ik ( )d>dWZ()

=1

- /Ot(/vtak(v u)du) dv — Ot nl(/ Ti (v, u)du) dw" (v).

=

We note that

/ot </:ak (v, ) du) dv+ /Otg (/vt Tk (v,u) du) AW (v) =
/Ot </Ouak (v,u) dv) du+/0t (/ou;:mk (v, 1) - dWi(v)> du

- / (Fy (,0) — Ty (0,w)) du.

For brevity, let

e (0,T) = / @ (v,) dy, (10)

£ (0.T) = / Zok (0,1) dy. (1)

Clearly these are just the integrated forms of the drift and the volatility.
Combining our facts, we have

/fktudu—/kau =

/0< P (0) + 7% (0, T)) dv+/z AW ). (12)



That is,

d(—log B (t,T)) = —Fx (t) dt+ 7, (£, T) dt + > &, (,T)- dW' (t). (13)
=1

For any continuous semimartingale X, an application of It6’s Lemma shows
that

1
deX =eXdX + 5eX d(X,X). (14)

Hence we can easily find dBy, (t,T) from (13).

dBy (t,T) _ _
——"7 7 = 7 (t) dt t,T) dt
S - TR deme

- %Z&,k (tT) dt+> & (t,T) dW' (t). (15)
=1

i=1

4 The compensator for B (t,T)

Let x denote the compensator for B (t,T). We wish to find dx (). This can
be obtained using the properties of compensators given in Chapter 4, using the
fact that each change in rating occurs at a stopping time, and we can apply the
compensators for the By, (t,T) processes in between the stopping times.

In the discussion here we’ll only give a heuristic derivation.

We consider dk (t) as the sum of the conditional expected values of all the
contributions to d B (¢, T).

From (9) we have

T
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From (15) we have

E(dBy (t,T)|F) =

—By (t,T) (-m (t) dt + 7, (v, t) dt — %Zék (v, T)* dt) . (16)



Thus

E(dB(t,T)|F) =
K—
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4.1 Conditions for a martingale measure

We require that for each k € {1,..., K — 1},

Y () q =Tk (t) —7r (). (18)

This says that the spot interest rate for the defaultable bond should exceed the
spot interest rate for the default-free bond by an amount which compensates
exactly for the expected loss due to default during a short period of time.

We also require that for each k,

71 " B (t,T)
’ig Z/\“ ( AT T)1>. (19)

Substituting into (17) we obtain
E(dB(t,T)|F) =

K-1
t) Z L{p@)=k} Br (t,T) (Ti, (t) dt — quy (t)) dt
k=1
= B(,T)r(t) dt. (20)
That is,
dB (t,T) = B(t,T)r (t) dt +d M, (21)

where M is a local martingale. -
We will now consider the default-free discounted value of B (t,T). The
default-free discount factor 5 (t) is defined by

B(t) = e Jorwdu, (22)

Obviously the process 3 (t) is of bounded variation and d 3 (t) = —3 (t) r (¢).



For any semimartingales X,Y , where at least one of the semimartingales is
continuous, we have the simple product rule as a special case of It6’s Formula:

d(XY)=XdY +YdX +d(X,Y). (23)
It follows that if (21) holds we have

d (B(t)B(tT))
= B@)(B@®T)r(t)dt+dM)—B(tT)B(t)r(t) dt
= B{)dM. (24)

Hence the conditions (18) and (19) imply that the discounted price g (¢) B (¢, T')
of the defaultable bound is a local martingale.
This is almost the desired condition. We still have to verify in some way that

the process 3 (t) B (¢, T) is uniformly integrable, for example that it is bounded

by an integrable random variable. Then we can deduce that 3 (t) B (t,T) is a
martingale from the fact that it is a local martingale.

4.2 Simplifying the drift condition

In [3], it is noted that we can simplify (19) by differentiating with respect to T
and using the analog of (2), i.e.

9
fi(tys) = —%logBk (t,s).

This gives
ag (t,7) = Zgz,k (t,T)ox (¢, T)

By (t,T)

+ X (e ) el =Towr). @)

(=1

Equation (25) is the condition (8.59) given on page 253 of the text.

4.3 Non-uniqueness of martingale measures

There seem to be many adjustable quantities in (18) and (19). For that rea-
son we should not expect a unique martingale measure. Schénbucher discusses
similar issues on page 246 in a somewhat different context.

5 Finding expected values in the Markov case

In the context of the previous section, we assume that the process G (¢) B (¢,T)
is a martingale. We also assume that the model is such that the rates A s (%)
and vy (t) are deterministic i.e. do not depend on w. Then R (t) is a Markov



chain which is time-inhomogeneous in general. We want to see how to calculate

the expected value of 3 (¢) B (t,T) in this case.

Suppose that we are interested in a particular state kg € {1,..., K —1}.
Assume that P (R (0) = ko) > 0.

By the martingale property,

EB(T)B(T,T) 1{ro)=ky} = /1{R<o>:ko}E(5(T)P(T7T) | Fo) dP

= [ Lo B O BO.T) P
= El{p0)=ko B (0,T)
Hence dividing by P (R (0) = ko) we obtain
E (ﬁ (T)B(T,T)|R(0) = ko) =F (E (0,7)|R(0) = ko) . (26)
Let’s also assume that r (t) is deterministic. We have
B(T)B(T,T) = e Jo " (1),
Then
E(8(T)B(T,T)|R(0) = ko) = el " E(Q(T)|R(0) = ko). (27)

The latter quantity, E (Q (T)|R(0) = ko), can be found by a purely Markov
chain calculation, which we will briefly sketch.

We'll assume that r (), Mg (t) and ¢y (¢) are all continuous functions of
time .

Suppose that R (¢t) = k. For a small positive number h, the probability that
R (t+ h) = {is given by Ag ¢ (t) h+o0(h). The probability that R () makes more
than one change during the interval [t,t + h] is also o (h).

Again suppose that R (t) = k. For a small positive number h, the probability
of a default during the time interval [t,¢ + h] is given by ¢y (t) h + o (h).

Let N (t,T) denote the number of defaults during [¢,T]. Let

g6 (1) = B (1= IR () = k). (28)
We wish to find g, (0). Comparing gy, (t + dt) and gy, (¢), we find that

—g1 (t) = =t (1) g (8) + Y e () (92 (1) — gi (1)) - (29)
04k

We have “initial” conditions g (T) = 1, k = 1,..., K — 1 for this system of
linear differential equations, so a solution is easy.



6 Embedding a transition matrix in a Markov
semigroup

From now on, to simplify our discussion we consider the zero recovery case,
when ¢ = 1, and we add a state K to represent a company in default.

We set A\, x (t) = ¢ (t) for all k € {1,..., K — 1} and we necessarily set
A (t) = 0 for all k € {1,...,K —1}. From now on we will assume that
ke (t) = k¢, independent of time.

Rather arbitrary choices for A, may be consistent with the martingale
measure condition but are probably not helpful. It seems to be desirable to
choose the rates Ay ¢ in a way which is consistent with observed data from bond
ratings.

Let A denote the K x K matrix (Ag¢), where we make one more definition

and set
Akt = — Z Akt
ke
This condition guarantees that the rows of A sum to 0. Note that —A ;, is the
rate at which probability flows from state k into all the other states. There is
an associated semigroup of Markov operators Q(t), t > 0, given by

Q(t) = M.
The semigroup equation Q(t+ s) = Q(t)Q(s) obviously holds, and is sometimes
referred to as the Chapman-Kolmogorov equation. Differentiating this equation
with respect to ¢ and s immediately gives two related differential equations: Q' =
QA = AQ, called the forward and backward Chapman-Kolmogorov differential
equations. The rate matrix A is referred to as the generator of the semigroup
Q).
It is standard to show that

Q)] = P (R(t) = {|R(0) = k).

For this reason Q(t) is called the Markov transition matrix for the Markov chain
R (), and Q(t) is the quantity we need to know to carry out our expectation
calculations. We also refer to (Q(t)),~, as the Markov semigroup.

However, we will not have all the data we need to find Q(t) empirically.
In Section 8.3 the text considers the situation in which we are given enough
information to find, say, Q(1), and then must attempt to find Q(¢) for all ¢, or,
equivalently, to find the generator A. This is the embedding problem.

The paper [2] by Israel, Rosenthal and Wei gives a good overview of the
mathematical issues involved in the embedding problem. In general, for a pro-
posed Q(1) there may be no semigroup Q(t), or there may be many solutions!

6.1 A reasonable alternative

Ve = Z Akt

04k

The quantities

10



and
Akt

s

Pke =

carry exactly the same information as A and are at least as intuitive. -y is
the rate for the exponential waiting time that the system spends in state k
before jumping to another state. (pg¢) is the “routing matrix” of transition
probabilities that specifies how likely it is that the system moves to state ¢
when it leaves state k. We would probably use «; and pg¢ in carrying out a
numerical simulation of the Markov chain.

Assume that we believe that ratings changes actually obey a time-homogeneous
Markov chain model. Then, if we are given time-stamped data for some time
period (i.e. the history of ratings changes and the times at which they occur),
it appears to be trivial to find a natural estimate for v; and pgs. That is, all
the mathematical subtleties in the embedding problem disappear.

Both the text, in Section 8.4, and [2] make comments about this approach,
and it appears to be feasible, at least in many cases.

On page 238 the text says that for the time-stamped approach exact times of
ratings transitions must be known. Perhaps exactness is not meant literally here.
More precisely, if one truly believes that a time-homogeneous Markov model is
appropriate, then it seems that only the sequential record of the transitions, not
the exact times, is sufficient. On the other hand, the exact details of the time
record might cause a less fanatical statistician to reject the time-homogeneous
model, so they are relevant in that sense.
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