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We assume the risk-neutral dynamics of some asset, S, are given by

St = S0 exp(rt + Xt), (1)

where X is a Levy process with characteristic triplet (σ2, ν, γ)

under the (not necessarily unique!) measure Q.

As usual, Q is chosen to make the discounted process Ŝt = e−rtSt a

martingale

We further make a technical assumption that
∫

|y|≥1

e2yν(dy) < ∞.
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We have that the dynamics of the discounted process are given by

dŜt

Ŝt−

= σdWt +

∫

R

(ex − 1)J̃X(dt dx).

And a European option, Ct = C(t, S), whose payoff function is

givnen by H(ST ) has value

Ct = E[e−r(T−t)H(ST ) | Ft]

under the measure Q. Equivalently, by the Markov property,

C(t, S) = E[e−r(T−t)H(ST ) | St = S].
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We will also may make use of a change of variables:

τ = T − t

x = ln(S/K) + rτ,

and define

u(τ, x) = e−r(T−t)C(t, S)/K

h(x) = H(Kex)/K.

So that

u(τ, x) = E[h(x + Xτ ) | x = xτ ].
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u above is the option in log-moneyness coordinates. We will

examine a PIDE for u in what follows.

We define the operator Lx by

Lxg(x) = rxg′(x)+
σ2x2

2
g′′(x)+

∫

R

g(xey)−g(x)−x(ey−1)g′(x)ν(dy)
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We may derive (volunteers?...I think it would be worthwhile) that

any European option with underlying following the dynamics in (1)

satisfies the following PIDE:

∂C

∂t
(t, S) + LSC(t, S) − rC(t, S) = 0

on [0, T ) × (0,∞), with boundary condition

C(T, S) = H(S), ∀S > 0.
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We may write the PIDE with the variable changes noted above

(i.e., log-moneyness) as

−
∂u

∂τ
(τ, x) +

σ2

2

(

∂2u

∂x2
(τ, x) −

∂u

∂x
(τ, x)

)

+

∫

R

u(τ, x + y) − u(τ, x) − (ey − 1)
∂u

∂x
(τ, x)ν(dy) = 0,

or simply as
∂u

∂τ
= LXu (2)

with initial condition u(0, x) = h(x) ∀x ∈ R.
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So, disregarding calibration (that is, finding σ and ν from data), we

are interested in solving (2) given a payoff function, h, and an

operator of the form

Lf(x) = a1(x)
∂f

∂x
+ a2(x)

∂2f

∂x2

+

∫

f(x + a0(x, y)) − f(x) − a0(x, y)
∂f

∂x
(x)ν(dy)

The generality of terms here encompasses PIDE’s that arise from

European, American, and barrier options.
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We may use

• Multinomial trees

• Finitie difference methods

• Galerkin methods

• etc., (these are all I know, but that doesn’t mean much)

to solve (2) with a general operator L as above.
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For today, we briefly discuss finite difference schemes for the

problem:
∂u

∂τ
= LXu,

with u(0, x) = h(x) on the domain [0, T ] ×O.

For European options, we take O = R. For barrier options

O = (a, b).
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If the domain O is not bounded, we localize the problem by setting

O = (−A, A):

∂uA

∂τ
= LXuA, (0, T ] × (−A, A)

uA(0, x) = h(x) ∀x ∈ (−A, A)

We also must impose condtions for uA for all points outside of

(−A, A). We may reasonably set

uA(τ, x) = h(x) ∀x 6∈ (−A, A)
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We also truncate large jumps. That is, the integral term must have

finite bounds, say, Bl and Br.

This amounts to replacing the Levy process, Xt, with a new

process X̃τ whose triplet is (γ̄, σ, ν1x∈[Bl,Br]).

Truncating the integral will yield a solution ũ defined by

ũ(τ, x) = E[h(x + X̃τ ) | xτ = x]

(Note that this step adds additional error in approximation due to

the nonlocal nature of the PIDE)
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We next discretize the space and time coordinates. We may do this

uniformly (as a first run); viz.,

τn = n∆t n = 0, . . . , M, ∆t = T/M

xi = −A + i∆x i = 0, . . . , N, ∆x = 2A/N.

We define un
i to be the solution on the discretized grid extended by

zero un
i = h(xi) for i 6∈ [0, N ]
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We next must approximate space and time derivative operators

(easy-ish) and the integral operator for this grid.

We begin with the integral.

We will assume ν(R) = λ < ∞. This yields

LXu =
σ2

2

∂2u

∂x2
−

(

σ2

2
+ α

)

∂u

∂x
+

∫ Br

Bl

u(τ, x + y)ν(dy) − λu,

with α =
∫ Br

Bl

(ey − 1)ν(dy).
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Using a trapezoidal quadrature rule and the grid resolution of ∆x,

we choose Kl and Kr such that

[Bl, Br] ⊂ [(Kl − 1/2)∆x, (Kr + 1/2)∆x].

Then the integral term is approximated by

∫ Br

Bl

u(τn, xi + y)ν(dy) ≈

Kr
∑

j=Kl

νju
n
i+j

λ ≈

Kr
∑

j=Kl

νj

α ≈

Kr
∑

j=Kl

(ej − 1)νj

νj =

∫ (j+1/2)∆x

(j−1/2)∆x

ν(dy)
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We use standard space derivatives:
(

∂2u

∂x2

)

i

≈
ui+1 − 2ui + ui−1

(∆x)2
(

∂u

∂x

)

i

≈
ui+1 − ui

∆x
if σ2/2 + α̂ < 0

(

∂u

∂x

)

i

≈
ui − ui−1

∆x
if σ2/2 + α̂ ≥ 0
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Denote by D and J the matrices representing the differential and

integral parts of LX .

The explicit scheme is given by

un+1 − un

∆t
= Dun + Jun,

so that

un+1 = [I + ∆t(D + J)]un.

A sufficient condition for convergence is that ∆t ≤ min
(

1

λ̂
, (∆x)2

σ2

)
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Similarly, we may construct the implicit scheme,

un+1 − un

∆t
= Dun+1 + Jun+1,

where we solve

[I − ∆t(D + J)]un+1 = un

for un+1.

This scheme does not have a requirement on a small step size in the

time dimension to obtain stability.
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Finally, we may look at the explicit-implicit scheme:

un+1 − un

∆t
= Dun+1 + Jun,

where we solve

[I − ∆tD]un+1 = [I + ∆tJ ]un.

Stability is assured when ∆t ≤ 1/λ̂. We also have consistency with

the PIDE above as (∆t, ∆x) → 0.

For these reasons, (today) we prefer the explicit-implicit scheme.
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For the sake of concreteness, the operators D and J in the

explicit-implicit scheme are given by

(

Dun+1
)

i
=

σ2

2

ui+1 − 2ui + ui−1

(∆x)2
−

(

σ2

2
+ α̂

)

un+1
i+1 − un+1

i

∆x

(Jun)i =

Kr
∑

j=Kl

νju
n
i+j − λ̂un

i

α̂ =

Kr
∑

j=Kl

(ej − 1)νj

νj =

∫ (j+1/2)∆x

(j−1/2)∆x

ν(dy)
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To implement the scheme we do the following:

Initialize:

u0
i = h(xi) for all i.

Solve:

[I − ∆tD]un+1 = [I + ∆tJ ]un for n = 0, 1, . . . , M − 1

Impose “Boundary” Conditions:

un+1
i = h(xi) for i 6∈ {0, . . . , N}.
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The solution of the explicit-implicit scheme converges uniformly on

each compact subset of (0, T ] × R to the unique viscosity solution

of the PIDE above.

So what’s a viscosity solution? Basically a viscosity solution of a

PDE (or PIDE) is a function which is not necessarily smooth, but

satisfies the PDE in some appropriate sense.
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The explicit-implicit scheme may be applied to an up and out

barrier option, where the only modification is in the boundary

condtions. In this case we use:

∀S ∈ (0, B), C(t = T, S) = H(S)

∀S ≥ B, ∀t ∈ (0, T ], C(t, S) = 0

Notice that we are concerned about S ≥ B and not just S = B

since the PIDE has a nonlocal nature.
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We may also use an explicit-implicit scheme to price American

options. However, this is more complicated than what has been

shown! (Another Day.)
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Another method we may use is the Galerkin method. There are

technical issues that we do not address here, but the basic idea is

as follows:

We fix a Hilbert space, HN , with inner product (·, ·)HN
, and finite

basis {e1, . . . , eN}.

As before, we localize the problem to a bounded domain:

∂uA

∂τ
= LXuA, (0, T ] × (−A, A)

uA(0, x) = h(x) ∀x ∈ (−A, A)

uA(τ, x) = h(x) ∀x 6∈ (−A, A)
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The question arises...which Hilbert space should we use? Using the

variable U = uA − h, we obtain the equation

∂U

∂τ
− LXU = LXh = F, (0, T ] × (−A, A)

U(0, x) = 0 ∀x ∈ (−A, A)

U(τ, x) = 0 ∀x 6∈ (−A, A)

26



A good candidate for a Hilbert space is

H = {f ∈ H1(R) : f(x) = 0 ∀x 6∈ (−A, A)}.

Here H1(Ω) is the Sobolev space:

{f ∈ L2(Ω) :
∂f

∂xi
∈ L2(Ω)}

We required a finite basis, though, and H above does not satisfy

this. We discretize by fixing a finite basis of H, {e1, . . . , eN}.
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With this finite basis, we solve

(
∂UN

∂τ
, ei) = (LXUN , ei) + (F, ei)

for i = 1, . . . , N . The solution, UN , is the solution for the finite

basis Hilbert space of dimension N .

Heuristically, if the basis is ’big’ enough, UN should be ’close’ to

the solution over all of H.
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Now

(
∂UN

∂τ
, ei) = (LXUN , ei) + (F, ei)

yields the following equation

N
∑

j=1

Kij
d

dτ
ai(τ) =

N
∑

j=1

Lijai(τ) + Fi

where Kij = (ej , ei), and Aij = (LXej , ei).
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We may rewrite this initial value ODE as a matrix problem

K
d

dτ
vN + AvN = FN

with vN = (ai(τ), i = 1, . . . , N).
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This equation can now be solved using the same discretization in

the time variable as before.

For example, we may use an explicit scheme again and solve the

equation

K
vn+1

N − vn
N

∆t
= Avn

N + FN

for vn+1
N .
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The resulting solution is continuous, and is not simply defined on a

grid. In fact, we get:

Un
N =

N
∑

i=1

vn
N,iei(x)

and convergence to the solution U as the dimension of the basis is

increased.
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Some things I would like to do/see:

• A rigorous derivation of the PIDE we used.

• Go over the infinite activity case.

• A discussion of numerical methods for American Options.

• Code this stuff up and run it.
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