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Given a contingent claim, C = C(t, S),we are concerned with

operators of the form

Lxf(x) = a1(x)
∂f

∂x
+ a2(x)

∂2f

∂x2

+

∫

f(x + a0(x, y)) − f(x) − a0(x, y)
∂f

∂x
(x)ν(dy),

and solutions satisfying

∂C

∂t
(t, S) + LSC(t, S) − rC(t, S) = 0
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a0, a1, and a2, depend on how we model the dynamics of the

underlying.

For example, if an underlying is modeled in the original

Black-Scholes framework,

dS

St

= µdt + σtdW,

we have the PDE

∂C

∂t
+

1

2
σ2

t S2 ∂2C

∂S2
+ r

∂C

∂S
S − rC = 0.
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Now if we assume the risk-neutral dynamics of some asset, S, are

given by

St = S0 exp(rt + Xt), (1)

where X is a Levy process with characteristic triplet (σ2, ν, γ)

under the (not necessarily unique!) measure Q,

L is given by

Lxf(x) = rxf ′(x)+
σ2x2

2
f ′′(x)+

∫

R

f(xey)−f(x)−x(ey−1)f ′(x)ν(dy)
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We also must impose boundary conditions.

For a vanilla option, we need only state what the payoff function,

H = H(ST ), is at expiration.

In this case we have the problem

∂C

∂t
(t, S) + LSC(t, S) − rC(t, S) = 0

on [0, T ) × (0,∞), with boundary condition

C(T, S) = H(S), ∀S > 0.
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For an American put option, P , with strike, K, we may construct a

free boundary problem

P (·, S) : [0, T ] → [0,∞) nonincreasing, convex 0 ≤ b(t) ≤ K

∂P

∂t
(t, S) + LSP (t, S) − rP (t, S) = 0 while S > b(t)

lim
S↓b(t)

P (t, S) = K − b(t) ∀t ∈ [0, T )

lim
S↓b(t)

∂P

∂S
(t, S) = −1 ∀t ∈ [0, T )

P (T, S) = (K − S)+ ∀S ∈ [0,∞)

P (t, S) > (K − S)+ if S > b(t)

P (t, S) = (K − S)+ if S ≤ b(t)
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There is a result that says for a jump diffusion model with finite

intensity, an American put option is the unique pair (P, b)

satisfying the above conditions.

But, there are few results (and fewer in English alone) about free

boundary problems for PIDE’s.

So if we are modeling stocks using jump processes, we have to be

more clever.
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Luckily, the jump diffusion (σ > 0)case leads to a linear

complementarity problem exactly as in the Black-Scholes case.

Specifically, an American put must satisfy

∂P

∂t
(t, S) + LSP (t, S) − rP (t, S) ≤ 0

P (t, S) − (K − S)+ > 0
(

∂P

∂t
(t, S) + LSP (t, S) − rP (t, S)

)

(

P (t, S) − (K − S)+
)

= 0

P (T, S) = (K − S)+
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To solve the above LCP, we use the penalty method. (I am not

exactly sure how this works, though...any takers?)

The idea goes like this: replace the above equations with the PIDE

∂P

∂t
(t, S) + LSP (t, S) − rP (t, S) = ρ max(H − P, 0),

where in the limit, as ρ → ∞ the solution satisfies

P ≥ H = (K − S)+.

9



With this modified PIDE, we impose boundary conditions

P (S, t) = 0 S → ∞

∂P

∂t
+ LSP − rP =

∂P

∂t
− rP S → 0
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We are now in a position to discretize everything in sight and apply

an implicit scheme.

Before doing this, we make the change of variables τ = T − t.

In this case, we solve

∂P

∂τ
(τ, S) = LSP (τ, S) − rP (τ, S) + ρ max(H − P, 0),

with obvious modifications for the boundary conditions.
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As before, we need to truncate the space dimension and large

jumps.

Further, we approximate the integral term and derivatives in the

obvious way (last week’s stuff).

The only new ingredient is dealing with ρ max(H − P, 0).
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Using the same notation as before, we construct a diagonal matrix

R by

(R(P n+1))ii = M if P n+1
i < Hi

= 0 otherwise

where M is chosen sufficiently large.
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We are therefore looking at

P n+1 − P n

∆t
= DP n + JP n

− rP n + R(P n+1)H

where D is the (appropriate) differential operator approximation

matrix, and J is the integral operator matrix.
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So what kind of results do we have?

For the uniform grid case, if there exists a constant, C, such that

∆t

δS
< C

as ∆t, ∆S → 0, (and one other condition) then the discrete

solution solves

L̂P n+1
i ≥ 0

P n+1 − H ≥ −
C′

M

(L̂P n+1 = 0) ∨

(

−
C′

M
≤ P n+1 − H ≤

C′

M

)

where C′ is independent of M , ∆t, and ∆S.
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Of course we can look at explicit, implicit, and mixed schemes (like

Crank-Nicholson) in the above.

I didn’t see it written up anywhere, but it would seem that a

Galerkin method could also be used here with slight modifications

from the original PIDE.
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