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Goal: Derive the Black-Scholes PDE

To do this, we will need to:

⋆ Come up with some dynamics for the stock returns

⋆ Discuss Brownian motion

⋆ Look at Ito’s lemma

⋆ Discuss replicating and self-financing portfolios

⋆ Cleverly put some pieces together
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In the (additive) binomial tree model, we are led to model the

returns from a stock as

δSt

St

= µδt + σ
√

δt. (1)

We may like to find the continuous version of (1). To do this, we

need to use Brownian motion.
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What is Brownian motion? A Brownian motion is a stochastic

process; i.e. a family of random variables indexed by t: {Wt}t≥0

such that

⋆ The function t → Wt is almost surely continuous

⋆ The process has stationary, independent increments

⋆ The increment Wt+s −Ws is normally distributed with variance t.
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How does this apply to the trees we have already seen?

For n ≥ 1, consider the stochastic process {W n
t }t≥0 given by

W n
t =

1√
n

∑

1≤j≤⌊nt⌋
εj

with each ε1, ε2, . . . a sequence of independent standard normal

random variables (εj ∼ N(0, 1)).

W n
t is a random walk that takes a new step every 1/n units of

time. For n large, we can see the connection to trees.
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By the Central Limit Theorem

1
√

⌊nt⌋
∑

1≤j≤⌊nt⌋
εj

converges (in distribution) to a standard normal random variable,

Z. Now

W n
t =

√

⌊nt⌋√
n

1
√

⌊nt⌋
∑

1≤j≤⌊nt⌋
εj

And since limn → ∞
√

⌊nt⌋√
n

=
√

t, in the limit we have

Wt =
√

tZ
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One may rigorously define the infintesimal increment of a Brownian

motion. We won’t. But we will use it. Before doing so, we notice

that for s, t ∈ {0, 1/n, 2/n, . . .},

W n
t+s − W n

t =
1√
n

∑

1≤j≤n(t+s)

εj −
1√
n

∑

1≤j≤nt

εj

=
1√
n

∑

nt+1≤j≤n(t+s)

εj

Again we have that 1√
ns

∑

nt+1≤j≤n(t+s) εj → N(0, 1) in

distribution.

So that W n
t+s − W n

t → N(0, s). Or, Wt+s − Wt =
√

sZ.

It therefore seems plausible that dWt is like
√

dt
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From the binomial tree with drift equation (1), we could guess that

dSt

St

= µdt + σdW (2)

is a reasonably similar model. In fact, this model is the continuous

time analogue of the binomial tree.
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To derive the Black-Scholes PDE, we will need the dynamics of (2)

we just stated.

We will also find that we need to take differentials of functions,

f(St, t), where St has the dynamics of (2). This is handled using

Ito’s lemma.

Before looking at this lemma, though, we will see why we need to

take differentials of such functions.

We’ll first talk about arbitrage, and then see how arbitrage can

determines prices.
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We have already seen how to determine the price of a contingent

claim using risk-neutral probability (martingales, change of

measure, etc.).

Just to be clear, examples of contingent claims are call options and

put options.

A call option gives the holder the right (but not the obligation) to

buy a specified item for an agreed upon price at an agreed upon

time.

A put option gives the holder the right (but not the obligation) to

sell a specified item for an agreed upon price at an agreed upon

time.
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We may also use arbitrage arguments. Arbitrage is simply

(risk-free) free money. And an arbitrage argument says that there

should be no (risk-free) free money.

How do we ’use arbitrage’ to price a claim? We try to replicate the

claim with stocks and bonds. We call stocks and bonds securities.
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A contingent claim, f , is replicable if we can construct a portfolio

Π such that

• The values of Π and f are the same under every circumstance.

• Π is self financing. As time goes on, we only shift money

around within the portfolio, we don’t put anymore in (or take

any out).

We will call Π the replicating portfolio (of f).
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Why does arbitrage work? Let’s do an example with gold.

Suppose the price of gold today is $200 and the risk-free interest

rate is 3%.

You don’t want gold today (because it’s out of fashion), but you do

want gold in 6 months (when, of course, it will be all the rage).

You therefore buy a forward contract. This says that you will

receive gold in 6 months. You are locking in a price today for

something you’ll buy in half a year.

How much should you pay for this wonderful opportunity?
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Suppose the forward contract costs $250. You should then go to

the bank, and borrow $200. Use this money to buy some gold right

now. Then short (sell) the forward (to a sucker).

In six months, what happens?

• You sell your gold for $250

• You pay back your loan with your newly received funds

• You are left with $250-$200e.5(.03)=$46.97

Which is a lot of free money.
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What if the forward contract, F0, is selling for less than

$200e.5(.03)? Well, you have to be able to sell an ounce of gold

today.

Assuming you have gold lying around, you’ll (because you know the

trick) sell your gold today and get $200. Next, you put this $200 in

the bank. Finally, you go long (buy) the forward contract.

So what happens at the end of 6 months?

• Take your money, $200e.5(.03) out of the bank.

• Use it to buy your gold back for $F0.

You have your gold back, and $(200e.5(.03)-F0). Since this number

is positive, you are very happy.
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Arbitrage therefore sets the price of the forward contract to be

$200e.5(.03). If the price is anything else, there is risk-free free

money to be made.

This is true of any forward contract on an asset with no storage

costs and which does not pay dividends and if we assume interest

rates are constant.

Even more generally, we have that any replicable claim will have

the same price as its self-financing replicating portfolio.
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Forward contracts are simple(!) to price. This is due in large part

to the linearity of the payoffs at maturity.

Options are not so easy. The payoff at maturity has a kink.

However, we may construct a self-financing portfolio.

Now we will need Ito’s Lemma.
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If dSt = Stµdt + StσdW , and f : (St, t) → R, we would like to

determine df .

In Newtonian calculus, if dx = (dSt, dt)′, we would simply have

df = (▽f, dx) =
∂f

∂S
dS +

∂f

∂t
dt

=

(

∂f

∂S
Stµ +

∂f

∂t

)

dt +
∂f

∂S
StσdW

But we observed that dW is like
√

dt. So our first order expansion

should include one second order term.
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If we believe that (dW )2 = dt, we need to look at

1

2
(dx, ▽2fdx)

If we do, we see that:

1

2

∂2f

∂S2
(dS)2 =

1

2

∂2f

∂S2
S2

t σ2dt

up to first order.
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We therefore have Ito’s Lemma

df =

(

∂f

∂S
Stµ +

∂f

∂t
+

1

2

∂2f

∂S2
S2

t σ2

)

dt +
∂f

∂S
StσdW (3)

with the same dW from (2).
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How will we use this?

The only randomness in df is the dW term. So if we can construct

a portfolio that eliminates the random part, we know exactly how

the portfolio should behave.

For the first showing of this derivation, we will rely on the discrete

versions of (2) and (3). We can prove this with much more rigor,

but it is not much more enlightening.
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Our goal is to price a contingent claim, or derivative.

We set Π to have

−1 : derivative

∆ : shares

where ∆ = ∂f
∂S

.

We get that for a small change in time, δt, the corresponding

change in Π is given

δΠ = −δf + ∆δS
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From the discrete versions of (2) and (3), we get

δΠ =

(

−∂f

∂t
− 1

2

∂2f

∂S2
σ2S2

t

)

δt. (4)

But this implies the change in the portfolio is riskless (no

uncertainty), and so arbitrage arguments, we must have

δΠ = rΠδt
(

−∂f

∂t
− 1

2

∂2f

∂S2
σ2S2

t

)

δt = r(−f + ∆S)δt

(

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

t + r∆S

)

δt = rfδt

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

t + r∆S = rf (5)
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The pde in (5) is the Black-Scholes-Merton differential equation:

∂f

∂t
+

1

2

∂2f

∂S2
σ2S2

t + r
∂f

∂S
S − rf = 0

with Cauchy data f(ST , T ) known.
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By using only (2) and arbitrage, we must have that

• Any function f that satisfies (5) is the price of some theoretical

contingent claim.

• Every contingent claim must satisfy (5).
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When
∂f

∂t
+

1

2

∂2f

∂S2
σ2 + r

∂f

∂S
S = rf

is solved with boundary conditions depicting a European call

option with strike K,

f(S, T ) = max(S − K, 0),

we get the Black-Scholes price of the option.
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The BS price of a European call, c, (on a stock with no dividend) is

c = c(K, r, St, t, T, σ) = StΦ(d1) − Ke−r(T−t)Φ(d2) (6)

d1 =
ln(St/K) + (r + σ2/2)(T − t)

σ
√

T − t

d2 = d1 − σ
√

T − t

(7)

Φ is the cumulative distribution function of standard normal

random variable (N(0, 1))
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Here are a few properties of the BS price of c (a benchmark test,

really)

• We would expect that if St is very large, c should be priced like

a forward contract (why?). We see that if St is large,

c ≈ St − Ke−r(T−t)

which is, in fact, the price of a forward contract (why?).

• When σ is extremely small, we would expect that the payoff

would be

c ≈ max(Ste
r(T−t) − K, 0) (8)

(why?).
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We also have

• c is an increasing function of σ.

• ∂c
∂S

= N(d1).

From the last point, we can estimate the ∆ to use in the replicating

portfolio of c.
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So we see that the price determined by risk-neutral expectation is

the same as the price determined by solving the Black-Scholes pde.

Everything seems to be going swimmingly.
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Next up....

Implied Volatility, and Where Black-Scholes is Going Wrong
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Prices are not set by the BS options price. Rather, markets set

prices (and if you believe some economists, they set prices near

perfectly).

We may therefore go to the market to see what a call option on a

certain underlying is selling for right now at t = 0.

We observe K, r, St, T . We can’t observe σ, though.

We solve for σ using (6). This is relatively easy since the BS call

option price is monotonic in σ. The number we get is called the

implied volatility.
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If we check market data for different strike prices, K, with all else

being equal, we get different implied volatilities.

In fact we get what is called a volatility smile, or a volatility skew

depending on the shape.

Why is this a problem? We have assumed that σ is some intrinsic

property of the underlying. It shouldn’t vary with K.
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Below are the prices for (European) call and put options on the

QQQ (a NASDAQ 100 composite) for January 9, 2004. Expiration

dates are January 16, and February 20.

Calls Puts

Strike January February January February

34 3.9 4.1 0.05 0.25

35 2.8 3.2 0.05 0.35

36 1.85 2.35 0.1 0.55

37 1 1.65 0.25 0.85

38 0.35 1.05 0.6 1.25

39 0.1 0.6 1.4 1.9

40 0.05 0.35 2.35 2.6
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As we have seen, BS depends on (K, r, St, t, T, q, σ), and the only

unobservable quantity is σ. In the present case, for the February

options, the data give

S0 = 37.73 (the price at closing Jan. 9, 2004)

T − t = 42/365 = .1151

r = .83

q = .18
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This gives

Implied Volatility

Strike February Call February Put

35 0.323 0.29

36 0.2592 0.2493

37 0.2455 0.2369

38 0.2279 0.2198

39 0.2156 0.2279

40 0.2181 0.2206
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Graphically, plotting strike prices on the x-axis and implied

volatility on the y-axis, we have:
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Sometimes things are not so perfect. Suppose the volatility smile

we observe looked more like:
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We would likely think that the market was overpricing the call for

one of the strike prices (which one?), and take a position.
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Volatility smiles also occur with commodities. Below are examples

of smiles for both calls and puts for crude oil.
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So σ not only varies with the strike price, but also depends on

whether we are pricing a call or a put. Below are the volatility

smiles of the call and put above in one plot.
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As a final kicker, implied volatility varies with the expiration of the

option. We may therefore plot a volatility surface.
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In the end, Black-Scholes is used to show that Black-Scholes is

lacking. We could enrich the model. Some prime suggestions are

• Assume volatility is stochastic. That is, let σ = µσdt + σ̂dW .

• Assume volatility is local. That is, σ = σ(S, t).

• Assume the process that the underlying follows is a

jump-diffusion process.

• Assume interest rates are, at the very least, nonconstant.

Everything that is tweaked, however, leads to more issues. Today,

there is no clear successor to the BS model.
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