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We would like to build a model to describe default arrival risk in
an intensity based default risk model.

We use a Poisson process N(t): a process that is increasing and
takes values in 0, 1, 2, . . ., and assume N doesn’t increase by more
than 1.

And we will say that default occurs at

τ = inf{t ∈ R > 0 |N(t) > 0}
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We will look at processes N(t) that are

? Homogeneous (λ(t) ≡ constant)

? Inhomogeneous (λ(t) a function of time)

? Stochastic (λ(t) is...you guessed it, stochastic)
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Homogeneous

We assume that in the next (sufficiently) small time interval δt that

P(N(t + δt)−N(t) > 0) = λδt

and hence,
P(N(t + δt)−N(t) = 0) = 1− λδt

We also assume that jumps in disjoint intervals are independent.
With this,

P(N(t + 2δt)−N(t) = 0)

= P(N(t + 2δt)−N(t + δt) = 0) · P(N(t + δt)−N(t) = 0)

= (1− λδt)2
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And, continuing on, we conclude that the probability of no jumps
in the interval [t, T ] is approximated by breaking up the interval
into n pieces, and obtain

P(N(T )−N(t) = 0) ≈ (1− λ∆t)n

where ∆ = 1
n (T − t).

Therefore, we get, by taking n → 0 (or ∆ → 0), or

P(N(T )−N(t) = 0) = exp(−(T − t)λ)
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To find the probability of exactly one jump in [t, T ] is

(discretely)

P(N(T )−N(t) = 1) = n ·∆λ(1−∆λ)n−1

since we have to choose one interval where a jump happens and the
rest must contain no jumps.

(continuously)

By multiplying and dividing by (1−∆λ), we get

P(N(T )−N(t) = 1) =
(T − t)λ
1−∆λ

(1−∆λ)n

→ (T − t)λ exp(−(T − t)λ)
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In general, by using the binomial, theorem, you obtain that the
probability of obtaining exactly m jumps is

(discretely)

P(N(T )−N(t) = m) =
(

n

m

)
· (∆λ)m(1−∆ · λ)n−m

Which becomes in the limit (using the same ideas as before)

(continuously)

P(N(T )−N(t) = m) =
1
m!

(T − t)mλm exp(−(T − t)λ)

And this is the definition of a homogeneous Poisson process. You
just make sure that N(0) = 0.
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A couple highlights with differentials:

? E(dN) = λdt

? The predictable compensator of N(t) is λt

? dN · dN = dN , and so E(dN2) = λt

? N is uncorrelated with any martingale generated by a Brownian
motion
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Let’s do something that actually pertains to credit:

The survival probability in our current model is given by

P (0, T ) = P(N(T )−N(0) = 0)

= e−λT

If we assume default and interest rates are independent, we have
hazard rates

H(t, T, T + δt) =
1
δt

(
P (t, T )

P (t, T + δt)− 1

)

=
1
δt

(
e−λ(T−t)

e−λ(T+δt−t)
− 1

)

=
1
δt

(eλδt − 1)

h(t, T ) = λ
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Inhomogeneous

The result of the last statement is that a Poisson process with
constant intensity yields a flat term structure of spreads.

This is not sufficient.

We therefore broaden the model and consider

P(N(t + δt)−N(t)) = λ(t)δt
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The probability of no jumps in [t, T ] is

P(N(T )−N(t) = 0) =
n∏

i=1

(1− λ(t + iδt)δt)

lnP(N(T )−N(t) = 0) =
n∑

i=1

ln(1− λ(t + iδt)δt)

(by Taylor approximation of ln) ≈
n∑

i=1

−λ(t + iδt)δt

→ −
∫ T

t

λ(s)ds

So that

P(N(T )−N(t) = 0) = exp

(
−

∫ T

t

λ(s)ds

)
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Just as before, we can determine that

P(N(T )−N(t) = m) =
1
m!

(
−

∫ T

t

λ(s)ds

)m

exp

(
−

∫ T

t

λ(s)ds

)

We can show that the compensator of the inhomogeneous Poisson
process is − ∫ t

t
λ(s)ds
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Applying this to survival probabilities and hazard rates:

P (0, T ) = exp

(
−

∫ T

0

λ(s)ds

)

H(t, T, T + δt) =
1
δt

(
e−
R T

t
λ(s)ds

e−
R T+δt

t
λ(s)ds)

− 1

)

=
1
δt

(
e
R T+δt

T
λ(s)ds − 1

)

h(t, T ) = λ(T )

We have therefore obtained enough flexibility to capture the term
structure.
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Continuing, we price the building blocks B and e.

If we assume independence of the default free rate and the arrival
time of of default, we have

B(0, T ) = E
(
e−
R T
0 r(s)ds1N(T )=0

)

= E
(
e−
R T
0 r(s)ds

)
E

(
1N(T )=0

)

= B(0, T )e−
R T
0 λ(s)ds
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Payoff of 1 at default

(discrete) Default happens in [Tk, Tk+1], and same independence
assumption

e(0, Tk, Tk+1) = E
(

e−
R Tk+1
0 r(s)ds

(
1N(Tk)=0 − 1N(Tk+1)=0

))

= B(0, Tk+1)
(

e−
R Tk
0 λ(s)ds − e−

R Tk+1
0 λ(s)ds

)

= B(0, Tk+1)e−
R Tk
0 λ(s)ds

(
1− e

− R Tk+1
Tk

λ(s)ds

)

= B(0, Tk+1)
(

1− e
− R Tk+1

Tk
λ(s)ds

)
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Payoff of 1 at default

(continuous) Taking the limit as Tk+1 → Tk = T

e(0, T ) = lim
δt→0

e(0, T, T + δt)

= lim
δt→0

B(0, T + δt)
(
1− e−

R T+δt
T

λ(s)ds
)

= B(0, T ) lim
δt→0

(
1− e−

R T+δt
T

λ(s)ds
)

= B(0, T )λ(T )
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Stochastic

We’d be happy if that was enough. The market shows yield spreads
that are not smooth, but stochastic.

We therefore need a stochastic process built in to our intensity
based model.

Here we still want

P(N(t + δt)−N(t)) = λ(t)δt

but now we see that we need dynamics for λ, and assume λ is the
stochastic process given by

dλ(t) = µλ(t)dt + σλ(t)dW (t)
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There is a bit of detail into getting the appropriate (i.e., what we
want) model in place here.

One of the requirements is that we have a background driving
filtration, {Gt}. Essentially this is a filtration generated by a
background driving process (think economic factors).

All default free processes are adapted to {Gt}.
The (stochastic) intensity, λ, is adapted to {Gt}.
And the full filtration, {Ft} is made up of {Gt} and the filtration
generated by the jump process, N .
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Given G, we know what λ has been like so far, so we can compute
the probability of m jumps in [t, T ] exactly as before, but with a
conditional expectation:

P(N(T )−N(t) = m) = E(P(N(T )−N(t) = m)|λ)

= E

(
1
m!

(
−

∫ T

t

λ(s)ds

)m

e−
R T

t
λ(s)ds

)

which is a bit more complicated, but not bad.

Notice that in the inhomogeneous case we smoothed with
integration, and now with expectation.
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We would like to price the building blocks again.

Before we do this, we need to recall the law of iterated expectations:

E(X) = E(E(X|G))

For us, the intuition is that if we condition on the background
driving filtration (think economic factors), our jump process has an
inhomogeneous jump intensity, and things become tractable. We
then take the average of all of these tractable things.
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We’ll price the building blocks (again!)

B(0, T ) = E(e−
R T
0 r(s)ds1τ>T )

(by conditioning) = E(E(e−
R T
0 r(s)ds1τ>T |G))

Since we assume that default free processes are G measurable, we
get

E(e−
R T
0 r(s)ds1τ>T |G) = e−

R T
0 r(s)dsE(1τ>T |G)

= e−
R T
0 r(s)dse−

R T
0 λ(s)ds

= = e−
R T
0 r(s)+λ(s)ds

And therefore
B(0, T ) = E(e−

R T
0 r(s)+λ(s)ds)
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A payoff of 1 at Tk+1 if default happens in [Tk, Tk+1]

(discrete)

e(0, Tk, Tk+1) = E
(

e−
R Tk+1
0 r(s)ds

(
1N(Tk)=0 − 1N(Tk+1)=0

))

= E
(
E

(
e−
R Tk+1
0 r(s)ds

(
1N(Tk)=0 − 1N(Tk+1)=0

) |G
))

The inner expectation is

e−
R Tk+1
0 r(s)dsE

((
1N(Tk)=0 − 1N(Tk+1)=0

) |G)

= e−
R Tk+1
0 r(s)ds

(
e−
R Tk
0 λ(s)ds − e−

R Tk+1
0 λ(s)ds

)
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and the end result after taking the final expectation is

e(0, Tk, Tk+1) = E
(

e−
R Tk+1
0 r(s)dse−

R Tk
0 λ(s)ds

)
−B(0, Tk)
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A payoff of 1 at default; taking Tk+1 → Tk = T

(continuous)

e(0, T ) = lim
δt→0

1
δt

[
E

(
e−
R T+δt
0 r(s)dse−

R T
0 λ(s)ds

)
−B(0, T + δt)

]

= lim
δt→0

1
δt

[
E

(
e−
R T+δt
0 r(s)+λ(s)dse

R T+δt
T

λ(s)ds
)
−B(0, T + δt)

]

which becomes
E(λ(T )e−

R T
0 r(s)+λ(s)ds)
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The problem with what we’ve done...

We didn’t solve the pricing problem.

The coupling of interest rates and intensity means we have to do
more work.

Another day.

Also, I would like to see how the intensity is calibrated.

I think this is for a much, much later day.
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