Principal Components Analysis in Yield-Curve Modeling

Carlos F. Tolmasky

April 4, 2007

- Black-Scholes models 1 underlying.
- Black-Scholes models 1 underlying.
- What if we need more? spread, basket options.
- Black-Scholes models 1 underlying.
- What if we need more? spread, basket options.
- Need correlation structure of the market.
- Black-Scholes models 1 underlying.
- What if we need more? spread, basket options.
- Need correlation structure of the market.
- What if the market is naturally a curve?
- Black-Scholes models 1 underlying.
- What if we need more? spread, basket options.
- Need correlation structure of the market.
- What if the market is naturally a curve?
- Interest rates.
- Black-Scholes models 1 underlying.
- What if we need more? spread, basket options.
- Need correlation structure of the market.
- What if the market is naturally a curve?
- Interest rates.
- Commodities.
- Black-Scholes models 1 underlying.
- What if we need more? spread, basket options.
- Need correlation structure of the market.
- What if the market is naturally a curve?
- Interest rates.
- Commodities.
- Does it make sense to model each underlying individually?

Front Month Crude

CL1 +66. $35+.48$

At 12:26 Vol 28,289y Op 65. 75 Hi 66.40 Lo 65.25 OpInt 358,859y

Comdty GPO

[^0]
Crude Curve

Yield Curve

〈HELP〉 for explanation．
N121 Govt IYC
Hit＜PAGE＞for more info or 〈MENU＞for list of curves．
YIELD CURVE－US TREASURY ACTIVES Page $1 / 2$ Currency \quad M Mid RANGE 3M－30 DATE 4／2／07

Japanese Yield Curve

＜HELP＞for explanation．
N121 Govt IYC
Hit 〈PAGE〉 for more info or 〈MENU〉 for list of curves． YIELD CURVE－JAPANESE GOVERNMENT Page $1 / 2$ Currency－I Mid RANGE 3M－30 DATE 4／2／0？

Crude Curve through time

<HELP> for explanation.

N108 Comdty CTGH

No historical data for this security in this range or period.
CRUDE OIL FUTR Page 1/5
CL Contract Series Graph
3/30/07 $3 / 31 / 06$ 4/ 4/05 $4 / 2 / 04$ Vol/OpInt/Change C

Natural Gas Curve through time

<HELP> for explanation.

N108 Comdty CTGH

No historical data for this security in this range or period.
NATURAL GAS FUTR Page 1/5
NG Contract Series Graph
3/30/07 3/31/06 4/4/05 4/ 2/04 Vol/DpInt/Change C

 Australia 612,97778600 Erazil 5511 S048 4500 Europe 442073307500 Germany 4969920410
Hong Kong 85229776000 Japan 81332018900 Singapore $6562121000 \mathrm{U} . \mathrm{S}$. 12123182000 Copuright 2007 Bloomberg L. P.
Carlos F. Tolmasky
Principal Components Analysis in Yield-Curve Modeling

Historically, different approaches:

Historically, different approaches:

Black's model:

- Each possible underlying is lognormal.

Historically, different approaches:

Black's model:

- Each possible underlying is lognormal.
- What if we need to use more than one rate?

Historically, different approaches:

Black's model:

- Each possible underlying is lognormal.
- What if we need to use more than one rate?

1-Factor models (Vasicek, Ho-Lee)

- Model the short rate, derive the rest of the curve from it.

Historically, different approaches:

Black's model:

- Each possible underlying is lognormal.
- What if we need to use more than one rate?

1-Factor models (Vasicek, Ho-Lee)

- Model the short rate, derive the rest of the curve from it.
- 1-factor not rich enough, how do we add factors?

Historically, different approaches:

Black's model:

- Each possible underlying is lognormal.
- What if we need to use more than one rate?

1-Factor models (Vasicek, Ho-Lee)

- Model the short rate, derive the rest of the curve from it.
- 1-factor not rich enough, how do we add factors?
- Adding factors not obvious.

Historically, different approaches:

Black's model:

- Each possible underlying is lognormal.
- What if we need to use more than one rate?

1-Factor models (Vasicek, Ho-Lee)

- Model the short rate, derive the rest of the curve from it.
- 1-factor not rich enough, how do we add factors?
- Adding factors not obvious.

HJM

- Forget Black-Scholes..

Historically, different approaches:

Black's model:

- Each possible underlying is lognormal.
- What if we need to use more than one rate?

1-Factor models (Vasicek, Ho-Lee)

- Model the short rate, derive the rest of the curve from it.
- 1-factor not rich enough, how do we add factors?
- Adding factors not obvious.

HJM

- Forget Black-Scholes..
- Model the whole curve.
- How?? ©-many points.
- How?? ©-many points.
- However correlation is high.
- How?? ©-many points.
- However correlation is high.
- Maybe the moves "live" in a lower dimensional space.
- How?? ©-many points.
- However correlation is high.
- Maybe the moves "live" in a lower dimensional space.

Instead of

$$
\frac{d F_{i}}{F_{i}}=\sigma_{i} d W_{i} \quad i=1, \ldots, n
$$

with W_{i}, W_{j} correlated do

- How?? ©-many points.
- However correlation is high.
- Maybe the moves "live" in a lower dimensional space.

Instead of

$$
\frac{d F_{i}}{F_{i}}=\sigma_{i} d W_{i} \quad i=1, \ldots, n
$$

with W_{i}, W_{j} correlated do

$$
\frac{d F_{i}}{F_{i}}=\sum_{i=1}^{k} \sigma_{j, i} d W_{j} \quad k<n \text { (hopefully) }
$$

- How?? ©-many points.
- However correlation is high.
- Maybe the moves "live" in a lower dimensional space.

Instead of

$$
\frac{d F_{i}}{F_{i}}=\sigma_{i} d W_{i} \quad i=1, \ldots, n
$$

with W_{i}, W_{j} correlated do

$$
\frac{d F_{i}}{F_{i}}=\sum_{i=1}^{k} \sigma_{j, i} d W_{j} \quad k<n \text { (hopefully) }
$$

But, how do we choose the $\sigma_{j, i}$??

- Technique to reduce dimensionality.
- Technique to reduce dimensionality.
- If X is the matrix containing our data, we look for w so that $\arg \max _{\|w\|=1} \operatorname{Var}\left(w^{\top} X\right)$
- Technique to reduce dimensionality.
- If X is the matrix containing our data, we look for w so that $\arg \max _{\|w\|=1} \operatorname{Var}\left(w^{\top} X\right)$
- Then we do the same in the subspace orthogonal to w.
- Technique to reduce dimensionality.
- If X is the matrix containing our data, we look for w so that $\arg \max _{\|w\|=1} \operatorname{Var}\left(w^{\top} X\right)$
- Then we do the same in the subspace orthogonal to w.
- It is equivalent to diagonalizing the covariance matrix.
- Technique to reduce dimensionality.
- If X is the matrix containing our data, we look for w so that $\arg \max _{\|w\|=1} \operatorname{Var}\left(w^{\top} X\right)$
- Then we do the same in the subspace orthogonal to w.
- It is equivalent to diagonalizing the covariance matrix.

Litterman-Scheikman (1991)

- Looked at the treasury yield curve.

Litterman-Scheikman (1991)

- Looked at the treasury yield curve.
- Found that just a few eigenvectors are the important ones.

Litterman-Scheikman (1991)

- Looked at the treasury yield curve.
- Found that just a few eigenvectors are the important ones.
- Three of them explain most of the moves.

Litterman-Scheikman (1991)

- Looked at the treasury yield curve.
- Found that just a few eigenvectors are the important ones.
- Three of them explain most of the moves.
- Level-Slope-Curvature

Litterman-Scheikman (1991)

- Looked at the treasury yield curve.
- Found that just a few eigenvectors are the important ones.
- Three of them explain most of the moves.
- Level-Slope-Curvature
- Very Intuitive.

Litterman-Scheikman (1991)

- Looked at the treasury yield curve.
- Found that just a few eigenvectors are the important ones.
- Three of them explain most of the moves.
- Level-Slope-Curvature
- Very Intuitive.
- Curve trades.

Litterman-Scheikman (1991)

- Looked at the treasury yield curve.
- Found that just a few eigenvectors are the important ones.
- Three of them explain most of the moves.
- Level-Slope-Curvature
- Very Intuitive.
- Curve trades.
- Cortazar-Schwartz (2004) found the same in copper

Litterman-Scheikman (1991)

- Looked at the treasury yield curve.
- Found that just a few eigenvectors are the important ones.
- Three of them explain most of the moves.
- Level-Slope-Curvature
- Very Intuitive.
- Curve trades.
- Cortazar-Schwartz (2004) found the same in copper
- Loads (or lots?) of other people report the same kind of results in many other markets.

Predictive Power

- Recently, some work has been done on this.
- Recently, some work has been done on this.
- Mönch (2006)
- Studies innovations in level-slope-curvature wrt macro variables.
- Recently, some work has been done on this.
- Mönch (2006)
- Studies innovations in level-slope-curvature wrt macro variables.
- Positive answer for curvature.

Predictive Power

- Recently, some work has been done on this.
- Mönch (2006)
- Studies innovations in level-slope-curvature wrt macro variables.
- Positive answer for curvature.
- Diebold-Li (2006)
- Use autoregressive models for each component.

Predictive Power

- Recently, some work has been done on this.
- Mönch (2006)
- Studies innovations in level-slope-curvature wrt macro variables.
- Positive answer for curvature.
- Diebold-Li (2006)
- Use autoregressive models for each component.
- Study forecast power at short and long horizons.

Predictive Power

- Recently, some work has been done on this.
- Mönch (2006)
- Studies innovations in level-slope-curvature wrt macro variables.
- Positive answer for curvature.
- Diebold-Li (2006)
- Use autoregressive models for each component.
- Study forecast power at short and long horizons.
- Report encouraging results at long horizons.

Predictive Power

- Recently, some work has been done on this.
- Mönch (2006)
- Studies innovations in level-slope-curvature wrt macro variables.
- Positive answer for curvature.
- Diebold-Li (2006)
- Use autoregressive models for each component.
- Study forecast power at short and long horizons.
- Report encouraging results at long horizons.
- Chantziara-Skiadopoulos (2005).
- Study predictive power in oil.

Predictive Power

- Recently, some work has been done on this.
- Mönch (2006)
- Studies innovations in level-slope-curvature wrt macro variables.
- Positive answer for curvature.
- Diebold-Li (2006)
- Use autoregressive models for each component.
- Study forecast power at short and long horizons.
- Report encouraging results at long horizons.
- Chantziara-Skiadopoulos (2005).
- Study predictive power in oil.
- Results are weak.

Predictive Power

- Recently, some work has been done on this.
- Mönch (2006)
- Studies innovations in level-slope-curvature wrt macro variables.
- Positive answer for curvature.
- Diebold-Li (2006)
- Use autoregressive models for each component.
- Study forecast power at short and long horizons.
- Report encouraging results at long horizons.
- Chantziara-Skiadopoulos (2005).
- Study predictive power in oil.
- Results are weak.
- Also look at spillover effects among crude (WTI and IPE), heating oil and gasoline.

Predictive Power

- Recently, some work has been done on this.
- Mönch (2006)
- Studies innovations in level-slope-curvature wrt macro variables.
- Positive answer for curvature.
- Diebold-Li (2006)
- Use autoregressive models for each component.
- Study forecast power at short and long horizons.
- Report encouraging results at long horizons.
- Chantziara-Skiadopoulos (2005).
- Study predictive power in oil.
- Results are weak.
- Also look at spillover effects among crude (WTI and IPE), heating oil and gasoline.
- Some spillover effects found.

Table: Correlation Matrix for Changes of the First 12 Crude Oil Futures Prices

1.000	0.992	0.980	0.966	0.951	0.936	0.922	0.08	0.892	0.877	0.860	0.848
0.992	1.000	0.996	0.988	0.978	0.966	0.954	0.941	0.927	0.913	0.898	0.886
0.980	0.996	1.000	0.997	0.991	0.982	0.973	0.963	0.951	0.939	0.925	0.914
0.966	0.988	0.997	1.000	0.998	0.993	0.986	0.978	0.968	0.958	0.946	0.936
0.951	0.978	0.991	0.998	1.000	0.998	0.994	0.989	0.981	0.972	0.963	0.954
0.936	0.966	0.982	0.993	0.998	1.000	0.999	0.995	0.90	0.983	0.975	0.967
0.922	0.954	0.973	0.986	0.994	0.999	1.000	0.999	0.996	0.991	0.984	0.978
0.08	0.941	0.963	0.978	0.989	0.995	0.999	1.000	0.999	0.996	0.991	0.985
0.892	0.927	0.951	0.968	0.981	0.90	0.996	0.999	1.000	0.999	0.995	0.991
0.877	0.913	0.939	0.958	0.972	0.983	0.991	0.996	0.999	1.000	0.998	0.996
0.860	0.898	0.925	0.946	0.963	0.975	0.984	0.991	0.995	0.998	1.000	0.998
0.848	0.886	0.914	0.936	0.954	0.967	0.978	0.985	0.991	0.996	0.998	1.000

First four eigenvectors for oil

- Why is the result "market-invariant"?

Forzani-T (2003)

- Why is the result "market-invariant"?
- Because all the correlation matrices are very similar.

Forzani-T (2003)

- Why is the result "market-invariant"?
- Because all the correlation matrices are very similar.
- They all look like $\rho^{|i-j|}$ with ρ close to 1 .

Forzani-T (2003)

- Why is the result "market-invariant"?
- Because all the correlation matrices are very similar.
- They all look like $\rho^{|i-j|}$ with ρ close to 1 .
- Proved that the eigenvectors of those matrices converge to $\cos (n x)$ when $\rho \rightarrow 1$.

Correlation matrix:

$$
\left(\begin{array}{cccccc}
1 & \rho^{\frac{T}{n}} & \rho^{2 \frac{T}{n}} & \ldots & \ldots & \rho^{n \frac{T}{n}} \\
\rho^{\frac{T}{n}} & 1 & \rho^{\frac{T}{n}} & \ldots & \ldots & \rho^{(n-1) \frac{T}{n}} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\rho^{(n-1) \frac{T}{n}} & \rho^{(n-2) \frac{T}{n}} & \rho^{(n-3) \frac{T}{n}} & \ldots & 1 & \rho \frac{T}{n} \\
\rho^{n \frac{T}{n}} & \rho^{(n-1) \frac{T}{n}} & \rho^{(n-2) \frac{T}{n}} & \ldots & \rho^{\frac{T}{n}} & 1
\end{array}\right)
$$

or, as an operator:

$$
\begin{equation*}
K_{\rho} f(x)=\int_{0}^{T} \rho^{|y-x|} f(y) d y \tag{1}
\end{equation*}
$$

Lekkos (2000)

- A big part of the correlation structure is given by:

$$
R\left(t, T_{1}\right) T_{1}=R\left(t, T_{0}\right) T_{0}+f\left(t, T_{0}, T_{1}\right)\left(T_{1}-T_{0}\right)
$$

Lekkos (2000)

- A big part of the correlation structure is given by:

$$
R\left(t, T_{1}\right) T_{1}=R\left(t, T_{0}\right) T_{0}+f\left(t, T_{0}, T_{1}\right)\left(T_{1}-T_{0}\right)
$$

- So, it is an artifact.

Lekkos (2000)

- A big part of the correlation structure is given by:

$$
R\left(t, T_{1}\right) T_{1}=R\left(t, T_{0}\right) T_{0}+f\left(t, T_{0}, T_{1}\right)\left(T_{1}-T_{0}\right)
$$

- So, it is an artifact.
- Even if we generate independent forwards we find structure in the correlation matrix of the zeros.

Lekkos (2000)

- A big part of the correlation structure is given by:

$$
R\left(t, T_{1}\right) T_{1}=R\left(t, T_{0}\right) T_{0}+f\left(t, T_{0}, T_{1}\right)\left(T_{1}-T_{0}\right)
$$

- So, it is an artifact.
- Even if we generate independent forwards we find structure in the correlation matrix of the zeros.
- Looked at the PCAs of fwds in various markets, found nothing interesting.

Alexander-Lvov (2003)

- They study different fitting techniques for the yield curve.

Alexander-Lvov (2003)

- They study different fitting techniques for the yield curve.
- Found that this choice is crucial to the correlation structure obtained.

Alexander-Lvov (2003)

- They study different fitting techniques for the yield curve.
- Found that this choice is crucial to the correlation structure obtained.
- Could Lekkos' critique be just a matter of the choice of the fitting technique?

Lord, Pessler (2005)

- They ask the question:

Lord, Pessler (2005)

- They ask the question:

Can we characterize "level-slope-curvature"?

Lord, Pessler (2005)

- They ask the question:

Can we characterize "level-slope-curvature"?

- They look at sign changes in the eigenvectors.

Lord, Pessler (2005)

- They ask the question:

Can we characterize "level-slope-curvature"?

- They look at sign changes in the eigenvectors.
- "Level" means no sign changes.

Lord, Pessler (2005)

- They ask the question:

Can we characterize "level-slope-curvature"?

- They look at sign changes in the eigenvectors.
- "Level" means no sign changes.
- This is solved by Perron's theorem.

Perron's Theorem:

Let A be an $N \times N$ matrix, all of whose elements are strictly positive. Then A has a positive eigenvalue of algebraic multiplicity equal to 1 , which is strictly greater in modulus than all other eigenvalues of A. Furthermore, the unique (up to multiplication by a non-zero constant) associated eigenvector may be chosen so that all its components are strictly positive.

Lord-Pessler (2005)

- A square matrix A is said to be totally positive (TP) when for all p-uples n, m and $p \leq N$, the matrix formed by the elements $a_{n_{i}, m_{j}}$ has nonnegative determinant.

Lord-Pessler (2005)

- A square matrix A is said to be totally positive (TP) when for all p-uples n, m and $p \leq N$, the matrix formed by the elements $a_{n_{i}, m_{j}}$ has nonnegative determinant.
- If that condition is valid only for $p \leq k<N$ then A is called $T P_{k}$.

Lord-Pessler (2005)

- A square matrix A is said to be totally positive (TP) when for all p-uples n, m and $p \leq N$, the matrix formed by the elements $a_{n_{i}, m_{j}}$ has nonnegative determinant.
- If that condition is valid only for $p \leq k<N$ then A is called $T P_{k}$.
- If those dets are strictly positive they are called strictly totally positive (STP).

Lord-Pessler (2005)

- A square matrix A is said to be totally positive (TP) when for all p-uples n, m and $p \leq N$, the matrix formed by the elements $a_{n_{i}, m_{j}}$ has nonnegative determinant.
- If that condition is valid only for $p \leq k<N$ then A is called $T P_{k}$.
- If those dets are strictly positive they are called strictly totally positive (STP).
- This is all classical stuff in matrix theory.

Lord-Pessler (2005)

- A square matrix A is said to be totally positive (TP) when for all p-uples n, m and $p \leq N$, the matrix formed by the elements $a_{n_{i}, m_{j}}$ has nonnegative determinant.
- If that condition is valid only for $p \leq k<N$ then A is called $T P_{k}$.
- If those dets are strictly positive they are called strictly totally positive (STP).
- This is all classical stuff in matrix theory.
- In 1937 Gantmacher and Kreǐn proved a theorem for ST matrices.

Lord-Pessler (2005)

Sign-change pattern in STPk matrices

Assume Σ is an $N \times N$ positive definite symmetric matrix (i.e. a valid covariance matrix) that is $S T P_{k}$. Then we have $\lambda_{1}>\lambda_{2}>\ldots>\lambda_{k}>\lambda_{k+1} \geq \ldots \lambda_{N}>0$, i.e. at least the first k eigenvalues are simple. Moreover denoting the j th eigenvector by x_{j}, we have that x_{j} crosses the zero $j-1$ times for $j=1, \ldots, k$.

Lord-Pessler (2005)

- Therefore $S T P 3_{3} \Rightarrow$ "level-slope-curvature".

Lord-Pessler (2005)

- Therefore $S T P 3_{3} \Rightarrow$ "level-slope-curvature".
- Condition can be relaxed.

Lord-Pessler (2005)

- Therefore $S T P 3_{3} \Rightarrow$ "level-slope-curvature".
- Condition can be relaxed.
- Definition: A matrix is called oscillatory if it is $T P_{k}$ and some power of it is $S T P_{k}$.

Lord-Pessler (2005)

- Therefore $S T P 3_{3} \Rightarrow$ "level-slope-curvature".
- Condition can be relaxed.
- Definition: A matrix is called oscillatory if it is $T P_{k}$ and some power of it is $S T P_{k}$.
- Sufficient condition can be relaxed to being oscillatory of order 3 (actually to having a power which is).

Lord-Pessler (2005). Schoenmakers-Coffey (2000)

- The matrices in Forzani-T have constant diagonal elements
- The matrices in Forzani-T have constant diagonal elements
- Actually that is not true in reality. The diagonals increase in size.

Lord-Pessler (2005). Schoenmakers-Coffey (2000)

- The matrices in Forzani-T have constant diagonal elements
- Actually that is not true in reality. The diagonals increase in size.
- In modeling correlations Schoenmakers-Coffey proposed a family of matrices that takes this fact into account.

Lord-Pessler (2005). Schoenmakers-Coffey (2000)

- The matrices in Forzani-T have constant diagonal elements
- Actually that is not true in reality. The diagonals increase in size.
- In modeling correlations Schoenmakers-Coffey proposed a family of matrices that takes this fact into account.
- Lord-Pessler show that these matrices are oscillatory.

Lord-Pessler (2005). Conjecture

Lord-Pessler (2005). Conjecture

Sufficient conditions for a correlation matrix to satisfy "level-slope-curvature" are:

Lord-Pessler (2005). Conjecture

Sufficient conditions for a correlation matrix to satisfy "level-slope-curvature" are:

- $\rho_{i, j+1} \leq \rho_{i, j}$ for $j \geq i$.

Lord-Pessler (2005). Conjecture

Sufficient conditions for a correlation matrix to satisfy "level-slope-curvature" are:

- $\rho_{i, j+1} \leq \rho_{i, j}$ for $j \geq i$.
- $\rho_{i, j-1} \leq \rho_{i, j}$ for $j \leq i$.

Lord-Pessler (2005). Conjecture

Sufficient conditions for a correlation matrix to satisfy "level-slope-curvature" are:

- $\rho_{i, j+1} \leq \rho_{i, j}$ for $j \geq i$.
- $\rho_{i, j-1} \leq \rho_{i, j}$ for $j \leq i$.
- $\rho_{i, i+j} \leq \rho_{i+1, i+j+1}$

Extensions: Multi-Curve, Seasonality. Hindanov-T (2002)

- Sometimes we need to mix up different markets.

Extensions: Multi-Curve, Seasonality. Hindanov-T (2002)

- Sometimes we need to mix up different markets.
- Example: Oil
- Not just timespreads, bflies but also cracks.

Extensions: Multi-Curve, Seasonality. Hindanov-T (2002)

- Sometimes we need to mix up different markets.
- Example: Oil
- Not just timespreads, bflies but also cracks.
- In that case we could price any structure in a muti-curve market.

Extensions: Multi-Curve, Seasonality. Hindanov-T (2002)

- Sometimes we need to mix up different markets.
- Example: Oil
- Not just timespreads, bflies but also cracks.
- In that case we could price any structure in a muti-curve market.
- We can model something like this by assuming a constant correlation intercurve and a different, also constant, correlation intracurve.

Extensions: Multi-Curve, Seasonality. Hindanov-T (2002)

- Sometimes we need to mix up different markets.
- Example: Oil
- Not just timespreads, bflies but also cracks.
- In that case we could price any structure in a muti-curve market.
- We can model something like this by assuming a constant correlation intercurve and a different, also constant, correlation intracurve.
- Depending on how high is the intercurve correlation we will get "separation" vectors of different orders.

PCA of crude and heating oil together

Model for multiple curves

Model for multiple curves

Let μ and λ be the intercurve and intracurve correlations.

Model for multiple curves

Let μ and λ be the intercurve and intracurve correlations.

Then the correlation matrix C is given by:

Model for multiple curves

Let μ and λ be the intercurve and intracurve correlations.

Then the correlation matrix C is given by:

$$
\left(\begin{array}{cc}
C_{\rho} & \mu C_{\rho} \\
\mu C_{\rho} & C_{\rho}
\end{array}\right)
$$

Model for multiple curves

Let μ and λ be the intercurve and intracurve correlations.

Then the correlation matrix C is given by:

$$
\left(\begin{array}{cc}
C_{\rho} & \mu C_{\rho} \\
\mu C_{\rho} & C_{\rho}
\end{array}\right)
$$

where

$$
\left(\begin{array}{cccccc}
1 & \rho & \rho^{2} & \ldots & \ldots & \rho^{n} \\
\rho & 1 & \rho & \ldots & \ldots & \rho^{n-1} \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
\rho^{n-1} & \rho^{n-2} & \rho^{n-3} & \ldots & 1 & \rho \\
\rho^{n} & \rho^{n-1} & \rho^{n-2} & \ldots & \rho & 1
\end{array}\right)
$$

Model for multiple curves

Model for multiple curves

If v_{1}, \ldots, v_{n} are the eigenvectors of C_{ρ} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

Model for multiple curves

If v_{1}, \ldots, v_{n} are the eigenvectors of C_{ρ} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

Then the eigenvectors of C are of the form $\left(v_{k}, v_{k}\right)$ and $\left(v_{k},-v_{k}\right)$ with $1 \leq k \leq n$ and

Model for multiple curves

If v_{1}, \ldots, v_{n} are the eigenvectors of C_{ρ} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

Then the eigenvectors of C are of the form $\left(v_{k}, v_{k}\right)$ and $\left(v_{k},-v_{k}\right)$ with $1 \leq k \leq n$ and
eigenvalues $\lambda_{k}(1+\mu)$ and $\lambda_{k}(1-\mu)$.

Model for multiple curves

If v_{1}, \ldots, v_{n} are the eigenvectors of C_{ρ} with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.

Then the eigenvectors of C are of the form $\left(v_{k}, v_{k}\right)$ and $\left(v_{k},-v_{k}\right)$ with $1 \leq k \leq n$ and
eigenvalues $\lambda_{k}(1+\mu)$ and $\lambda_{k}(1-\mu)$.

So, depending on the size of the intercurve correlation we will get different order of importance between common frequencies and separating frequencies.

Seasonality in the Eigenvalues ($0=$ heating oil, $x=$ crude)

[^0]:

 Hong Kong 85229776000 Japan 81332018900 Singapore $6562121000 \mathrm{U} . \mathrm{S}$. 12123182000 Copuright 2007 Bloomberg L. P.

