Principal Components Analysis in Yield-Curve Modeling

Carlos F. Tolmasky

April 4, 2007

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

• Black-Scholes models 1 underlying.

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへで

- Black-Scholes models 1 underlying.
- What if we need more? spread, basket options.

・ロン ・日ン ・ヨン ・ヨン

臣

- Black-Scholes models 1 underlying.
- What if we need more? spread, basket options.
- Need correlation structure of the market.

・ロン (雪) (目) (日)

- Black-Scholes models 1 underlying.
- What if we need more? spread, basket options.
- Need correlation structure of the market.
- What if the market is naturally a curve?

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

- Black-Scholes models 1 underlying.
- What if we need more? spread, basket options.
- Need correlation structure of the market.
- What if the market is naturally a curve?
 - Interest rates.

- Black-Scholes models 1 underlying.
- What if we need more? spread, basket options.
- Need correlation structure of the market.
- What if the market is naturally a curve?
 - Interest rates.
 - Commodities.

- Black-Scholes models 1 underlying.
- What if we need more? spread, basket options.
- Need correlation structure of the market.
- What if the market is naturally a curve?
 - Interest rates.
 - Commodities.

• Does it make sense to model each underlying individually?

Front Month Crude

Carlos F. Tolmasky

Principal Components Analysis in Yield-Curve Modeling

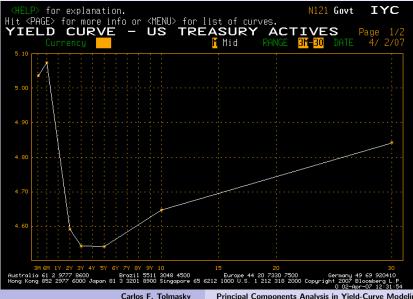
Crude Curve

(HELP> for explanation. N127 Comdty CT (PAGE> now scrolls 17 contracts. Enter # <gd> to scroll contracts. Session: Contract Table</gd>								
WTI CRUDE FUTURE								
Exchange Web Page Pricing Date: 3/30/07								
New York Mercantile ExchangeAS REPORTED 3/								2
Grey date = options trading						135492		Previous
			Time	Bid	1 Ask		nt TotVol	Close
	i5.87s		Close			35885		66.03
	57.47s		Close			19243		67.28
	68.25s		Close	67.70		7568		68.05
	68.73s		Close			3494		68.61
	59.08s		Close			3971		69.01
	69.35s		Close			2972		69.32
	69.56s		Close			2528		69.53
	59.71s		Close			14603		69.68
	69.81s		Close			3561		69.79
	69.89s	+.01	Close			1391		69.88
	69.94s	unch				1485		69.94
	69.99s	unch	Close			1176		69.99
13 <mark>CLK8</mark> May08 7	20.04s	unch	Close			996		70.04
14)CLM8 Jun08 7	20.09s	unch	Close			4290		70.09
	20.08s		Close			535		70.08
16 <mark>0CLQ8</mark> Aug08 7	20.04s	01	Close			609	9 950	70.05
	20.00s		Close			1403		70.02
Australia 61 2 9777 860 Hong Kong 852 2977 6000	00 D Japan <u>81</u>	Brazil 551: 3 3201 8 <u>90</u>	1 3048 4500 D Singap <u>ore</u>	Eu 65 6212 100	rope 44 2 0 U.S. <u>1</u>	0 7330 7500 212 318 2000 <u>Copu</u>	Germany 49 6 right 2007 <u>Bloo</u>	9 920410 omberg L.P.
		<u> </u>					0 02-Apr-0	17 12:24:32

Carlos F. Tolmasky

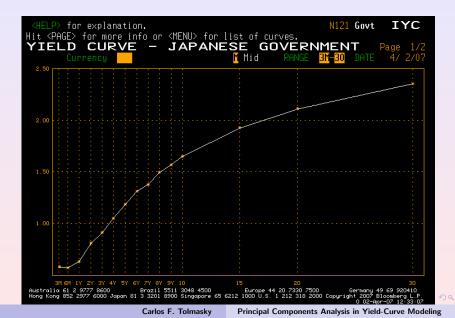
Principal Components Analysis in Yield-Curve Modeling

Yield Curve

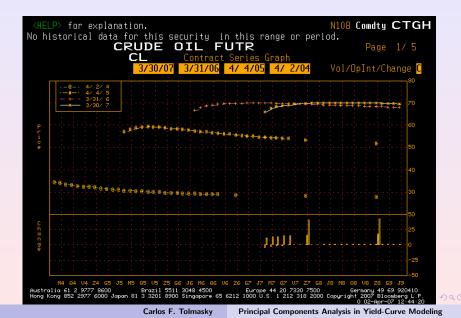


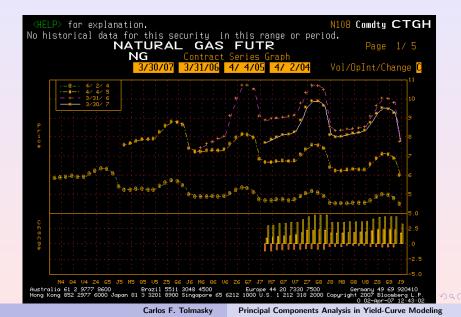
Principal Components Analysis in Yield-Curve Modeling

Japanese Yield Curve



Crude Curve through time





Historically, different approaches:

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

◆□ > ◆□ > ◆臣 > ◆臣 > 臣 の < @

Historically, different approaches:

Black's model:

• Each possible underlying is lognormal.

Black's model:

- Each possible underlying is lognormal.
- What if we need to use more than one rate?

Black's model:

- Each possible underlying is lognormal.
- What if we need to use more than one rate?

1-Factor models (Vasicek, Ho-Lee)

• Model the short rate, derive the rest of the curve from it.

Black's model:

- Each possible underlying is lognormal.
- What if we need to use more than one rate?

1-Factor models (Vasicek, Ho-Lee)

- Model the short rate, derive the rest of the curve from it.
- 1-factor not rich enough, how do we add factors?

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Black's model:

- Each possible underlying is lognormal.
- What if we need to use more than one rate?

1-Factor models (Vasicek, Ho-Lee)

- Model the short rate, derive the rest of the curve from it.
- 1-factor not rich enough, how do we add factors?
- Adding factors not obvious.

Black's model:

- Each possible underlying is lognormal.
- What if we need to use more than one rate?

1-Factor models (Vasicek, Ho-Lee)

- Model the short rate, derive the rest of the curve from it.
- 1-factor not rich enough, how do we add factors?
- Adding factors not obvious.

HJM

Forget Black-Scholes..

Black's model:

- Each possible underlying is lognormal.
- What if we need to use more than one rate?

1-Factor models (Vasicek, Ho-Lee)

- Model the short rate, derive the rest of the curve from it.
- 1-factor not rich enough, how do we add factors?
- Adding factors not obvious.

HJM

- Forget Black-Scholes..
- Model the whole curve.

• How?? ∞ -many points.

(□) (@) (E) (E) (E)

- How?? ∞ -many points.
- However correlation is high.

・ロト ・日ト ・ヨト ・ヨト ・ヨ

- How?? ∞ -many points.
- However correlation is high.
- Maybe the moves "live" in a lower dimensional space.

・ロン ・四マ ・ヨマ ・ロマ

Э

- How?? ∞ -many points.
- However correlation is high.
- Maybe the moves "live" in a lower dimensional space.

Instead of

$$\frac{dF_i}{F_i} = \sigma_i dW_i \qquad i = 1, ..., n$$

with W_i, W_j correlated do

・ロン (雪) (目) (日)

э

- How?? ∞ -many points.
- However correlation is high.
- Maybe the moves "live" in a lower dimensional space.

Instead of

$$\frac{dF_i}{F_i} = \sigma_i dW_i \qquad i = 1, ..., n$$

with W_i, W_j correlated do

$$\frac{dF_i}{F_i} = \sum_{i=1}^k \sigma_{j,i} dW_j \qquad k < n \text{ (hopefully)}$$

э

- How?? ∞ -many points.
- However correlation is high.
- Maybe the moves "live" in a lower dimensional space.

Instead of

$$\frac{dF_i}{F_i} = \sigma_i dW_i \qquad i = 1, ..., n$$

with W_i, W_j correlated do

$$\frac{dF_i}{F_i} = \sum_{i=1}^k \sigma_{j,i} dW_j \qquad k < n \text{ (hopefully)}$$

But, how do we choose the $\sigma_{j,i}$??

• Technique to reduce dimensionality.

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

- Technique to reduce dimensionality.
- If X is the matrix containing our data, we look for w so that $\arg \max_{\|w\|=1} \operatorname{Var}(w^T X)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- Technique to reduce dimensionality.
- If X is the matrix containing our data, we look for w so that $\arg \max_{\|w\|=1} \operatorname{Var}(w^T X)$
- Then we do the same in the subspace orthogonal to w.

- Technique to reduce dimensionality.
- If X is the matrix containing our data, we look for w so that arg max_{||w||=1} Var(w^TX)
- Then we do the same in the subspace orthogonal to w.
- It is equivalent to diagonalizing the covariance matrix.

(ロ) (同) (E) (E) (E) (O)(O)

- Technique to reduce dimensionality.
- If X is the matrix containing our data, we look for w so that arg max_{||w||=1} Var(w^TX)
- Then we do the same in the subspace orthogonal to w.
- It is equivalent to diagonalizing the covariance matrix.

(ロ) (同) (E) (E) (E) (O)(O)

Litterman-Scheikman (1991)

• Looked at the treasury yield curve.

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

Э

Litterman-Scheikman (1991)

- Looked at the treasury yield curve.
- Found that just a few eigenvectors are the important ones.

・ロト ・回ト ・ヨト ・ヨト

э

Litterman-Scheikman (1991)

- Looked at the treasury yield curve.
- Found that just a few eigenvectors are the important ones.
- Three of them explain most of the moves.

・ロト ・回ト ・ヨト ・ヨト

э

- Looked at the treasury yield curve.
- Found that just a few eigenvectors are the important ones.
- Three of them explain most of the moves.
- Level-Slope-Curvature

・ロト ・回ト ・ヨト ・ヨト

э

- Looked at the treasury yield curve.
- Found that just a few eigenvectors are the important ones.
- Three of them explain most of the moves.
- Level-Slope-Curvature
 - Very Intuitive.

・ロン ・回 と ・ 回 と ・ 回 と

- Looked at the treasury yield curve.
- Found that just a few eigenvectors are the important ones.
- Three of them explain most of the moves.
- Level-Slope-Curvature
 - Very Intuitive.
 - Curve trades.

・ロン ・回 と ・ 回 と ・ 回 と

- Looked at the treasury yield curve.
- Found that just a few eigenvectors are the important ones.
- Three of them explain most of the moves.
- Level-Slope-Curvature
 - Very Intuitive.
 - Curve trades.
- Cortazar-Schwartz (2004) found the same in copper

・ロン ・回 と ・ 回 と ・ 回 と

- Looked at the treasury yield curve.
- Found that just a few eigenvectors are the important ones.
- Three of them explain most of the moves.
- Level-Slope-Curvature
 - Very Intuitive.
 - Curve trades.
- Cortazar-Schwartz (2004) found the same in copper
- Loads (or lots?) of other people report the same kind of results in many other markets.

э

• Recently, some work has been done on this.

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

◆□> ◆□> ◆豆> ◆豆> ・豆

- Recently, some work has been done on this.
- Mönch (2006)
 - Studies innovations in level-slope-curvature wrt macro variables.

・ロン ・回 と ・ ヨン ・ ヨン

E

- Recently, some work has been done on this.
- Mönch (2006)
 - Studies innovations in level-slope-curvature wrt macro variables.
 - Positive answer for curvature.

・ロン ・四 と ・ ヨ と ・ ヨ と

- Recently, some work has been done on this.
- Mönch (2006)
 - Studies innovations in level-slope-curvature wrt macro variables.
 - Positive answer for curvature.
- Diebold-Li (2006)
 - Use autoregressive models for each component.

・ロン ・回 と ・ ヨ と ・ ヨ と …

- Recently, some work has been done on this.
- Mönch (2006)
 - Studies innovations in level-slope-curvature wrt macro variables.
 - Positive answer for curvature.
- Diebold-Li (2006)
 - Use autoregressive models for each component.
 - Study forecast power at short and long horizons.

・ロン ・回 と ・ ヨ と ・ ヨ と …

- Recently, some work has been done on this.
- Mönch (2006)
 - Studies innovations in level-slope-curvature wrt macro variables.
 - Positive answer for curvature.
- Diebold-Li (2006)
 - Use autoregressive models for each component.
 - Study forecast power at short and long horizons.
 - Report encouraging results at long horizons.

・ロン ・回 と ・ ヨン ・ ヨン

- Recently, some work has been done on this.
- Mönch (2006)
 - Studies innovations in level-slope-curvature wrt macro variables.
 - Positive answer for curvature.
- Diebold-Li (2006)
 - Use autoregressive models for each component.
 - Study forecast power at short and long horizons.
 - Report encouraging results at long horizons.
- Chantziara-Skiadopoulos (2005).
 - Study predictive power in oil.

・ロン ・回 と ・ ヨン ・ ヨン

- Recently, some work has been done on this.
- Mönch (2006)
 - Studies innovations in level-slope-curvature wrt macro variables.
 - Positive answer for curvature.
- Diebold-Li (2006)
 - Use autoregressive models for each component.
 - Study forecast power at short and long horizons.
 - Report encouraging results at long horizons.
- Chantziara-Skiadopoulos (2005).
 - Study predictive power in oil.
 - Results are weak.

・ロン ・回 と ・ ヨン ・ ヨン

- Recently, some work has been done on this.
- Mönch (2006)
 - Studies innovations in level-slope-curvature wrt macro variables.
 - Positive answer for curvature.
- Diebold-Li (2006)
 - Use autoregressive models for each component.
 - Study forecast power at short and long horizons.
 - Report encouraging results at long horizons.
- Chantziara-Skiadopoulos (2005).
 - Study predictive power in oil.
 - Results are weak.
 - Also look at spillover effects among crude (WTI and IPE), heating oil and gasoline.

・ロン ・回 と ・ ヨン ・ ヨン

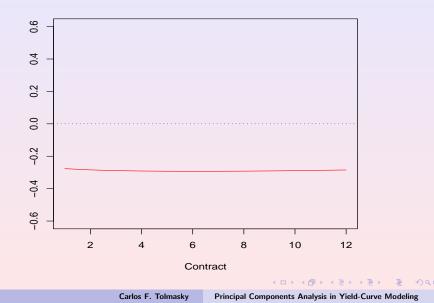
- Recently, some work has been done on this.
- Mönch (2006)
 - Studies innovations in level-slope-curvature wrt macro variables.
 - Positive answer for curvature.
- Diebold-Li (2006)
 - Use autoregressive models for each component.
 - Study forecast power at short and long horizons.
 - Report encouraging results at long horizons.
- Chantziara-Skiadopoulos (2005).
 - Study predictive power in oil.
 - Results are weak.
 - Also look at spillover effects among crude (WTI and IPE), heating oil and gasoline.
 - Some spillover effects found.

・ロン ・回 と ・ ヨ と ・ ヨ と …

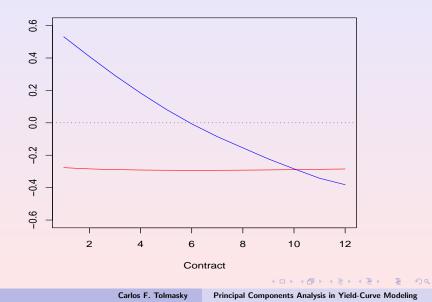
Table: Correlation Matrix for Changes of the First 12 Crude Oil Futures Prices

1.000	0.992	0.980	0.966	0.951	0.936	0.922	0.08	0.892	0.877	0.860	0.848
0.992	1.000	0.996	0.988	0.978	0.966	0.954	0.941	0.927	0.913	0.898	0.886
0.980	0.996	1.000	0.997	0.991	0.982	0.973	0.963	0.951	0.939	0.925	0.914
0.966	0.988	0.997	1.000	0.998	0.993	0.986	0.978	0.968	0.958	0.946	0.936
0.951	0.978	0.991	0.998	1.000	0.998	0.994	0.989	0.981	0.972	0.963	0.954
0.936	0.966	0.982	0.993	0.998	1.000	0.999	0.995	0.90	0.983	0.975	0.967
0.922	0.954	0.973	0.986	0.994	0.999	1.000	0.999	0.996	0.991	0.984	0.978
0.08	0.941	0.963	0.978	0.989	0.995	0.999	1.000	0.999	0.996	0.991	0.985
0.892	0.927	0.951	0.968	0.981	0.90	0.996	0.999	1.000	0.999	0.995	0.991
0.877	0.913	0.939	0.958	0.972	0.983	0.991	0.996	0.999	1.000	0.998	0.996
0.860	0.898	0.925	0.946	0.963	0.975	0.984	0.991	0.995	0.998	1.000	0.998
0.848	0.886	0.914	0.936	0.954	0.967	0.978	0.985	0.991	0.996	0.998	1.000

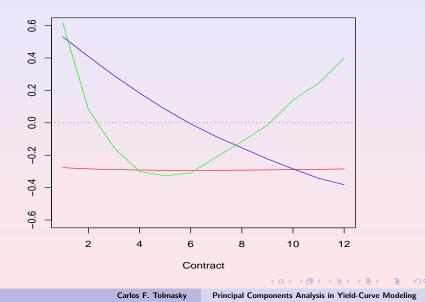
◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●



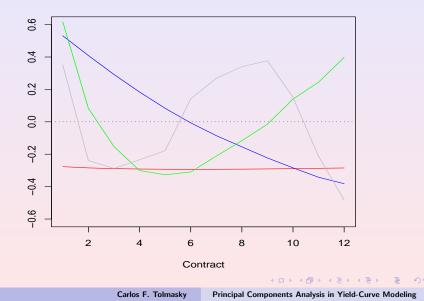
First four eigenvectors for oil



First four eigenvectors for oil



First four eigenvectors for oil



Forzani-T (2003)

• Why is the result "market-invariant"?

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

◆□> ◆□> ◆目> ◆目> ●目 ●のQで

Forzani-T (2003)

- Why is the result "market-invariant"?
- Because all the correlation matrices are very similar.

(ロ) (同) (E) (E) (E) (O)(O)

- Why is the result "market-invariant"?
- Because all the correlation matrices are very similar.
- They all look like $\rho^{|i-j|}$ with ρ close to 1.

◆□> ◆□> ◆三> ◆三> 三 のへで

- Why is the result "market-invariant"?
- Because all the correlation matrices are very similar.
- They all look like $\rho^{|i-j|}$ with ρ close to 1.
- Proved that the eigenvectors of those matrices converge to $\cos(nx)$ when $\rho \rightarrow 1$.

(ロ) (同) (E) (E) (E) (O)(O)

Correlation matrix:

or, as an operator:

$$K_{\rho}f(x) = \int_0^T \rho^{|y-x|}f(y)dy.$$
(1)

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

◆□> ◆□> ◆目> ◆目> ●目 ● のへで

• A big part of the correlation structure is given by:

$$R(t, T_1)T_1 = R(t, T_0)T_0 + f(t, T_0, T_1)(T_1 - T_0)$$

◆□ → ◆□ → ◆注 → ◆注 → □ 注

• A big part of the correlation structure is given by:

$$R(t, T_1)T_1 = R(t, T_0)T_0 + f(t, T_0, T_1)(T_1 - T_0)$$

• So, it is an artifact.

• A big part of the correlation structure is given by:

$$R(t, T_1)T_1 = R(t, T_0)T_0 + f(t, T_0, T_1)(T_1 - T_0)$$

- So, it is an artifact.
- Even if we generate independent forwards we find structure in the correlation matrix of the zeros.

・ロン ・回 と ・ヨン ・ヨン

• A big part of the correlation structure is given by:

$$R(t, T_1)T_1 = R(t, T_0)T_0 + f(t, T_0, T_1)(T_1 - T_0)$$

- So, it is an artifact.
- Even if we generate independent forwards we find structure in the correlation matrix of the zeros.
- Looked at the PCAs of fwds in various markets, found nothing interesting.

• They study different fitting techniques for the yield curve.

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- They study different fitting techniques for the yield curve.
- Found that this choice is crucial to the correlation structure obtained.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

- They study different fitting techniques for the yield curve.
- Found that this choice is crucial to the correlation structure obtained.
- Could Lekkos' critique be just a matter of the choice of the fitting technique?

(ロ) (同) (E) (E) (E)

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

・ロト・(型)・(ヨ)・(ヨ)・(ロ)・(ロ)

Can we characterize "level-slope-curvature"?

◆□→ ◆□→ ◆注→ ◆注→ □注

Can we characterize "level-slope-curvature"?

• They look at sign changes in the eigenvectors.

Can we characterize "level-slope-curvature"?

- They look at sign changes in the eigenvectors.
- "Level" means no sign changes.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

• They ask the question:

Can we characterize "level-slope-curvature"?

- They look at sign changes in the eigenvectors.
- "Level" means no sign changes.
- This is solved by Perron's theorem.

(ロ) (同) (E) (E) (E)

Perron's Theorem:

Let A be an N \times N matrix, all of whose elements are strictly positive. Then A has a positive eigenvalue of algebraic multiplicity equal to 1, which is strictly greater in modulus than all other eigenvalues of A. Furthermore, the unique (up to multiplication by a non-zero constant) associated eigenvector may be chosen so that all its components are strictly positive.

• A square matrix A is said to be totally positive (TP) when for all p-uples n, m and $p \le N$, the matrix formed by the elements a_{n_i,m_i} has nonnegative determinant.

- A square matrix A is said to be totally positive (TP) when for all p-uples n, m and $p \le N$, the matrix formed by the elements a_{n_i,m_i} has nonnegative determinant.
- If that condition is valid only for $p \le k < N$ then A is called TP_k .

- A square matrix A is said to be totally positive (TP) when for all p-uples n, m and $p \le N$, the matrix formed by the elements a_{n_i,m_i} has nonnegative determinant.
- If that condition is valid only for $p \le k < N$ then A is called TP_k .
- If those dets are strictly positive they are called strictly totally positive (STP).

・ロン ・四 と ・ ヨ と ・ ヨ と

- A square matrix A is said to be totally positive (TP) when for all p-uples n, m and $p \le N$, the matrix formed by the elements a_{n_i,m_i} has nonnegative determinant.
- If that condition is valid only for $p \le k < N$ then A is called TP_k .
- If those dets are strictly positive they are called strictly totally positive (STP).
- This is all classical stuff in matrix theory.

・ロン ・回 と ・ ヨン ・ ヨン

- A square matrix A is said to be totally positive (TP) when for all p-uples n, m and $p \le N$, the matrix formed by the elements a_{n_i,m_i} has nonnegative determinant.
- If that condition is valid only for $p \le k < N$ then A is called TP_k .
- If those dets are strictly positive they are called strictly totally positive (STP).
- This is all classical stuff in matrix theory.
- In 1937 Gantmacher and Krein proved a theorem for ST matrices.

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Sign-change pattern in STPk matrices

Assume Σ is an N × N positive definite symmetric matrix (i.e. a valid covariance matrix) that is STP_k . Then we have $\lambda_1 > \lambda_2 > ... > \lambda_k > \lambda_{k+1} \ge ... \lambda_N > 0$, i.e. at least the first k eigenvalues are simple. Moreover denoting the *j*th eigenvector by x_j , we have that x_j crosses the zero j - 1 times for j = 1, ..., k.

• Therefore $STP_3 \Rightarrow$ "level-slope-curvature".

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

・ロ・・ (日・・ モ・・ モ・・ モ

- Therefore $STP_3 \Rightarrow$ "level-slope-curvature".
- Condition can be relaxed.

- Therefore $STP_3 \Rightarrow$ "level-slope-curvature".
- Condition can be relaxed.
- Definition: A matrix is called oscillatory if it is *TP_k* and some power of it is *STP_k*.

(ロ) (同) (E) (E) (E) (O)(O)

- Therefore $STP_3 \Rightarrow$ "level-slope-curvature".
- Condition can be relaxed.
- Definition: A matrix is called oscillatory if it is *TP_k* and some power of it is *STP_k*.
- Sufficient condition can be relaxed to being oscillatory of order 3 (actually to having a power which is).

• The matrices in Forzani-T have constant diagonal elements

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

- The matrices in Forzani-T have constant diagonal elements
- Actually that is not true in reality. The diagonals increase in size.

(ロ) (同) (E) (E) (E)

- The matrices in Forzani-T have constant diagonal elements
- Actually that is not true in reality. The diagonals increase in size.
- In modeling correlations Schoenmakers-Coffey proposed a family of matrices that takes this fact into account.

- The matrices in Forzani-T have constant diagonal elements
- Actually that is not true in reality. The diagonals increase in size.
- In modeling correlations Schoenmakers-Coffey proposed a family of matrices that takes this fact into account.
- Lord-Pessler show that these matrices are oscillatory.

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

◆□ > ◆□ > ◆臣 > ◆臣 > 「臣 」の < @

```
• \rho_{i,j+1} \leq \rho_{i,j} for j \geq i.
```

•
$$\rho_{i,j+1} \leq \rho_{i,j}$$
 for $j \geq i$.

•
$$\rho_{i,j-1} \leq \rho_{i,j}$$
 for $j \leq i$.

•
$$\rho_{i,j+1} \leq \rho_{i,j}$$
 for $j \geq i$.

•
$$\rho_{i,j-1} \leq \rho_{i,j}$$
 for $j \leq i$.

•
$$\rho_{i,i+j} \leq \rho_{i+1,i+j+1}$$

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

• Sometimes we need to mix up different markets.

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

・ロト ・回ト ・ヨト ・ヨト

- Sometimes we need to mix up different markets.
- Example: Oil
 - Not just timespreads, bflies but also cracks.

・ロト ・回ト ・ヨト ・ヨト

- Sometimes we need to mix up different markets.
- Example: Oil
 - Not just timespreads, bflies but also cracks.
- In that case we could price any structure in a muti-curve market.

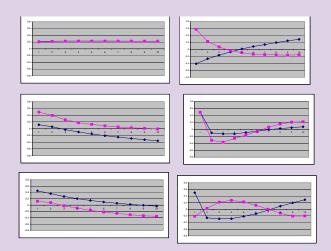
・ロン ・回 と ・ ヨ と ・ ヨ と …

- Sometimes we need to mix up different markets.
- Example: Oil
 - Not just timespreads, bflies but also cracks.
- In that case we could price any structure in a muti-curve market.
- We can model something like this by assuming a constant correlation intercurve and a different, also constant, correlation intracurve.

・ロン ・四 と ・ ヨ と ・ ヨ と

- Sometimes we need to mix up different markets.
- Example: Oil
 - Not just timespreads, bflies but also cracks.
- In that case we could price any structure in a muti-curve market.
- We can model something like this by assuming a constant correlation intercurve and a different, also constant, correlation intracurve.
- Depending on how high is the intercurve correlation we will get "separation" vectors of different orders.

PCA of crude and heating oil together



Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

(ロ) (回) (E) (E) (E) (O)

Let μ and λ be the intercurve and intracurve correlations.

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Let μ and λ be the intercurve and intracurve correlations.

Then the correlation matrix C is given by:

・ロト ・回ト ・ヨト ・ヨト

э

Let μ and λ be the intercurve and intracurve correlations.

Then the correlation matrix C is given by:

$$\left(\begin{array}{cc} \mathcal{C}_{\rho} & \mu \mathcal{C}_{\rho} \\ \mu \mathcal{C}_{\rho} & \mathcal{C}_{\rho} \end{array}\right)$$

・ロト ・回ト ・ヨト ・ヨト

э

Let μ and λ be the intercurve and intracurve correlations.

Then the correlation matrix C is given by:

$$\left(\begin{array}{cc} \mathcal{C}_{\rho} & \mu \mathcal{C}_{\rho} \\ \mu \mathcal{C}_{\rho} & \mathcal{C}_{\rho} \end{array}\right)$$

where

Carlos F. Tolmasky

Principal Components Analysis in Yield-Curve Modeling

E

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

(ロ) (回) (E) (E) (E) (O)

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling

ヘロト ヘアト ヘビト ヘビト

Then the eigenvectors of *C* are of the form (v_k, v_k) and $(v_k, -v_k)$ with $1 \le k \le n$ and

Then the eigenvectors of *C* are of the form (v_k, v_k) and $(v_k, -v_k)$ with $1 \le k \le n$ and

eigenvalues $\lambda_k(1+\mu)$ and $\lambda_k(1-\mu)$.

Then the eigenvectors of C are of the form (v_k, v_k) and $(v_k, -v_k)$ with $1 \le k \le n$ and

eigenvalues $\lambda_k(1+\mu)$ and $\lambda_k(1-\mu)$.

So, depending on the size of the intercurve correlation we will get different order of importance between common frequencies and separating frequencies.

Seasonality in the Eigenvalues (o=heating oil, x=crude)

